Nitrogen Metabolism during Anaerobic Fermentation of Actual Food Waste under Different pH Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Semi-Continuous Fermentation Experiments
2.3. Microbial Analysis
2.4. Other Analytical Procedures
3. Results
3.1. Fermentation Performance
3.2. Nitrogen Transformation
3.3. Microbial Community
3.4. Key Enzymes and Transporters
3.5. Key Genes and Their Carriers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; He, Z.; Yang, L.; Wang, L.; Li, Y.; Chen, T.; Li, H. Optimal utilization of solid residue from phase-separation pretreatment before food waste anaerobic digestion. J. Clean. Prod. 2022, 372, 133795. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, J.; Xu, Q.; Li, X.; Wang, D.; Yang, Q.; Liu, Y.; Tao, Z. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. Bioresour. Technol. 2019, 274, 430–438. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Feng, K.; Liu, J. Oriented fermentation of food waste towards high-value products: A review. Energies 2020, 13, 5638. [Google Scholar] [CrossRef]
- Feng, K.; Li, H.; Deng, Z.; Wang, Q.; Zhang, Y.; Zheng, C. Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste. Renew. Energy 2020, 146, 1588–1595. [Google Scholar] [CrossRef]
- Lopez-Garzon, C.S.; Straathof, A.J.J. Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 2014, 32, 873–904. [Google Scholar] [CrossRef]
- Strazzera, G.; Battista, F.; Andreolli, M.; Menini, M.; Bolzonella, D.; Lampis, S. Influence of different household Food Wastes Fractions on Volatile Fatty Acids production by anaerobic fermentation. Bioresour. Technol. 2021, 335, 125289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, H.; Feng, K. Effect of honeycomb; granular, and powder activated carbon additives on continuous lactic acid fermentation of complex food waste with mixed inoculation. J. Biosci. Bioeng. 2021, 131, 655–662. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.C.; Hu, Y.; Pu, Y.; Huang, J.; Ngo, H.H.; Zeng, Y.; Li, Y. Nitrogen removal enhancement using lactic acid fermentation products from food waste as external carbon sources: Performance and microbial communities. Bioresour. Technol. 2018, 256, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.C.; Hu, Y.; Pu, Y.; Huang, J.; Ngo, H.H.; Zeng, Y.; Li, Y. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment. Bioresour. Technol. 2019, 271, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ren, B.; Zheng, S.; Feng, X.; He, Y.; Zhu, X.; Zhou, L.; Li, D. Effect of high concentration of ammonium on production of n -caproate: Recovery of a high-value biochemical from food waste via lactate-driven chain elongation. Waste Manag. 2021, 128, 25–35. [Google Scholar] [CrossRef]
- Tian, Z.; Li, G.; Xiong, Y.; Cao, X.; Pang, H.; Tang, W.; Liu, Y.; Bai, M.; Zhu, Q.; Du, C.; et al. Step-feeding food waste fermentation liquid as supplementary carbon source for low C/N municipal wastewater treatment: Bench scale performance and response of microbial community. J. Environ. Manag. 2023, 345, 118434. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.C.; Cheng, Z.; Li, Y.; Tang, J. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere 2016, 144, 689–696. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zhao, S.; Chen, H.; Zheng, X.; Luo, J.; Liu, Y. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res. 2015, 70, 148–157. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zhang, T.; Li, J.; Lai, S.; Chen, H.; Gao, P.; Xue, G. High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature. Chem. Eng. J. 2017, 328, 197–206. [Google Scholar] [CrossRef]
- Yin, J.; Yu, X.; Wang, K.; Shen, D. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int. J. Hydrogen Energy 2016, 41, 21713–21720. [Google Scholar] [CrossRef]
- Shen, D.; Yin, J.; Yu, X.; Wang, M.; Long, Y.; Shentu, J.; Chen, T. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Bioresour. Technol. 2017, 227, 125–132. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Li, H.; Deng, Z.; Liu, J. Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH. J. Environ. Manag. 2022, 304, 114312. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.C.; Hu, Y.; Zhang, Y.; Li, Y. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour. Technol. 2017, 224, 544–552. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Li, H.; Zheng, C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 2018, 270, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wu, L.; Wei, W.; Ni, B. Insights into the microbiomes for medium-chain carboxylic acids production from biowastes through chain elongation. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3787–3812. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Spcece, R.E.; Mccarty, P.L. Nutrient requirements and biological solids accumulation in anaerobic digestion. Adv. Water Pollut. Res. 1964, 2, 305–333. [Google Scholar]
- Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef]
- Scarborough, M.J.; Lawson, C.E.; Hamilton, J.J.; Donohue, T.J.; Noguera, D.R. Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. Msystems 2018, 3, e00221-18. [Google Scholar] [CrossRef] [PubMed]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Zuniga, M. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 2006, 32, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Ueki, A.; Shibuya, T.; Kaku, N.; Ueki, K. Aminocella lysinolytica gen. nov., sp. nov., a L-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms. Arch. Microbiol. 2015, 197, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ping, Q.; Li, Y. Comprehensively understanding metabolic pathways of protein during the anaerobic digestion of waste activated sludge. Chemosphere 2022, 297, 134117. [Google Scholar] [CrossRef]
- Vranova, V.; Rejsek, K.; Formanek, P. Proteolytic activity in soil: A review. Appl. Soil. Ecol. 2013, 70, 23–32. [Google Scholar] [CrossRef]
- Ramsay, I.R.; Pullammanappallil, P.C. Protein degradation during anaerobic wastewater treatment: Derivation of stoichiometry. Biodegradation 2001, 12, 247–257. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, X.; Fu, B.; Chen, J.; Yu, H. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 2012, 46, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ng, I.; Chen, P.T.; Chiang, C.; Chao, Y. Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnol. Biofuels 2018, 11, 256. [Google Scholar] [CrossRef]
- Genchi, G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Girinathan, B.P.; Braun, S.; Sirigireddy, A.R.; Lopez, J.E.; Govind, R. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo. PLoS ONE 2016, 11, e0165579. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, Y.; Koonthongkaew, J.; Takagi, H. An overview of branched-chain amino acid aminotransferases: Functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl. Microbiol. Biotechnol. 2021, 105, 8059–8072. [Google Scholar] [CrossRef]
- Hussain, A.; Filiatrault, M.; Guiot, S.R. Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Bioresour. Technol. 2017, 245, 1–9. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Xiao, B.; Cong, M.; Hojo, T.; Cheng, J.; Li, Y. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy 2019, 179, 1235–1245. [Google Scholar] [CrossRef]
- Doi, Y. Glycerol metabolism and its regulation in lactic acid bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 5079–5093. [Google Scholar] [CrossRef]
- Maghnouj, A.; Cabral, T.; Stalon, V.; Wauven, C.V. The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR. J. Bacteriol. 1998, 180, 6468–6475. [Google Scholar] [CrossRef] [PubMed]
- Molledo, M.M.; Quistgaard, E.M.; Flayhan, A.; Pieprzyk, J.; Loew, C. Multispecific Substrate Recognition in a Proton-Dependent Oligopeptide Transporter. Structure 2018, 26, 467. [Google Scholar] [CrossRef] [PubMed]
Item | Substrate | Inoculum |
---|---|---|
Total solid (TS, %) | 12.2 ± 1.2 | 1.9 ± 0.2 |
Volatile solid (VS, %) | 11.6 ± 1.2 | 0.9 ± 0.3 |
Soluble chemical oxygen demand (SCOD, mg/L) | 34,011 ± 5447 | 2242 ± 114 |
Total chemical oxygen demand (TCOD, mg/kg) | 129,109 ± 12,791 | 7824 ± 857 |
C/N | 15.3 ± 0.3 | 7.3 ± 0.3 |
pH | 4.0~4.5 | 7.9 ± 0.2 |
Oxidation reduction potential (ORP, mV) | / | −429 ± 15 |
NH4+-N (mg-N/L) | 104.3 ± 36.9 | 3257 ± 473 |
Total Kjeldahl nitrogen (TKN, mg-N/L) | 2240.8 ± 345.9 | / |
Soluble Kjeldahl nitrogen (SKN, mg-N/L) | 662.4 ± 85.5 | / |
Alkalinity (mg CaCO3/L) | / | 6657 ± 215 |
R0 | R1 | R2 | R3 | |
---|---|---|---|---|
pH | 4.27 ± 0.06 | 4.00 ± 0.04 | 4.50 ± 0.04 | 5.00 ± 0.04 |
Lactic acid (mg/L) | 1444 ± 990 | 1225 ± 254 | 7969 ± 1005 * | 522 ± 243 |
Acetic acid (mg/L) | 8780 ± 773 | 9066 ± 926 | 5002 ± 224 | 4425 ± 51 |
Propionic acid (mg/L) | 1185 ± 99 | 1061 ± 146 | 0 | 1080 ± 120 |
n-Butyric acid (mg/L) | 0 | 0 | 108 ± 188 | 1240 ± 114 |
n-Valeric acid (mg/L) | 0 | 0 | 0 | 1235 ± 105 |
n-Caproic acid (mg/L) | 0 | 0 | 2029 ± 299 | 2912 ± 332 |
n-Heptanoic acid (mg/L) | 0 | 0 | 840 ± 46 | 1430 ± 154 |
Ethanol (mg/L) | 3312 ± 350 | 2167 ± 274 | 905 ± 54 | 0 |
n-Propanol (mg/L) | 778 ± 53 | 1725 ± 254 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Yang, L.; Li, H.; Deng, Z. Nitrogen Metabolism during Anaerobic Fermentation of Actual Food Waste under Different pH Conditions. Fermentation 2024, 10, 129. https://doi.org/10.3390/fermentation10030129
Zhao C, Yang L, Li H, Deng Z. Nitrogen Metabolism during Anaerobic Fermentation of Actual Food Waste under Different pH Conditions. Fermentation. 2024; 10(3):129. https://doi.org/10.3390/fermentation10030129
Chicago/Turabian StyleZhao, Chuyun, Luxin Yang, Huan Li, and Zhou Deng. 2024. "Nitrogen Metabolism during Anaerobic Fermentation of Actual Food Waste under Different pH Conditions" Fermentation 10, no. 3: 129. https://doi.org/10.3390/fermentation10030129
APA StyleZhao, C., Yang, L., Li, H., & Deng, Z. (2024). Nitrogen Metabolism during Anaerobic Fermentation of Actual Food Waste under Different pH Conditions. Fermentation, 10(3), 129. https://doi.org/10.3390/fermentation10030129