Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Cultures
2.1.1. Pre-Inoculum Cultures and Control Conditions
2.1.2. Extractive Fermentation with Thermosensitive Polymers
2.2. Cell Viability in Extractive Fermentation
- [C]: Cell concentration (cells/mL);
- DF: Dilution factor;
- : Average number of cells counted per quadrant;
- Vf: Volume factor (10,000 mm3).
- Y: Log(N(T)/N0);
- N(T): Number of cells at a certain time;
- N0: Initial number of cells;
- a: Value of maximum growth;
- b: Constant (generated by software);
- c: Constant (generated by software);
- T: Time (h).
2.3. Generation of the In Situ Biphasic System for EPS Extraction
2.4. Exopolysaccharide and Biomass Quantification
- Y: yield;
- DE: dry weight of EPS;
- WB: wet weight of biomass.
- Y: yield;
- WB: wet weight of biomass;
- V: volume.
2.5. Extractive Fermentation with TP in a Semi-Continuous System
2.6. Statistical Analysis
3. Results
3.1. Extractive Fermentation and Cellular Viability
3.2. Generation of the Biphasic System
3.3. Extraction of EPS and Biomass
3.4. Extractive Fermentation in a Semi-Continuous System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmichael, D.; Siletti, C.; Koulouris, A.; Petrides, D. Bioprocess Simulation and Scheduling. In Emerging Areas in Bioengineering; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar] [CrossRef]
- Cossar, D. Bioprocessing Techniques. In Comprehensive Biotechnology, 2nd ed.; Pergamon: Oxford, UK, 2011; Volume 1, pp. 679–690. [Google Scholar]
- Sinha, J.; Dey, P.K.; Panda, T. Aqueous two-phase: The system of choice for extractive fermentation. Appl. Microbiol. Biotechnol. 2000, 54, 476–486. [Google Scholar] [CrossRef]
- Badhwar, P.; Kumar, P.; Dubey, K.K. Extractive Fermentation for Process integration and amplified pullulan production by A. pullulans in Aqueous Two Phase Systems. Sci. Rep. 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Soares RR, G.; Azevedo, A.M.; Van Alstine, J.M.; Raquel Aires-Barros, M. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnol. J. 2015, 10, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Rito-Palomares, M. Practical application of aqueous two-phase partition to process development for the recovery of biological products. J. Chromatogr. B 2004, 807, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Lan, J.C.; Loh, H.; Ling, T.C.; Ooi, C.W.; Show, P.L. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms. J. Sep. Sci. 2016, 39, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Tan, C.P.; Mokhtar, M.N.; Ibrahim, S.; Ariff, A.; Ooi, C.W.; Ling, T.C. Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two-phase system using thermo-separating polymer. Sep. Purif. Technol. 2012, 89, 9–15. [Google Scholar] [CrossRef]
- Yang, S.T.; Lu, C. Extraction-Fermentation Hybrid (Extractive Fermentation). In Separation and Purification Technologies in Biorefineries; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 409–437. [Google Scholar] [CrossRef]
- Show, P.L.; Tan, C.P.; Anuar, M.S.; Ariff, A.; Yusof, Y.A.; Chen, S.K.; Ling, T.C. Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresour. Technol. 2012, 116, 226–233. [Google Scholar] [CrossRef]
- Medina-Ramirez, C.F.; Castañeda-Guel, M.T.; Alvarez-Gonzalez, M.F.; Montesinos-Castellanos, A.; Morones-Ramirez, J.R.; López-Guajardo, E.A.; Gómez-Loredo, A. Application of extractive fermentation on the recuperation of exopolysaccharide from Rhodotorula mucilaginosa UANL-001L. Fermentation 2020, 6, 108. [Google Scholar] [CrossRef]
- Leong, Y.K.; Show, P.L.; Lan, J.C.; Krishnamoorthy, R.; Chu, D.T.; Nagarajan, D.; Yen, H.W.; Chang, J.S. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16. Bioresour. Technol. 2019, 287, 121474. [Google Scholar] [CrossRef]
- Egbo, M.K.; Okoani, A.O.; Okoh, I.E. Photobioreactors for microalgae cultivation—An Overview. Int. J. Sci. Eng. Res. 2018, 9, 65–74. [Google Scholar]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–nutritious, sustainable aqua- and animal feed source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae—A review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- Guzmán, S.; Gato, A.; Lamela, M.; Freire-Garabal, M.; Calleja, J.M. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2003, 17, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, N.; Sakaki, S.; Yamaguchi, Y.; Takenaka, H. Inhibitory effects of microalgae on the activation of hyaluronidase. J. Appl. Phycol. 2001, 13, 489–492. [Google Scholar] [CrossRef]
- Ghasemi, Y.; Moradian, A.; Mohagheghzadeh, A.; Shokravi, S.; Morowvat, M.H. Antifungal and Antibacterial activity of the MicroAlgae Collected from Paddy Fields of Iran. J. Biol. Sci. 2007, 7, 904–910. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Liu, H.; Su, J.; Lan, C.Q.; Zhong, M.; Hu, X. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. Algal Res. 2020, 48, 101883. [Google Scholar] [CrossRef]
- Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H. Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 2011, 23, 849–855. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Sieracki, S.M. Counting cells in cultures with the light microscope. In Algal Culturing Techniques; Academic Press: Cambridge, MA, USA, 2005; pp. 239–252. [Google Scholar]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van ‘t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Santos, A.M.; Janssen, M.; Lamers, P.P.; Evers WA, C.; Wijffels, R.H. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour. Technol. 2012, 104, 593–599. [Google Scholar] [CrossRef]
- Wu, N.; Li, Y.; Lan, C.Q. Production and Rheological Studies of Microalgal Extracellular Biopolymer from Lactose Using the Green Alga Neochloris oleoabundans. J. Polym. Environ. 2011, 19, 935–942. [Google Scholar] [CrossRef]
- Sousa, C.; Compadre, A.; Vermuë, M.H.; Wijffels, R.H. Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans. Algal Res. 2013, 2, 122–126. [Google Scholar] [CrossRef]
- Kumar, D.; Kaštánek, P.; Adhikary, S.P. Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Curr. Sci. 2018, 115, 234–241. [Google Scholar] [CrossRef]
- Rashidi, B.; Dechesne, A.; Rydahl, M.G.; Jørgensen, B.; Trindade, L.M. Neochloris oleoabundans cell walls have an altered composition when cultivated under different growing conditions. Algal Res. 2019, 40, 101482. [Google Scholar] [CrossRef]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Donepudi, J.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Kuppam, C. Production of biofuels from microalgae—A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew. Sustain. Energy Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Araujo, G.S.; Matos, L.J.; Fernandes, J.O.; Cartaxo, S.J.; Gonçalves, L.R.; Fernandes, F.A.; Farias, W.R. Ultrasonics Sonochemistry Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason. Sonochem. 2013, 20, 95–98. [Google Scholar] [CrossRef]
- Santoro, I.; Nardi, M.; Benincasa, C.; Costanzo, P.; Giordano, G.; Procopio, A.; Sindona, G. Sustainable and selective extraction of lipids and bioactive compounds from microalgae. Molecules 2019, 24, 4347. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Sousa, C.; de Winter, L.; Janssen, M.; Vermuë, M.H.; Wijffels, R.H. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour. Technol. 2012, 104, 565–570. [Google Scholar] [CrossRef]
- Wahal, S.; Viamajala, S. Maximizing Algal Growth in Batch Reactors Using Sequential Change in Light Intensity. Appl. Biochem. Biotechnol. 2010, 161, 511–522. [Google Scholar] [CrossRef]
- Klok, A.J.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour. Technol. 2013, 134, 233–243. [Google Scholar] [CrossRef]
- Ras, M.; Steyer, J.P.; Bernard, O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 2013, 12, 153–164. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 2011, 102, 5639–5644. [Google Scholar] [CrossRef]
- Yang, Y.; Mininberg, B.; Tarbet, A.; Weathers, P. At high temperature lipid production in Ettlia oleoabundans occurs before nitrate depletion. Appl. Microbiol. Biotechnol. 2013, 97, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Rabelo AP, B.; Tambourgi, E.B.; Pessoa, A. Bromelain partitioning in two-phase aqueous systems containing PEO-PPO-PEO block copolymers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 807, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, L.; Zhu, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Tian, B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT 2021, 147, 111617. [Google Scholar] [CrossRef]
- Marcilhac, C.; Sialve, B.; Pourcher, A.M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Dembczyński, R.; Białas, W.; Regulski, K.; Jankowski, T. Lysozyme extraction from hen egg white in an aqueous two-phase system composed of ethylene oxide-propylene oxide thermoseparating copolymer and potassium phosphate. Process Biochem. 2010, 45, 369–374. [Google Scholar] [CrossRef]
- Dembczynski, R.; Bialas, W.; Jankowski, T. Recycling of phase components during lysozyme extraction from hen egg white in the EO50PO50/K2HPO4 aqueous two-phase system. Biochem. Eng. J. 2010, 51, 24–31. [Google Scholar] [CrossRef]
- Chen, B.; Han, J.; Wang, Y.; Sheng, C.; Liu, Y.; Zhang, G.; Yan, Y. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples. Food Chem. 2014, 148, 105–111. [Google Scholar] [CrossRef]
- Darani, S.F.; Ahsaie, F.G.; Pazuki, G.; Abdolrahimi, S. Aqueous two-phase systems based on thermo-separating copolymer for partitioning of doxorubicin. J. Mol. Liq. 2021, 322, 114542. [Google Scholar] [CrossRef]
Condition A | Condition B | |||||||
---|---|---|---|---|---|---|---|---|
Fermentation | a | µmax | λ | G | a | µmax | λ | G |
Control | 1.49 | 0.03 | 33.46 | 18.92 | 0.98 | 0.00 | −2.55 | 99.84 |
EOPO 3900 g/mol 10% (w/v) | 1.29 | 0.02 | 71.01 | 30.21 | −2.45 | −0.01 | 249.10 | −35.64 |
EOPO 3900 g/mol 15% (w/v) | −0.06 | −0.05 | 71.21 | 13.14 | −2.39 | −0.15 | 253.62 | −4.50 |
EOPO 12,000 g/mol 10% (w/v) | 0.00 | - | 00.79 | - | 0.40 | 0.00 | 232.85 | 106.35 |
Conditions A | Conditions B | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fermentation | VR | [TP] | YTP | [BP] | YBP | [TP] | YTP | [BP] | YBP |
Control | N/A | 13.63 ± 0.000 | 63.85 | N/A | N/A | 22.97 ± 0.002 | 21.54 | N/A | N/A |
EOPO 3900 g/mol 10% (w/v) | 13.67 | 11.33 ± 0.120 | 108.97 | - | - | 22.92 ± 0.000 | 44.62 | 22.31 ± 0.003 | 43.42 |
EOPO 3900 g/mol 15% (w/v) | 7 | 8.93 ± 0.094 | 113.56 | - | - | 22.89 ± 0.002 | 43.85 | 22.34 ± 0.005 | 42.81 |
EOPO 12,000 g/mol 10% (w/v) | 4 | - | - | - | - | 22.30 ± 0.000 | 30.24 | 21.95 ± 0.003 | 29.76 |
Condition A | Condition B | ||
---|---|---|---|
Fermentation | VR | YBP | YBP |
Control | N/A | 3.20 | 3.20 |
EOPO 3900 g/mol 10% (w/v) | 13.67 | 1.56 | 1.54 |
EOPO 3900 g/mol 15% (w/v) | 7.00 | 1.18 | 1.57 |
EOPO 12,000 g/mol 10% (w/v) | 4.00 | - | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza-Chapa, A.P.; Ávila-Velasco, C.I.; González-Valdez, J.; Gómez-Loredo, A. Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans. Fermentation 2024, 10, 130. https://doi.org/10.3390/fermentation10030130
Garza-Chapa AP, Ávila-Velasco CI, González-Valdez J, Gómez-Loredo A. Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans. Fermentation. 2024; 10(3):130. https://doi.org/10.3390/fermentation10030130
Chicago/Turabian StyleGarza-Chapa, Ana Patricia, Carlos Iván Ávila-Velasco, José González-Valdez, and Alma Gómez-Loredo. 2024. "Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans" Fermentation 10, no. 3: 130. https://doi.org/10.3390/fermentation10030130
APA StyleGarza-Chapa, A. P., Ávila-Velasco, C. I., González-Valdez, J., & Gómez-Loredo, A. (2024). Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans. Fermentation, 10(3), 130. https://doi.org/10.3390/fermentation10030130