The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses?
Abstract
:1. Premise: Cheeses and Their Microbiota
2. The Main Factors of the Microbial Ecosystem Involved in Long-Ripened Cheese, Such as Grana Padano and Parmigiano Reggiano
3. Natural Whey Starter—Peculiarly Complex Microbial Ecosystems
4. An Ecological Perspective on Natural Whey Starters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alais, C. Science du Lait: Principes des Techniques Laitières, 4th ed.; Société D’édition et de Promotion Agro-Alimentaires, Industrielles et Commerciales: Paris, France, 1984. [Google Scholar]
- Fox, P.F.; Mcsweeney, P.L.H. Rennets: Their Role in Milk Coagulation and Cheese Ripening; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Douillard, F.P.; Ribbera, A.; Kant, R.; Pietilä, T.E.; Järvinen, H.M.; Messing, M.; Randazzo, C.L.; Paulin, L.; Laine, P.; Ritari, J.; et al. Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genet. 2013, 9, e1003683. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Neviani, E.; Fox, P. The Cheeses of Italy: Science and Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- McClure, S.B.; Magill, C.; Podrug, E.; Moore, A.M.T.; Harper, T.K.; Culleton, B.J.; Kennett, D.J.; Freeman, K.H. Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7200 years ago. PLoS ONE 2018, 13, e0202807. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, D. Secrets of the cheese microbiome. Nat. Food 2020, 1, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Methods used to study non-starter microorganisms in cheese: A review. Int. J. Dairy Technol. 2000, 53, 113–119. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; You, C.; Ren, J.; Chen, W.; Zheng, H.; Liu, Z. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci. Rep. 2018, 8, 2371. [Google Scholar] [CrossRef] [PubMed]
- Parente, E.; Ricciardi, A.; Zotta, T. The microbiota of dairy milk: A review. Int. Dairy J. 2020, 107, 104714. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Renoldi, N.; Innocente, N.; Rossi, A.; Brasca, M.; Morandi, S.; Marino, M. Screening of Aroma-Producing Performance of Anticlostridial Lacticaseibacillus casei Strains. Food Bioprocess Technol. 2024. [Google Scholar] [CrossRef]
- Bettera, L.; Levante, A.; Bancalari, E.; Bottari, B.; Cirlini, M.; Neviani, E.; Gatti, M. Lacticaseibacillus Strains Isolated from Raw Milk: Screening Strategy for Their Qualification as Adjunct Culture in Cheesemaking. Foods 2023, 12, 3949. [Google Scholar] [CrossRef]
- Afshari, R.; Pillidge, C.J.; Dias, D.A.; Osborn, A.M.; Gill, H. Cheesomics: The future pathway to understanding cheese flavour and quality. Crit. Rev. Food Sci. Nutr. 2020, 60, 33–47. [Google Scholar] [CrossRef]
- Cocolin, L.; Gobbetti, M.; Neviani, E.; Daffonchio, D. Ensuring safety in artisanal food microbiology. Nat. Microbiol. 2016, 1, 16171. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.F.; Høie, M.H.; Bang-Berthelsen, C.H.; Marcatili, P.; Hansen, E.B. Comparative Structure Analysis of the Multi-Domain, Cell Envelope Proteases of Lactic Acid Bacteria. Microorganisms 2023, 11, 2256. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.D.W.; Kleerebezem, M.; Bachmann, H. Growth, dormancy and lysis: The complex relation of starter culture physiology and cheese flavour formation. Curr. Opin. Food Sci. 2021, 39, 22–30. [Google Scholar] [CrossRef]
- Gobbetti, M.; Di Cagno, R.; Calasso, M.; Neviani, E.; Fox, P.F.; De Angelis, M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 2018, 78, 244–254. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Fox, P.F.; Cotter, P.D.; Everett, D.W. Cheese: Chemistry, Physics & Microbiology; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Chapot-Chartier, M.-P.; Deniel, C.; Rousseau, M.; Vassal, L.; Gripon, J.-C. Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J. 1994, 4, 251–269. [Google Scholar] [CrossRef]
- Crow, V.L.; Coolbear, T.; Gopal, P.K.; Martley, F.G.; McKay, L.L.; Riepe, H. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 1995, 5, 855–875. [Google Scholar] [CrossRef]
- De Dea Lindner, J.; Bernini, V.; De Lorentiis, A.; Pecorari, A.; Neviani, E.; Gatti, M. Parmigiano Reggiano cheese: Evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 2008, 88, 511–523. [Google Scholar] [CrossRef]
- El Soda, M.; Farkye, N.; Vuillemard, J.C.; Simard, R.E.; Olson, N.F.; El Kholy, W.; Dako, E.; Medrano, E.; Gaber, M.; Lim, L. Autolysis of Lactic Acid Bacteria: Impact on Flavour Development in Cheese. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 37, pp. 2205–2223. [Google Scholar] [CrossRef]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited review: Microbial evolution in raw-milk, long-ripened cheese produced using undefined natural whey starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef]
- Gatti, M.; De Dea Lindner, J.; De Lorentiis, A.; Bottari, B.; Santarelli, M.; Bernini, V.; Neviani, E. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Appl. Environ. Microbiol. 2008, 74, 6161–6167. [Google Scholar] [CrossRef]
- Gatti, M.; Bernini, V.; Lazzi, C.; Neviani, E. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett. Appl. Microbiol. 2006, 42, 338–343. [Google Scholar] [CrossRef]
- Levante, A.; De Filippis, F.; La Storia, A.; Gatti, M.; Neviani, E.; Ercolini, D.; Lazzi, C. Metabolic gene-targeted monitoring of non-starter lactic acid bacteria during cheese ripening. Int. J. Food Microbiol. 2017, 257, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Lortal, S.; Chapot-Chartier, M.P. Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int. Dairy J. 2005, 15, 857–871. [Google Scholar] [CrossRef]
- Sgarbi, E.; Bottari, B.; Gatti, M.; Neviani, E. Investigation of the ability of dairy nonstarter lactic acid bacteria to grow using cell lysates of other lactic acid bacteria as the exclusive source of nutrients. Int. J. Dairy Technol. 2014, 67, 342–347. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; Guinee, T.P.; O’Callaghan, D.M.; Fox, P.F. Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. J. Dairy Res. 1994, 61, 249–262. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Fornasari, M.E.; Mucchetti, G.; Addeo, F.; Neviani, E. Presence of peptidase activities in different varieties of cheese. Lett. Appl. Microbiol. 1999, 28, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G. The Microbiota of Grana Padano Cheese. A Review. Foods 2021, 10, 2632. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Bardelli, T.; Rossetti, L.; Nazzicari, N.; Carminati, D.; Galli, A.; Giraffa, G. Evaluation of bacterial communities of Grana Padano cheese by DNA metabarcoding and DNA fingerprinting analysis. Food Microbiol. 2021, 93, 103613. [Google Scholar] [CrossRef]
- Olivera Rodi, J.; Gonz´ález Ramos, M.J.; Díaz Gadea, P.; Reginensi, S.M. Study of the inhibitory effect of Lactobacillus strains and lysozyme on growth of Clostridium spp. responsible for cheese late blowing defect. Nova Biotechnol. Chim. 2022, 22, e1229. [Google Scholar] [CrossRef]
- Bertani, G.; Levante, A.; Lazzi, C.; Bottari, B.; Gatti, M.; Neviani, E. Dynamics of a natural bacterial community under technological and environmental pressures: The case of natural whey starter for Parmigiano Reggiano cheese. Food Res. Int. 2020, 129, 108860. [Google Scholar] [CrossRef]
- Sola, L.; Quadu, E.; Bortolazzo, E.; Bertoldi, L.; Randazzo, C.L.; Pizzamiglio, V.; Solieri, L. Insights on the bacterial composition of Parmigiano Reggiano Natural Whey Starter by a culture-dependent and 16S rRNA metabarcoding portrait. Sci. Rep. 2022, 12, 17322. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Bottari, B.; Malacarne, M.; Lazzi, C.; Sforza, S.; Summer, A.; Neviani, E.; Gatti, M. Variability of lactic acid production, chemical and microbiological characteristics in 24-hour Parmigiano Reggiano cheese. Dairy Sci. Technol. 2013, 93, 605–621. [Google Scholar] [CrossRef]
- Bottari, B.; Santarelli, M.; Neviani, E.; Gatti, M. Natural whey starter for Parmigiano Reggiano: Culture-independent approach. J. Appl. Microbiol. 2010, 108, 1676–1684. [Google Scholar] [CrossRef]
- Helal, A.; Nasuti, C.; Sola, L.; Sassi, G.; Tagliazucchi, D.; Solieri, L. Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. Fermentation 2023, 9, 270. [Google Scholar] [CrossRef]
- Giraffa, G.; Rossetti, L.; Mucchetti, G. Influence of the Temperature Gradient on the Growth of Thermophilic Lactobacilli Used as Natural Starters in Grana Cheese. J. Dairy Sci. 1998, 81, 31–36. [Google Scholar] [CrossRef]
- Teusink, B.; Molenaar, D. Systems biology of lactic acid bacteria: For food and thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wels, M.; Siezen, R.; Van Hijum, S.; Kelly, W.J.; Bachmann, H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front. Microbiol. 2019, 10, 4. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Bettera, L.; Levante, A.; Bancalari, E.; Bottari, B.; Gatti, M. Lactic acid bacteria in cow raw milk for cheese production: Which and how many? Front. Microbiol. 2023, 13, 1092224. [Google Scholar] [CrossRef]
- Carminati, D.; Brizzi, A.; Giraffa, G.; Neviani, E. Effect of amino acids on S. salivarius subsp. thermophilus growth in modified milk deprived of non-protein nitrogen fraction. Milchwissenschaft 1994, 49, 481–540. [Google Scholar]
- Rossetti, L.; Carminati, D.; Zago, M.; Giraffa, G. A Qualified Presumption of Safety approach for the safety assessment of Grana Padano whey starters. Int. J. Food Microbiol. 2009, 130, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Fornasari, M.E.; Rossetti, L.; Carminati, D.; Giraffa, G. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters. FEMS Microbiol. Lett. 2006, 257, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Gatti, M.; Lazzi, C.; Bernini, V.; Zapparoli, G.A.; Neviani, E. Whey Starter for Grana Padano Cheese: Effect of Technological Parameters on Viability and Composition of the Microbial Community. J. Dairy Sci. 2008, 91, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Erkus, O.; De Jager, V.C.L.; Spus, M.; van Alen-Boerrigter, I.J.; Van Rijswijck, I.M.H.; Hazelwood, L.; Janssen, P.W.M.; Hijum, S.A.F.T.v.; Kleerebezem, M.; Smid, E.J. Multifactorial diversity sustains microbial community stability. ISME J. 2013, 7, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Somerville, V.; Berthoud, H.; Schmidt, R.S.; Bachmann, H.P.; Meng, Y.H.; Fuchsmann, P.; von Ah, U.; Engel, P. Functional strain redundancy and persistent phage infection in Swiss hard cheese starter cultures. ISME J. 2022, 16, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Lazzi, C.; Rossetti, L.; Mucchetti, G.; Neviani, E. Biodiversity in Lactobacillus helveticus strains present in natural whey starter used for Parmigiano Reggiano cheese. J. Appl. Microbiol. 2003, 95, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G.; Mucchetti, G.; Neviani, E. Interactions among thermophilic lactobacilli during growth in cheese whey. J. Appl. Bacteriol. 1996, 80, 199–202. [Google Scholar] [CrossRef]
- Bottari, B.; Ercolini, D.; Gatti, M.; Neviani, E. Application of FISH technology for microbiological analysis: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 73, 485–494. [Google Scholar] [CrossRef]
- Tatenhove-pel, R.J.; Zwering, E.; Solopova, A.; Kuipers, O.P.; Bachmann, H. Ampicillin-treated Lactococcus lactis MG1363 populations contain persisters as well as viable but non-culturable cells. Sci. Rep. 2019, 9, 9867. [Google Scholar] [CrossRef] [PubMed]
- van Mastrigt, O.; Abee, T.; Lillevang, S.K.; Smid, E.J. Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol. 2018, 73, 216–226. [Google Scholar] [CrossRef]
- Babu, D.; Kushwaha, K.; Juneja, V.K. Viable but Nonculturable. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 686–690. [Google Scholar] [CrossRef]
- Emerson, J.B.; Adams, R.I.; Román, C.M.B.; Brooks, B.; Coil, D.A.; Dahlhausen, K.; Ganz, H.H.; Hartmann, E.M.; Hsu, T.; Justice, N.B.; et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Bonvini, B.; Rossetti, L.; Meucci, A.; Giraffa, G.; Carminati, D. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters. J. Dairy Res. 2015, 82, 242–247. [Google Scholar] [CrossRef]
- Briggiler-Marcó, M.; Capra, M.L.; Quiberoni, A.; Vinderola, G.; Reinheimer, J.; Hynes, E. Nonstarter Lactobacillus strains as adjunct cultures for cheese making: In vitro characterization and performance in two model cheeses. J. Dairy Sci. 2007, 90, 4532–4542. [Google Scholar] [CrossRef] [PubMed]
- Carminati, D.; Giraffa, G.; Quiberoni, A.; Binetti, A.; Suárez, V.; Reinheimer, J. Advances and Trends in Starter Cultures for Dairy Fermentations. In Biotechnology of Lactic Acid Bacteria, 1st ed.; Mozzi, F., Raya, R.R., Vignolo, G.M., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 177–192. [Google Scholar] [CrossRef]
- Carminati, D.; Mazzucotelli, L.; Giraffa, G.; Neviani, E. Incidence of Inducible Bacteriophage in Lactobacillus helveticus Strains Isolated from Natural Whey Starter Cultures. J. Dairy Sci. 1997, 80, 1505–1511. [Google Scholar] [CrossRef]
- Mancini, A.; Rodriguez, M.C.; Zago, M.; Cologna, N.; Goss, A.; Carafa, I.; Tuohy, K.; Merz, A.; Franciosi, E. Massive Survey on Bacterial–Bacteriophages Biodiversity and Quality of Natural Whey Starter Cultures in Trentingrana Cheese Production. Front. Microbiol. 2021, 12, 678012. [Google Scholar] [CrossRef] [PubMed]
- Spus, M.; Li, M.; Alexeeva, S.; Zwietering, M.H.; Abee, T.; Smid, E.J. Strain diversity and phage resistance in complex dairy starter cultures. J. Dairy Sci. 2015, 98, 5173–5182. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Macori, G.; Kilcawley, K.N.; Cotter, P.D. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nat. Food 2020, 1, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Bleuven, C.; Landry, C.R. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc. R. Soc. B 2016, 283, 20161458. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Lenski, R.E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nat. Rev. Genet. 2003, 4, 457–469. [Google Scholar] [CrossRef]
- Shapiro, J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 1998, 52, 81–104. [Google Scholar] [CrossRef]
- Shapiro, J.A. Bacteria as Multicellular Organisms. Sci. Am. 1988, 258, 82–89. [Google Scholar] [CrossRef]
- De Vos, M.G.J.; Schoustra, S.E.; De Visser, J.A.G.M. Ecology dictates evolution? About the importance of genetic and ecological constraints in adaptation. EPL 2018, 122, 58002. [Google Scholar] [CrossRef]
- Booth, I.R. Stress and the single cell: Intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 2002, 78, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Pot, B.; Tsakalidou, E. How microbes adapt to a diversity of food niches. Curr. Opin. Food Sci. 2015, 2, 29–35. [Google Scholar] [CrossRef]
- Smid, E.J.; Lacroix, C. Microbe-microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol. 2013, 24, 148–154. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Dutton, R.J. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Jousset, A.; Schmid, B.; Scheu, S.; Eisenhauer, N. Genotypic richness and dissimilarity opposingly affect ecosystem functioning: Genotypic diversity and ecosystem functioning. Ecol. Lett. 2011, 14, 537–545. [Google Scholar] [CrossRef]
- Konopka, A. What is microbial community ecology? ISME J. 2009, 3, 1223–1230. [Google Scholar] [CrossRef]
- Levante, A.; Lazzi, C.; Vatsellas, G.; Chatzopoulos, D.; Dionellis, V.S. Genome Sequencing of five Lacticaseibacillus Strains and Analysis of Type I and II Toxin-Antitoxin System Distribution. Microorganisms 2021, 9, 648. [Google Scholar] [CrossRef]
- Prosser, J.I.; Bohannan, B.J.M.; Curtis, T.P.; Ellis, R.J.; Firestone, M.K.; Freckleton, R.P.; Green, J.L.; Green, L.E.; Killham, K.; Lennon, J.J.; et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 2007, 5, 384–392. [Google Scholar] [CrossRef]
- De Angelis, M.; Gobbetti, M. Environmental stress responses in Lactobacillus: A review. Proteomics 2004, 4, 106–122. [Google Scholar] [CrossRef]
- Hutkins, R.W. (Ed.) Microbiology and Technology of Fermented Foods, 1st ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Ryall, B.; Eydallin, G.; Ferenci, T. Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: The Adaptomics of a Single Environmental Transition. Microbiol. Mol. Biol. Rev. 2012, 76, 597–625. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L.; Wimpenny, J.W.T. Ecological concepts in food microbiology. J. Appl. Bacteriol. 1992, 73, 23s–38s. [Google Scholar] [CrossRef] [PubMed]
- Juillard, V.; Spinnler, H.E.; Desmazeaud, M.J.; Boquien, C.Y. Phénomènes de coopération et d’inhibition entre les bactéries lactiques utilisées en industrie laitière. Lait 1987, 67, 149–172. [Google Scholar] [CrossRef]
- Mossel, D.A.A.; Struijk, C.B. The contribution of microbial ecology to management and monitoring of the safety, quality and acceptability (SQA) of foods. J. Appl. Bacteriol. 1992, 73, 1s–22s. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, F.M.; Ameur, H.; Nikoloudaki, O.; Celano, G.; Vacca, M.; Junior, W.J.F.L.; Manzari, C.; Vertè, F.; Di Cagno, R.; Pesole, G.; et al. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 2022, 10, 148. [Google Scholar] [CrossRef]
- Lynch, C.M.; McSweeney, P.L.H.; Fox, P.F.; Cogan, T.M.; Drinan, F.D. Manufacture of Cheddar cheese with and without adjunct lactobacilli under controlled microbiological conditions. Int. Dairy J. 1996, 6, 851–867. [Google Scholar] [CrossRef]
- Jeanson, S.; Floury, J.; Gagnaire, V.; Lortal, S.; Thierry, A. Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment. Front. Microbiol. 2015, 6, 1284. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Jeanson, S. Colonial vs. planktonic type of growth: Mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods. Front. Microbiol. 2015, 6, 1178. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.-J.E. Quorum Sensing in the Context of Food Microbiology. Appl. Environ. Microbiol. 2012, 78, 5473–5482. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Abdo, Z.; Smalla, K. Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty: Population-level robustness through genome flexibility. FEMS Microbiol. Ecol. 2008, 65, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Penn, K.; Jenkins, C.; Nett, M.; Udwary, D.W.; Gontang, E.A.; McGlinchey, R.P.; Foster, B.; Lapidus, A.; Podell, S.; Allen, E.E.; et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 2009, 3, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Avery, S.V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 2006, 4, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.P.; Aspridou, Z. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a “noisy” world. Int. J. Food Microbiol. 2017, 240, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Valera, F.; Martin-Cuadrado, A.-B.; Rodriguez-Brito, B.; Pašić, L.; Thingstad, T.F.; Rohwer, F.; Mira, A. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 2009, 7, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Somerville, V.; Schowing, T.; Chabas, H.; Schmidt, R.S.; von Ah, U.; Bruggmann, R.; Engel, P. Extensive diversity and rapid turnover of phage defense repertoires in cheese-associated bacterial communities. Microbiome 2022, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Meouche, I.E.; Siu, Y.; Dunlop, M.J. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Sci. Rep. 2016, 6, 19538. [Google Scholar] [CrossRef]
- Viney, M.; Reece, S.E. Adaptive noise. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131104. [Google Scholar] [CrossRef]
- Gatti, M.; De Dea Lindner, J.; Gardini, F.; Mucchetti, G.; Bevacqua, D.; Fornasari, M.E.; Neviani, E. A Model to Assess Lactic Acid Bacteria Aminopeptidase Activities in Parmigiano Reggiano Cheese During Ripening. J. Dairy Sci. 2008, 91, 4129–4137. [Google Scholar] [CrossRef]
- Calasso, M.; Mancini, L.; Di Cagno, R.; Cardinali, G.; Gobbetti, M. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese. J. Dairy Sci. 2015, 98, 5874–5889. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.N.; Fox, P.F.; Walsh, E.M.; Folkertsma, B.; McSweeney, P.L.H. Effect of compositional and environmental factors on the growth of indigenous non-starter lactic acid bacteria in Cheddar cheese. Lait 1997, 77, 561–573. [Google Scholar] [CrossRef]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Visser, S. Proteolytic Enzymes and Their Relation to Cheese Ripening and Flavor: An Overview. J. Dairy Sci. 1993, 76, 329–350. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; Kilcawley, K.N. Mechanisms of incorporation and release of enzymes into cheese during ripening. Int. Dairy J. 2005, 15, 817–830. [Google Scholar] [CrossRef]
- De Pasquale, I.; Calasso, M.; Mancini, L.; Ercolini, D.; Storia, A.L.; De Angelis, M.; Di Cagno, R.; Gobbetti, M. Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese. Appl. Environ. Microbiol. 2014, 80, 4085–4094. [Google Scholar] [CrossRef]
- Giraffa, G.; Neviani, E. Different Lactobacillus helveticus strain populations dominate during Grana Padano cheesemaking. Food Microbiol. 1999, 16, 205–210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neviani, E.; Levante, A.; Gatti, M. The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses? Fermentation 2024, 10, 186. https://doi.org/10.3390/fermentation10040186
Neviani E, Levante A, Gatti M. The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses? Fermentation. 2024; 10(4):186. https://doi.org/10.3390/fermentation10040186
Chicago/Turabian StyleNeviani, Erasmo, Alessia Levante, and Monica Gatti. 2024. "The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses?" Fermentation 10, no. 4: 186. https://doi.org/10.3390/fermentation10040186
APA StyleNeviani, E., Levante, A., & Gatti, M. (2024). The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses? Fermentation, 10(4), 186. https://doi.org/10.3390/fermentation10040186