Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Strains, Plasmids, and Culture Conditions
2.3. Promoter Screening
2.4. Plasmid Construction and Transformation
2.5. Expression and Activity Assay of Recombinant α-Amylase
2.6. Batch Fermentation in Stirred Bioreactors
2.7. Thermal Gelation Property
2.8. Molecular Weight Determination of Curdlan
2.9. Fourier-Transform Infrared Spectroscopy and X-ray Diffractometry
3. Results and Discussion
3.1. Promoter Screening
3.2. Construction of sp-AmyAXCC and Identification of α-Amylase Expression
3.3. Curdlan Productions by sp-AmyAXCC
3.4. Batch Fermentation of sp-AmyAXCC with Dextrin as Carbon Source
3.5. Characterization of Curdlan Product
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hundschell, C.S.; Wagemans, A.M. Rheology of common uncharged exopolysaccharides for food applications. Curr. Opin. Food Sci. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Pieta, I.S.; Nowakowski, R.; Pisarek, M.; Przekora, A. Effect of gelation temperature on the molecular structure and physicochemical properties of the curdlan matrix: Spectroscopic and microscopic analyses. Int. J. Mol. Sci. 2020, 21, 6154. [Google Scholar] [CrossRef] [PubMed]
- Harada, T. Succinoglucan 10C3: A new acidic polysaccharide of Alcaligenes faecalis var. myxogenes. Arch. Biochem. Biophys. 1965, 112, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Niamah, A.K.; Patel, A.R.; Thakur, M.; Sandhu, K.S.; Chávez-González, M.L.; Shah, N.; Aguilar, C.N. Chemistry and microbial sources of curdlan with potential application and safety regulations as prebiotic in food and health. Food Res. Int. 2020, 133, 109136. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F. Review on the preparation, biological activities and applications of curdlan and its derivatives. Eur. Polym. J. 2020, 141, 110096. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Bao, M.; Ehexige, E.; Xu, J.; Ganbold, T.; Han, S.; Baigude, H. Oxidized curdlan activates dendritic cells and enhances antitumor immunity. Carbohydr. Polym. 2021, 264, 117988. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kim, D.H.; Yoon, J.-J.; Kim, K.H. Production of high-value β-1, 3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan. Process Biochem. 2017, 52, 233–237. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, M.; Hao, S.; Shi, H.; Lin, D.; Chen, X.; Becvarovski, A.; Pan, W.; Zhang, P.; Hu, M. Curdlan prevents the cognitive deficits induced by a high-fat diet in mice via the gut-brain axis. Front. Neurosci. 2020, 14, 384. [Google Scholar] [CrossRef]
- Vessella, G.; Esposito, F.; Traboni, S.; Di Meo, C.; Iadonisi, A.; Schiraldi, C.; Bedini, E. Exploiting diol reactivity for the access to unprecedented low molecular weight curdlan sulfate polysaccharides. Carbohydr. Polym. 2021, 269, 118324. [Google Scholar] [CrossRef]
- Sato, F.; Nakamura, Y.; Katsuki, A.; Khadka, S.; Ahmad, I.; Omura, S.; Martinez, N.E.; Tsunoda, I. Curdlan, a microbial β-glucan, has contrasting effects on autoimmune and viral models of multiple sclerosis. Front. Cell. Infect. Microbiol. 2022, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, H. Recent progress on curdlan provided by functionalization strategies. Food Hydrocoll. 2017, 68, 128–135. [Google Scholar] [CrossRef]
- Nurzynska, A.; Klimek, K.; Swierzycka, I.; Palka, K.; Ginalska, G. Porous curdlan-based hydrogels modified with copper ions as potential dressings for prevention and management of bacterial wound infection—An in vitro assessment. Polymers 2020, 12, 1893. [Google Scholar] [CrossRef] [PubMed]
- Suflet, D.M.; Popescu, I.; Prisacaru, A.I.; Pelin, I.M. Synthesis and characterization of curdlan–phosphorylated curdlan based hydrogels for drug release. Int. J. Polym. Mater. 2021, 70, 870–879. [Google Scholar] [CrossRef]
- Han, J.; Wang, X.; Liu, L.; Li, D.; Suyaola, S.; Wang, T.; Baigude, H. “Click” chemistry mediated construction of cationic curdlan nanocarriers for efficient gene delivery. Carbohydr. Polym. 2017, 163, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-K.; Pei, J.-J.; Ma, H.-L.; Wang, Z.-B. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan. Carbohydr. Polym. 2015, 121, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, Y.; Jiang, D.; Gao, H.; Yang, G.; Yang, X. Effects of carbon sources on production and properties of curdlan using Agrobaterium sp. DH-2. Prep. Biochem. Biotech. 2020, 50, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Ben Salah, R.; Jaouadi, B.; Bouaziz, A.; Chaari, K.; Blecker, C.; Derrouane, C.; Attia, H.; Besbes, S. Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466™: Purification, rheological and physico-chemical characterization. LWT-Food Sci. Technol. 2011, 44, 1026–1034. [Google Scholar] [CrossRef]
- Mohsin, A.; Sun, J.; Khan, I.M.; Hang, H.; Tariq, M.; Tian, X.; Ahmed, W.; Niazi, S.; Zhuang, Y.; Chu, J. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach. Carbohydr. Polym. 2019, 205, 626–635. [Google Scholar] [CrossRef]
- Prakash, S.; Rajeswari, K.; Divya, P.; Ferlin, M.; Rajeshwari, C.T.; Vanavil, B. Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant. Prep. Biochem. Biotech. 2018, 48, 408–418. [Google Scholar] [CrossRef]
- Yuan, M.; Fu, G.; Sun, Y.; Zhang, D. Biosynthesis and applications of curdlan. Carbohydr. Polym. 2021, 273, 118597. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, C.; Yang, L.; Zhao, L.; Lin, C.; Liu, Z.; Mao, Z. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol. 2015, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xie, F.; Zhang, W.; Tian, J.; Zou, C.; Jia, C.; Jin, M.; Huang, J.; Chang, Z.; Yang, X. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis. Carbohydr. Polym. 2020, 245, 116486. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, L.; Ding, H.; Gao, M.; Zheng, Z.; Wu, J.; Zhan, X. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Carbohydr. Polym. 2017, 157, 1687–1694. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, L.; Gao, M.; Zheng, Z.; Wu, J.; Zhan, X. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Int. J. Biol. Macromol. 2018, 106, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, Y.; Li, Y.; Bao, J.; Fan, X.; Qu, Y.; Wang, Y.; Hu, Z.; Li, Q. Production and optimization of curdlan produced by Pseudomonas sp. QL212. Int. J. Biol. Macromol. 2016, 89, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Shao, Z.; Jiang, D.; Gao, H.; Yang, X. Curdlan production from cassava starch hydrolysates by Agrobacterium sp. DH-2. Bioproc. Biosyst. Eng. 2022, 45, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-D.; Liu, L.; Kim, M.-K.; Park, Y.-I.; Chen, R. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose. J. Ind. Microbiol. Biot. 2016, 43, 1323–1331. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Z.; Zhao, Z.; Wang, Z.; Hu, X.; Jiang, Y.; Yan, J.; Li, Z.; Zheng, Z.; Zhan, X. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp. Int. J. Biol. Macromol. 2022, 205, 193–202. [Google Scholar] [CrossRef]
- Kerdsup, P.; Tantratian, S.; Sanguandeekul, R.; Imjongjirak, C. Xanthan production by mutant strain of Xanthomonas campestris TISTR 840 in raw cassava starch medium. Food Bioprocess Tech. 2011, 4, 1459–1462. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch: Iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, W.; Zhang, J.; Huang, Y.; Zhang, J.; Tian, J.; Niu, Y.; Zou, C.; Jia, C.; Chang, Z. Methionine biosynthesis pathway genes affect curdlan biosynthesis of Agrobacterium sp. CGMCC 11546 via energy regeneration. Int. J. Biol. Macromol. 2021, 185, 821–831. [Google Scholar] [CrossRef]
- Szwengiel, A.; Wiesner, M. Effect of metal ions on levan synthesis efficiency and its parameters by levansucrase from Bacillus subtilis. Int. J. Biol. Macromol. 2019, 128, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wu, J.; Liu, J.; Zhan, X.; Zheng, Z.; Lin, C.C. Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol. Bioprocess Eng. 2011, 16, 34–41. [Google Scholar] [CrossRef]
- Sèbe, G.; Ham-Pichavant, F.; Pecastaings, G. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromolecules 2013, 14, 2937–2944. [Google Scholar] [CrossRef]
- Abe, J.-i.; Onitsuka, N.; Nakano, T.; Shibata, Y.; Hizukuri, S.; Entani, E. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151. J. Bacteriol. 1994, 176, 3584–3588. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, W.; Chen, S.; Guo, X.; Huang, F.; Zhu, P. Optimization and modeling of curdlan production under multi-physiological-parameters process control by Agrobacterium radiobacter mutant A-15 at high initial glucose. Biotechnol. Bioprocess Eng. 2021, 26, 1012–1022. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Wang, Z.; Zhu, L.; Li, Z.; Jiang, Y.; Zhan, X.; Gao, M. Promoting substrates uptake and curdlan synthesis of Agrobacterium sp. by attenuating the exopolysaccharide encapsulation. Carbohydr. Polym. 2023, 315, 120941. [Google Scholar] [CrossRef]
- Anane, R.F.; Sun, H.; Zhao, L.; Wang, L.; Lin, C.; Mao, Z. Improved curdlan production with discarded bottom parts of Asparagus spear. Microb. Cell Factories 2017, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- West, T.P. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates. Prep. Biochem. Biotech. 2016, 46, 85–90. [Google Scholar] [CrossRef]
- Wu, S.; Lu, M.; Fang, Y.; Wu, L.; Xu, Y.; Wang, S. Production of curdlan grown on cassava starch waste hydrolysates. J. Polym. Environ. 2018, 26, 33–38. [Google Scholar] [CrossRef]
- Binder, D.; Frohwitter, J.; Mahr, R.; Bier, C.; Grünberger, A.; Loeschcke, A.; Peters-Wendisch, P.; Kohlheyer, D.; Pietruszka, J.; Frunzke, J. Light-controlled cell factories: Employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter-based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum. Appl. Environ. Microb. 2016, 82, 6141–6149. [Google Scholar] [CrossRef] [PubMed]
Strain or Plasmid | Relevant Characteristics | Source or Reference |
---|---|---|
Strains | ||
Agrobacterium sp. ATCC31749 | Wild-type, capable of produce curdlan | Lab’s collection |
X. campestris NRRL B-1459 | Wild-type, capable of produce xanthan gum | Lab’s collection |
sp-AmyAXCC | Agrobacterium sp. ATCC31749 harboring the plasmid pBBR-Ptac-α-amylase | This study |
E. coli DH5α | SupE44, DlacU169(φ80lacZDM15) hsdR17, recA1, endA1, gyrA96, thi-1, relA1 λ-, used for gene clone | Lab’s collection |
Plasmid | ||
pBBR-Ptac-GFP-firefly | Expression plasmid, with Ptac, Kan R | Lab’s collection |
pBBR-Ptet-GFP-firefly | Expression plasmid, with Ptet, Kan R | Lab’s collection |
pBBR-Pxyl-GFP-firefly | Expression plasmid, with Pxyl, Kan R | Lab’s collection |
pBBR-PRha-GFP-firefly | Expression plasmid, with PRha, Kan R | Lab’s collection |
pBBR-PBAD-GFP-firefly | Expression plasmid, with PBAD, Kan R | Lab’s collection |
pBBR-Ptac-α-amylase | Expression plasmid, Kan R | This study |
Primer | Sequence (5′-3′) | Use |
---|---|---|
amy-F2 | CAATTTCACACAGGAGGAATTCATGAAAAAACTGGTCATC | Adding signal peptide at the N’-terminus of α-amylase |
amy-F1 | CAATAAACCGGTAAGCCATATGTCAGTGGTGGTGGTGGTGGTGA | Amplification of α-amylase encoding gene (forward) |
amy-R1 | CCTCCGCTGAAGCCGCCAGCGTCCGTATCGAGGA | Amplification of α-amylase encoding gene (reverse) |
amy-R2 | AGCCATATGGTGGTGGTGGTGGTGGTGTCATGGATGCGTCTCCTT | Adding 6 × His-tag at the C’-terminus of α-amylase |
Strains | Substrate | Substrate(g/L) | Titer (g/L) | Yield (g Curdlan/g Substrate) | Productivity (g/L/h) | Reference |
---|---|---|---|---|---|---|
sp-AmyAXCC | Dextrin | 120.0 | 66.7 | 0.56 | 0.62 | This study |
ATCC31749 | Sucrose | 90.0 | 38.6 | 0.43 | 0.40 | [23] |
ATCC31749 | Sucrose | 90.0 | 48.0 | 0.79 | 0.33 | [23] |
ATCC31749 | Maltose | 90.0 | 36.5 | 0.41 | 0.38 | [23] |
ATCC31749 | Mannitol | 90.0 | 42.4 | 0.47 | 0.44 | [23] |
ATCC31749 | Glucose | 80.0 | 21.9 | 0.44 | 0.30 | [24] |
ATCC31749 | Wheat bran | 80.0 | 47.9 | 0.6 | 0.33 | [24] |
ATCC31749 | Glucose | 50.0 | 14.4 | 0.29 | 0.20 | [38] |
ATCC31749 | Cellobiose | 50.0 | 11.2 | 0.3 | 0.15 | [28] |
ATCC31749 with pHCE-CBP | Cellobiose | 50.0 | 25.9 | 0.55 | 0.36 | [28] |
ATCC31749 | Asparagus spear juice | 50.0 | 40.2 | 0.56 | 0.24 | [39] |
ATCC31749 | Prairie cordgrass | 10.0 | 9.9 | 0.01 | 0.07 | [40] |
ATCC31749 | Cassava starch waste | 20.0 | 21.2 | 0.40 | 0.22 | [41] |
ATCC31749 | Glucose | 40.0 | 72.0 | 0.61 | 0.75 | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Wang, Y.; Wang, W.; Zhang, Y.; Zhang, Y.; Han, H.; Liu, Y.; Zhou, S.; Dong, X. Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source. Fermentation 2024, 10, 240. https://doi.org/10.3390/fermentation10050240
Yu T, Wang Y, Wang W, Zhang Y, Zhang Y, Han H, Liu Y, Zhou S, Dong X. Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source. Fermentation. 2024; 10(5):240. https://doi.org/10.3390/fermentation10050240
Chicago/Turabian StyleYu, Tingting, Yu Wang, Wei Wang, Yonggang Zhang, Yanmin Zhang, Hongyu Han, Yang Liu, Siduo Zhou, and Xueqian Dong. 2024. "Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source" Fermentation 10, no. 5: 240. https://doi.org/10.3390/fermentation10050240
APA StyleYu, T., Wang, Y., Wang, W., Zhang, Y., Zhang, Y., Han, H., Liu, Y., Zhou, S., & Dong, X. (2024). Optimizing Curdlan Synthesis: Engineering Agrobacterium tumefaciens ATCC31749 for Enhanced Production Using Dextrin as a Carbon Source. Fermentation, 10(5), 240. https://doi.org/10.3390/fermentation10050240