Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Micro-Organism
2.2. Maximum Non-Inhibitory Concentration (MNIC) Assay
2.3. Microbial Depolymerization of PAF by Y. lipolytica in Erlenmeyer Flasks
2.4. Microbial Depolymerization of PAF by Y. lipolytica in Bioreactors
2.5. PAF Characterization
2.6. Analytical Methods
3. Results and Discussion
3.1. PAF Characterization
3.2. Maximum Non-Inhibitory Concentration (MNIC) Assay for PAF Monomers
3.3. Microbial Depolymerization of PAF by Y. lipolytica in Erlenmeyer Flasks
3.4. Microbial Depolymerization of PAF by Y. lipolytica in Bioreactors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, K.L.; Narayan, R. Reducing Environmental Plastic Pollution by Designing Polymer Materials for Managed End-of-Life. Nat. Rev. Mater. 2021, 7, 104–116. [Google Scholar] [CrossRef]
- Miao, Y.; von Jouanne, A.; Yokochi, A. Current Technologies in Depolymerization Process and the Road Ahead. Polymers 2021, 13, 449. [Google Scholar] [CrossRef]
- de Castro, A.M.; Carniel, A.; Menezes, S.M.; Chinelatto Júnior, L.S.; de Honorato, H.; Lima, A.P.; Chaves, E.G. Biocatalytic Depolymerization of Waste Polyester Mooring Lines from Oil and Gas Offshore Platforms Made of Poly(Ethylene Terephthalate) (PET). J. Chem. Technol. Biotechnol. 2022, 97, 709–718. [Google Scholar] [CrossRef]
- Alberti, C.; Figueira, R.; Hofmann, M.; Koschke, S.; Enthaler, S. Chemical Recycling of End-of-Life Polyamide 6 via Ring Closing Depolymerization. ChemistrySelect 2019, 4, 12638–12642. [Google Scholar] [CrossRef]
- Puetz, H.; Janknecht, C.; Contreras, F.; Vorobii, M.; Kurkina, T.; Schwaneberg, U. Validated High-Throughput Screening System for Directed Evolution of Nylon-Depolymerizing Enzymes. ACS Sustain. Chem. Eng. 2023, 11, 15513–15522. [Google Scholar] [CrossRef]
- Clark, R.A.; Shaver, M.P. Depolymerization within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, A.; Shiramatsu, Y.; Kawamoto, T. Depolymerization of Polyamide 6 in Hydrophilic Ionic Liquids. Green Energy Environ. 2019, 4, 166–170. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eshaq, G.; Rabie, A.M.; ElMetwally, A.E. Greener Routes for Recycling of Polyethylene Terephthalate. Egypt. J. Pet. 2016, 25, 53–64. [Google Scholar] [CrossRef]
- Shojaei, B.; Abtahi, M.; Najafi, M. Chemical Recycling of PET: A Stepping-stone toward Sustainability. Polym. Adv. Technol. 2020, 31, 2912–2938. [Google Scholar] [CrossRef]
- Yan, F.; Wei, R.; Cui, Q.; Bornscheuer, U.T.; Liu, Y. Thermophilic Whole-cell Degradation of Polyethylene Terephthalate Using Engineered Clostridium Thermocellum. Microb. Biotechnol. 2021, 14, 374–385. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Sales, J.C.S.; de Castro, A.M.; Ribeiro, B.D.; Maria, M.A. Supplementation of Watermelon Peels as an Enhancer of Lipase and Esterase Production by Yarrowia lipolytica in Solid-State Fermentation and Their Potential Use as Biocatalysts in Poly(Ethylene Terephthalate) (PET) Depolymerization Reactions. Biocatal. Biotransform. 2020, 38, 457–468. [Google Scholar] [CrossRef]
- Sales, J.C.S.; Botelho, A.M.; Carvalho, A.S.S.; Giudicelli, L.; de Castro, A.M.; Ribeiro, B.D.; Amaral, P.F.F.; Coelho, M.A.Z. Evaluation of Yarrowia lipolytica Potential for the Biodegradation of Poly(Ethylene Terephthalate) (PET) from Mooring Lines of Oil & Gas Offshore Platforms. Clean. Chem. Eng. 2023, 7, 100109. [Google Scholar] [CrossRef]
- da Costa, A.M.; de Oliveira Lopes, V.R.; Vidal, L.; Nicaud, J.-M.; de Castro, A.M.; Coelho, M.A.Z. Poly(Ethylene Terephthalate) (PET) Degradation by Yarrowia Lipolytica: Investigations on Cell Growth, Enzyme Production and Monomers Consumption. Process Biochem. 2020, 95, 81–90. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Zheng, Y.; Li, Q.; Su, T.; Qi, Q. Potential One-Step Strategy for PET Degradation and PHB Biosynthesis through Co-Cultivation of Two Engineered Microorganisms. Eng. Microbiol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Kosiorowska, K.E.; Biniarz, P.; Dobrowolski, A.; Leluk, K.; Mirończuk, A.M. Metabolic Engineering of Yarrowia lipolytica for Poly(Ethylene Terephthalate) Degradation. Sci. Total Environ. 2022, 831, 154841. [Google Scholar] [CrossRef]
- Fang, Y.; Chao, K.; He, J.; Wang, Z.; Chen, Z. High-Efficiency Depolymerization/Degradation of Polyethylene Terephthalate Plastic by a Whole-Cell Biocatalyst. 3 Biotech 2023, 13, 138. [Google Scholar] [CrossRef]
- Nagai, K.; Iida, K.; Shimizu, K.; Kinugasa, R.; Izumi, M.; Kato, D.; Takeo, M.; Mochiji, K.; Negoro, S. Enzymatic Hydrolysis of Nylons: Quantification of the Reaction Rate of Nylon Hydrolase for Thin-Layered Nylons. Appl. Microbiol. Biotechnol. 2014, 98, 8751–8761. [Google Scholar] [CrossRef]
- Negoro, S.; Shibata, N.; Tanaka, Y.; Yasuhira, K.; Shibata, H.; Hashimoto, H.; Lee, Y.-H.; Oshima, S.; Santa, R.; Oshima, S.; et al. Three-Dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis. J. Biol. Chem. 2012, 287, 5079–5090. [Google Scholar] [CrossRef]
- Nikolaivits, E.; Pantelic, B.; Azeem, M.; Taxeidis, G.; Babu, R.; Topakas, E.; Brennan Fournet, M.; Nikodinovic-Runic, J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)Valorization. Front. Bioeng. Biotechnol. 2021, 9, 696040. [Google Scholar] [CrossRef]
- Hagler, A.N.; Mendonça-Hagler, L.C. Yeasts from Marine and Estuarine Waters with Different Levels of Pollution in the State of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 1981, 41, 173–178. [Google Scholar] [CrossRef] [PubMed]
- M27-A2 22; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. National Committee for Clinical Laboratory Standards: Berwyn, PA, USA, 2002.
- Charney, J.; Tomarelli, R.M. A Colorimetric Method for the Determination of the Proteolytic Activity of Duodenal Juice. J. Biol. Chem. 1947, 171, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, J.; Sentandreu, R. Different Effectors of Dimorphism in Yarrowia Lipolytica. Arch. Microbiol. 2002, 178, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.; Mercurio, K.; Walden, E.A.; Baetz, K. A Yeast Chemogenomic Screen Identifies Pathways That Modulate Adipic Acid Toxicity. iScience 2021, 24, 102327. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.L.; Rosetto, G.; Ingraham, M.A.; Ramirez, K.J.; Lincoln, C.; Clarke, R.W.; Gado, J.E.; Lilly, J.L.; Kucharzyk, K.H.; Erickson, E.; et al. Natural Diversity Screening, Assay Development, and Characterization of Nylon-6 Enzymatic Depolymerization. Nat. Commun. 2024, 15, 1217. [Google Scholar] [CrossRef] [PubMed]
- Gashti, M.P.; Assefipour, R.; Kiumarsi, A.; Gashti, M.P. Enzymatic Surface Hydrolysis of Polyamide 6,6 with Mixtures of Proteolytic and Lipolytic Enzymes. Prep. Biochem. Biotechnol. 2013, 43, 798–814. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, T.B.; Hunt, C.J.; Meyer, A.S. Influence of Substrate Crystallinity and Glass Transition Temperature on Enzymatic Degradation of Polyethylene Terephthalate (PET). New Biotechnol. 2022, 69, 28–35. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectroscopy of Polymers, XI: Introduction to Organic Nitrogen Polymers. 2023. Available online: https://www.spectroscopyonline.com/view/infrared-spectroscopy-of-polymers-xi-introduction-to-organic-nitrogen-polymers (accessed on 29 April 2024).
- Brígida, A.I.S.; Amaral, P.F.F.; Gonçalves, L.R.B.; da Rocha-Leão, M.H.M.; Coelho, M.A.Z. Yarrowia lipolytica IMUFRJ 50682: Lipase Production in a Multiphase Bioreactor. Curr. Biochem. Eng. 2013, 1, 65–74. [Google Scholar] [CrossRef]
- Sharma, R.; Chisti, Y.; Banerjee, U.C. Production, Purification, Characterization, and Applications of Lipases. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar] [CrossRef]
- Fickers, P.; Ongena, M.; Destain, J.; Weekers, F.; Thonart, P. Production and Down-Stream Processing of an Extracellular Lipase from the Yeast Yarrowia Lipolytica. Enzyme Microb. Technol. 2006, 38, 756–759. [Google Scholar] [CrossRef]
- Destain, J.; Roblain, D.; Thonart, P. Improvement of Lipase Production from Yarrowia Lipolytica. Biotechnol. Lett. 1997, 19, 105–108. [Google Scholar] [CrossRef]
- Tiwari, N.; Santhiya, D.; Sharma, J.G. Biodegradation of Micro Sized Nylon 6, 6 Using Brevibacillus Brevis a Soil Isolate for Cleaner Ecosystem. J. Clean. Prod. 2022, 378, 134457. [Google Scholar] [CrossRef]
- Tiwari, N.; Santhiya, D.; Sharma, J.G. Significance of Landfill Microbial Communities in Biodegradation of Polyethylene and Nylon 6,6 Microplastics. J. Hazard. Mater. 2024, 462, 132786. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.; Priyadarshini, C.; Doble, M.; Sriyutha Murthy, P.; Venkatesan, R. Marine Bacteria Mediated Degradation of Nylon 66 and 6. Int. Biodeterior. Biodegrad. 2007, 60, 144–151. [Google Scholar] [CrossRef]
δC (ppm) | δH (ppm) | gHMBC (1H-13C) |
---|---|---|
24.9 | 2.45 | 2JH4-C5 |
24.9 | 1.99 | 2JH5-C5 |
26.0 | 3.51 | 3JH1-C3 |
26.0 | 1.71 | 2JH2-C3 |
26.0 | 1.50 | 2JH3-C3 |
28.7 | 3.51 | 2JH1-C2 |
28.7 | 1.50 | 2JH3-C2 |
175.1 | 6.35 | 2JNH-C6 |
175.1 | 3.51 | 3JH1-C6 |
175.1 | 2.45 | 2JH4-C6 |
175.1 | 1.99 | 3JH5-C6 |
Sample | Crystalline Phase (%) | Amorphous Phase (%) |
---|---|---|
Control | 49.5 | 50.5 |
0.5 g/L | 53.0 | 47.0 |
2.0 g/L | 55.5 | 44.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carniel, A.; dos Santos, N.F.; Buarque, F.S.; da Conceição Gomes, A.; Chinelatto Junior, L.S.; Sacorague, L.A.; Coelho, M.A.Z.; Castro, A.M. Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst. Fermentation 2024, 10, 239. https://doi.org/10.3390/fermentation10050239
Carniel A, dos Santos NF, Buarque FS, da Conceição Gomes A, Chinelatto Junior LS, Sacorague LA, Coelho MAZ, Castro AM. Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst. Fermentation. 2024; 10(5):239. https://doi.org/10.3390/fermentation10050239
Chicago/Turabian StyleCarniel, Adriano, Nathália Ferreira dos Santos, Filipe Smith Buarque, Absai da Conceição Gomes, Luiz Silvino Chinelatto Junior, Luiz Alexandre Sacorague, Maria Alice Zarur Coelho, and Aline M. Castro. 2024. "Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst" Fermentation 10, no. 5: 239. https://doi.org/10.3390/fermentation10050239
APA StyleCarniel, A., dos Santos, N. F., Buarque, F. S., da Conceição Gomes, A., Chinelatto Junior, L. S., Sacorague, L. A., Coelho, M. A. Z., & Castro, A. M. (2024). Biodepolymerization of Polyamide Fibers Using Yarrowia lipolytica as Whole-Cell Biocatalyst. Fermentation, 10(5), 239. https://doi.org/10.3390/fermentation10050239