Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design
Abstract
:1. Introduction
2. Material and Methods
2.1. Microorganism and Culture Conditions
2.2. Preparation of Substrates
2.3. Optimization of the Submerged Fermentation Process for Xylanase Production
2.4. Enzymatic Assays
2.5. Determination of Protein Concentration
2.6. Electrophoresis and Zymogram Analysis
2.7. Mixture Design (MD)
2.8. HPLC Analysis of the Saccharification Products
2.9. Statistical Analysis and Reproducibility of Experiments
3. Results and Discussion
3.1. Optimization of Xylanase Production and Response Surface Analysis
3.2. Zymogram Analysis
3.3. Quantification of Enzyme Activities in the Crude Extract
3.4. Mixture Design
Contour Plots of Sugar Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.N.; Salgado, J.C.; Alnoch, R.C.; Contato, A.G.; Habermann, E.; Michelin, M.; Martínez, C.A.; Polizeli, M.d.L.T.M. Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario. Biology 2021, 10, 1277. [Google Scholar] [CrossRef]
- Østby, H.; Hansen, L.D.; Horn, S.J.; Eijsink, V.G.H.; Várnai, A. Enzymatic Processing of Lignocellulosic Biomass: Principles, Recent Advances and Perspectives. J. Ind. Microbiol. Biotechnol. 2020, 47, 623–657. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current Status of Xylanase for Biofuel Production: A Review on Classification and Characterization. Biomass Conv. Bioref. 2023, 13, 8773–8791. [Google Scholar] [CrossRef]
- Nigam, P.S. An Overview: Recycling of Solid Barley Waste Generated as a by-Product in Distillery and Brewery. Waste Manag. 2017, 62, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Paramjeet, S.; Manasa, P.; Korrapati, N. Biofuels: Production of Fungal-Mediated Ligninolytic Enzymes and the Modes of Bioprocesses Utilizing Agro-Based Residues. Biocatal. Agric. Biotechnol. 2018, 14, 57–71. [Google Scholar] [CrossRef]
- Wagner, E.; Pería, M.E.; Ortiz, G.E.; Rojas, N.L.; Ghiringhelli, P.D. Valorization of Brewer’s Spent Grain by Different Strategies of Structural Destabilization and Enzymatic Saccharification. Ind. Crops Prod. 2021, 163, 113329. [Google Scholar] [CrossRef]
- Motta, F.L.; Andrade, C.C.P.; Santana, M.H.A.; Motta, F.L.; Andrade, C.C.P.; Santana, M.H.A. A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications. In Sustainable Degradation of Lignocellulosic Biomass—Techniques, Applications and Commercialization; IntechOpen: London, UK, 2013; ISBN 978-953-51-1119-1. [Google Scholar]
- Heinen, P.R.; Betini, J.H.A.; Polizeli, M.L.T.M. Xylanases. In Encyclopedia of Microbiology; Academic Press: London, UK, 2019; p. 3248. ISBN 978-0-12-811737-8. [Google Scholar]
- Li, X.; Dilokpimol, A.; Kabel, M.A.; de Vries, R.P. Fungal Xylanolytic Enzymes: Diversity and Applications. Bioresour. Technol. 2022, 344, 126290. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, S.V.; Diaz, P.; Pastor, F.I.J. Modular Glucuronoxylan-Specific Xylanase with a Family CBM35 Carbohydrate-Binding Module. Appl. Environ. Microbiol. 2012, 78, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kumar, B.; Verma, P. A Detailed Overview of Xylanases: An Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Damaso, M.C.T.; Almeida, M.S.; Kurtenbach, E.; Martins, O.B.; Pereira, N.; Andrade, C.M.M.C.; Albano, R.M. Optimized Expression of a Thermostable Xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl. Env. Microbiol. 2003, 69, 6064–6072. [Google Scholar] [CrossRef] [PubMed]
- Gilman, J.; Walls, L.; Bandiera, L.; Menolascina, F. Statistical Design of Experiments for Synthetic Biology. ACS Synth. Biol. 2021, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.P.; Coelho, R.R.R.; Marques, S.; Alves, L.; Gírio, F.M.; Bon, E.P.S.; Amaral-Collaço, M.T. Production and Partial Characterisation of Xylanase from Streptomyces sp. Strain AMT-3 Isolated from Brazilian Cerrado Soil. Enzym. Microb. Technol. 2002, 31, 549–555. [Google Scholar] [CrossRef]
- Bartolomé, B.; Gómez-Cordovés, C.; Sancho, A.I.; Díez, N.; Ferreira, P.; Soliveri, J.; Copa-Patiño, J.L. Growth and Release of Hydroxycinnamic Acids from Brewer’s Spent Grain by Streptomyces avermitilis CECT 3339. Enzym. Microb. Technol. 2003, 32, 140–144. [Google Scholar] [CrossRef]
- Knob, A.; Beitel, S.M.; Fortkamp, D.; Terrasan, C.R.F.; de Almeida, A.F. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer’s Spent Grain as Substrate. BioMed Res. Int. 2013, 2013, 728735. [Google Scholar] [CrossRef]
- Gupta, V.K.; Steindorff, A.S.; de Paula, R.G.; Silva-Rocha, R.; Mach-Aigner, A.R.; Mach, R.L.; Silva, R.N. The Post-Genomic Era of Trichoderma reesei: What’s Next? Trends Biotechnol. 2016, 34, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Antoniêto, A.C.C.; Nogueira, K.M.V.; Mendes, V.; Maués, D.B.; Oshiquiri, L.H.; Zenaide-Neto, H.; de Paula, R.G.; Gaffey, J.; Tabatabaei, M.; Gupta, V.K.; et al. Use of Carbohydrate-Directed Enzymes for the Potential Exploitation of Sugarcane Bagasse to Obtain Value-Added Biotechnological Products. Int. J. Biol. Macromol. 2022, 221, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Punt, P.J.; van Luijk, N.; van den Hondel, C.A. The Secretion Pathway in Filamentous Fungi: A Biotechnological View. Fungal Genet. Biol. 2001, 33, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, K.M.H.; Te’o, V.S.J.; Bergquist, P.L. Heterologous Protein Expression in Filamentous Fungi. Trends Biotechnol. 2005, 23, 468–474. [Google Scholar] [CrossRef]
- Cairns, T.C.; Nai, C.; Meyer, V. How a Fungus Shapes Biotechnology: 100 Years of Aspergillus niger Research. Fungal Biol. Biotechnol. 2018, 5, 13. [Google Scholar] [CrossRef]
- Boer, C.G.; Peralta, R.M. Production of Extracellular Protease by Aspergillus tamarii. J. Basic Microbiol. 2000, 40, 75–81. [Google Scholar] [CrossRef]
- Anandan, D.; Marmer, W.N.; Dudley, R.L. Isolation, Characterization and Optimization of Culture Parameters for Production of an Alkaline Protease Isolated from Aspergillus tamarii. J. Ind. Microbiol. Biotechnol. 2007, 34, 339–347. [Google Scholar] [CrossRef]
- El-Gindy, A.A.; Saad, R.R.; Fawzi, E.M. Purification of β-Xylosidase from Aspergillus tamarii Using Ground Oats and a Possible Application on the Fermented Hydrolysate by Pichia stipitis. Ann. Microbiol. 2015, 65, 965–974. [Google Scholar] [CrossRef]
- Ferreira, G.; Boer, C.G.; Peralta, R.M. Production of Xylanolytic Enzymes by Aspergillus tamarii in Solid State Fermentation. FEMS Microbiol. Lett. 1999, 173, 335–339. [Google Scholar] [CrossRef]
- Monclaro, A.V.; Aquino, E.N.; Faria, R.F.; Ricart, C.A.O.; Freitas, S.M.; Midorikawa, G.E.O.; Miller, R.N.G.; Michelin, M.; Polizeli, M.L.T.M.; Filho, E.X.F. Characterization of Multiple Xylanase Forms from Aspergillus tamarii Resistant to Phenolic Compounds. Mycosphere 2016, 7, 1554–1567. [Google Scholar] [CrossRef]
- Gouda, M.K.; Abdel-Naby, M.A. Catalytic Properties of the Immobilized Aspergillus tamarii Xylanase. Microbiol. Res. 2002, 157, 275–281. [Google Scholar] [CrossRef]
- Heinen, P.R.; Pereira, M.G.; Rechia, C.G.V.; Almeida, P.Z.; Monteiro, L.M.O.; Pasin, T.M.; Messias, J.M.; Cereia, M.; Kadowaki, M.K.; Jorge, J.A.; et al. Immobilized Endo-Xylanase of Aspergillus tamarii Kita: An Interesting Biological Tool for Production of Xylooligosaccharides at High Temperatures. Process Biochem. 2017, 53, 145–152. [Google Scholar] [CrossRef]
- Heinen, P.R.; Bauermeister, A.; Ribeiro, L.F.; Messias, J.M.; Almeida, P.Z.; Moraes, L.A.B.; Vargas-Rechia, C.G.; de Oliveira, A.H.C.; Ward, R.J.; Filho, E.X.F.; et al. GH11 Xylanase from Aspergillus tamarii Kita: Purification by One-Step Chromatography and Xylooligosaccharides Hydrolysis Monitored in Real-Time by Mass Spectrometry. Int. J. Biol. Macromol. 2018, 108, 291–299. [Google Scholar] [CrossRef]
- Adams, P.R. Mycelial Amylase Activities of Thermophilic Species of Rhizomucor, Humicola and Papulaspora. Mycopathologia 1990, 112, 35–37. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Souza, F.H.M.; Nascimento, C.V.; Rosa, J.C.; Masui, D.C.; Leone, F.A.; Jorge, J.A.; Furriel, R.P.M. Purification and Biochemical Characterization of a Mycelial Glucose- and Xylose-Stimulated β-Glucosidase from the Thermophilic Fungus Humicola insolens. Process Biochem. 2010, 45, 272–278. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Davis, B.J. Disc Electrophoresis-II Method and Application to Human Serum Proteins. Ann. N. Y. Acad. Sci. 1964, 121, 404–427. [Google Scholar] [CrossRef]
- Blum, H.; Beier, H.; Gross, H.J. Improved Silver Staining of Plant Proteins, RNA and DNA in Polyacrylamide Gels. Electrophoresis 1987, 8, 93–99. [Google Scholar] [CrossRef]
- Moldes, A.; Cendón, Y.; Barral, M.T. Evaluation of Municipal Solid Waste Compost as a Plant Growing Media Component, by Applying Mixture Design. Bioresour. Technol. 2007, 98, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Bruns, R.E.; Scarminio, I.S.; Neto, B.d.B. Statistical Design—Chemometrics; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-08-046213-4. [Google Scholar]
- Cornell, J.A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-118-15049-8. [Google Scholar]
- Ficagna, E.; Gava, A.; Rossato, S.B.; Rombaldi, C.V.; Borsato, D. Effect on Merlot Red Wine of Fining Agents Mixture: Application of the Simplex Centroid Design. Food Sci. Technol. 2020, 40, 729–735. [Google Scholar] [CrossRef]
- Monteiro, L.M.O.; Vici, A.C.; Messias, J.M.; Heinen, P.R.; Pinheiro, V.E.; Rechia, C.G.V.; Buckeridge, M.S.; de Moraes, M.d.L.T. Increased Malbranchea pulchella β-Glucosidase Production and Its Application in Agroindustrial Residue Hydrolysis: A Research Based on Experimental Designs. Biotechnol. Rep. 2021, 30, e00618. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Dashtian, K.; Ghezelbash, G.R. Preparation and Characterization of Mn0.4Zn0.6Fe2O4 Nanoparticles Supported on Dead Cells of Yarrowia lipolytica as a Novel and Efficient Adsorbent/Biosorbent Composite for the Removal of Azo Food Dyes: Central Composite Design Optimization Study. ACS Sustain. Chem. Eng. 2018, 6, 4549–4563. [Google Scholar] [CrossRef]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Xiao, Z.; Grosse, S.; Bergeron, H.; Lau, P.C.K. Cloning and Characterization of the First GH10 and GH11 Xylanases from Rhizopus oryzae. Appl. Microbiol. Biotechnol. 2014, 98, 8211–8222. [Google Scholar] [CrossRef]
- Oliveira, M. Trichoderma atroviride 102C1 Mutant: A High Endoxylanase Producer for Assisting Lignocellulosic Material Degradation. J. Microb. Biochem. Technol. 2014, 6, 236–241. [Google Scholar] [CrossRef]
- Sundarram, A.; Murthy, T.P.K. α-Amylase Production and Applications: A Review. J. Appl. Environ. Microbiol. 2014, 2, 166–175. [Google Scholar]
- Sindhu, I.; Chhibber, S.; Capalash, N.; Sharma, P. Production of Cellulase-Free Xylanase from Bacillus megaterium by Solid State Fermentation for Biobleaching of Pulp. Curr. Microbiol. 2006, 53, 167–172. [Google Scholar] [CrossRef]
- De Silva, R.; Vongsanga, K.; Wang, X.; Byrne, N. Cellulose Regeneration in Ionic Liquids: Factors Controlling the Degree of Polymerisation. Cellulose 2015, 22, 2845–2849. [Google Scholar] [CrossRef]
- Giese, E.C.; Dekker, R.F.H.; Scarminio, I.S.; Barbosa, A.M.; da Silva, R. Comparison of β-1,3-Glucanase Production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and Its Optimization Using a Statistical Mixture-Design. Biochem. Eng. J. 2011, 53, 239–243. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture Design of Origanum compactum, Origanum majorana and Thymus serpyllum Essential Oils: Optimization of Their Antibacterial Effect. Ind. Crops Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Berger, P.D.; Maurer, R.E.; Celli, G.B. Introduction to Mixture Designs. In Experimental Design: With Application in Management, Engineering, and the Sciences; Berger, P.D., Maurer, R.E., Celli, G.B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 585–610. ISBN 978-3-319-64583-4. [Google Scholar]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Moreira, F.G.; Lima, F.A.d.; Pedrinho, S.R.F.; Lenartovicz, V.; de Souza, C.G.M.; Peralta, R.M. Production of Amylases by Aspergillus tamarii. Rev. Microbiol. 1999, 30, 157–162. [Google Scholar] [CrossRef]
- Khan, A.W.; Lamb, K.A.; Schneider, H. Recovery of Fermentable Sugars from the Brewers’ Spent Grains by the Use of Fungal Enzymes. Process Biochem. 1988, 23, 172–175. [Google Scholar]
- Faulds, C.B.; Collins, S.; Robertson, J.A.; Treimo, J.; Eijsink, V.G.H.; Hinz, S.W.A.; Schols, H.A.; Buchert, J.; Waldron, K.W. Protease-Induced Solubilisation of Carbohydrates from Brewers’ Spent Grain. J. Cereal Sci. 2009, 50, 332–336. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s Spent Grain: A Valuable Feedstock for Industrial Applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Zhang, Y.; Yu, Q.; Yuan, Z.; Liu, Y. Effects of Different Pretreatment Methods on Chemical Composition of Sugarcane Bagasse and Enzymatic Hydrolysis. Bioresour. Technol. 2013, 144, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Amore, A.; Parameswaran, B.; Kumar, R.; Birolo, L.; Vinciguerra, R.; Marcolongo, L.; Ionata, E.; La Cara, F.; Pandey, A.; Faraco, V. Application of a New Xylanase Activity from Bacillus amyloliquefaciens XR44A in Brewer’s Spent Grain Saccharification. J. Chem. Technol. Biotechnol. 2015, 90, 573–581. [Google Scholar] [CrossRef] [PubMed]
Run | Barley Bagasse g (X1) | Adams’ Medium mL (X2) | Culture Time h (X3) | Experimental Activity (U mL−1) a | Predicted Activity (U mL−1) b | Residue |
---|---|---|---|---|---|---|
1 | −1 (0.400) | −1 (9) | −1 (91) | 17.647 | 16.405 | 1.242 |
2 | −1 (0.400) | −1 (9) | 1 (149) | 18.306 | 18.426 | −0.120 |
3 | −1 (0.400) | 1 (21) | −1 (91) | 18.776 | 17.448 | 1.328 |
4 | −1 (0.400) | 1 (21) | 1 (149) | 19.859 | 19.469 | 0.390 |
5 | 1 (0.850) | −1 (9) | −1 (91) | 20.000 | 20.021 | −0.021 |
6 | 1 (0.850) | −1 (9) | 1 (149) | 21.365 | 22.042 | −0.677 |
7 | 1 (0.850) | 1 (21) | −1 (91) | 21.788 | 21.064 | 0.724 |
8 | 1 (0.850) | 1 (21) | 1 (149) | 23.059 | 23.085 | −0.026 |
9 | 0 (0.625) | 0 (15) | 0 (120) | 22.634 | 23.011 | −0.377 |
10 | 0 (0.625) | 0 (15) | 0 (120) | 23.302 | 23.011 | 0.291 |
11 | 0 (0.625) | 0 (15) | 0 (120) | 23.275 | 23.011 | 0.264 |
12 | −1.68 (0.250) | 0 (15) | 0 (120) | 15.529 | 16.877 | −1.348 |
13 | 1.68 (1.000) | 0 (15) | 0 (120) | 23.294 | 22.952 | 0.342 |
14 | 0 (0.625) | −1.68 (5) | 0 (120) | 20.847 | 20.757 | 0.090 |
15 | 0 (0.625) | 1.68 (25) | 0 (120) | 21.412 | 22.508 | −1.096 |
16 | 0 (0.625) | 0 (15) | −1.68 (72) | 14.965 | 16.571 | −1.606 |
17 | 0 (0.625) | 0 (15) | 1.68 (168) | 20.565 | 19.965 | 0.600 |
18 | 0 (0.625) | 0 (15) | 0 (120) | 22.824 | 23.011 | −0.187 |
19 | 0 (0.625) | 0 (15) | 0 (120) | 23.435 | 23.011 | 0.424 |
20 | 0 (0.625) | 0 (15) | 0 (120) | 23.106 | 23.011 | 0.095 |
Source | SS | DF | MS | F Value | F Critical Value |
---|---|---|---|---|---|
Model | 98.716 | 6 | 16.453 | 15.19 | 3.22 |
Residual | 10.834 | 10 | 1.083 | ||
Lack of fit | 10.548 | 8 | 1.319 | 9.22 | 19.37 |
Pure error | 0.286 | 2 | 0.143 | ||
Total | 109.550 | 16 |
Run | Independent Variables a | Responses | ||||
---|---|---|---|---|---|---|
BB (A) | SCBn (B) | SCBp (C) | Total Reducing Sugars (mg mL−1) b | Glucose (mg mL−1) c | Xylose (mg mL−1) c | |
1 | 1 | 0 | 0 | 2.802 | 0.466 | 0.368 |
2 | 0 | 1 | 0 | 0.565 | 0.055 | 0.129 |
3 | 0 | 0 | 1 | 0.901 | 0.072 | 0.357 |
4 | 0.5 | 0.5 | 0 | 1.611 | 0.242 | 0.232 |
5 | 0.5 | 0 | 0.5 | 2.061 | 0.134 | 0.235 |
6 | 0 | 0.5 | 0.5 | 1.198 | 0.097 | 0.314 |
7 | 0.333 | 0.333 | 0.333 | 1.817 | 0.287 | 0.361 |
8 | 0.333 | 0.333 | 0.333 | 1.802 | 0.294 | 0.369 |
9 | 0.333 | 0.333 | 0.333 | 1.885 | 0.288 | 0.369 |
Response | Lack of Fit | Model | R2 | Regression | Equations | ||
---|---|---|---|---|---|---|---|
Fcalc | Ftab | Fcalc | Ftab | ||||
Total reducing sugars (mg mL−1) | 5.56 | 19.00 | Quadratic | 0.993 a | 136.91 | 6.39 | Y = 2.789A + 0.552B + 0.884C + 1.174AC + 2.196BC |
Glucose (%) | 15.92 | 18.51 | Special Cubic | 0.998 | 342.86 | 9.01 | Y = 0.460A + 0.049B + 0.072C − 0.528AC + 0.146BC + 3.739ABC |
Xylose (%) | 8.51 | 18.51 | Special Cubic | 0.996 | 158.05 | 9.01 | Y = 0.363A + 0.124B + 0.357C − 0.499AC + 0.295BC + 2.916ABC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, J.C.S.; Heinen, P.R.; Messias, J.M.; Oliveira-Monteiro, L.M.; Cereia, M.; Rechia, C.G.V.; Maller, A.; Kadowaki, M.K.; Ward, R.J.; Polizeli, M.d.L.T.d.M. Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design. Fermentation 2024, 10, 241. https://doi.org/10.3390/fermentation10050241
Salgado JCS, Heinen PR, Messias JM, Oliveira-Monteiro LM, Cereia M, Rechia CGV, Maller A, Kadowaki MK, Ward RJ, Polizeli MdLTdM. Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design. Fermentation. 2024; 10(5):241. https://doi.org/10.3390/fermentation10050241
Chicago/Turabian StyleSalgado, Jose Carlos Santos, Paulo Ricardo Heinen, Josana Maria Messias, Lummy Maria Oliveira-Monteiro, Mariana Cereia, Carem Gledes Vargas Rechia, Alexandre Maller, Marina Kimiko Kadowaki, Richard John Ward, and Maria de Lourdes Teixeira de Moraes Polizeli. 2024. "Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design" Fermentation 10, no. 5: 241. https://doi.org/10.3390/fermentation10050241
APA StyleSalgado, J. C. S., Heinen, P. R., Messias, J. M., Oliveira-Monteiro, L. M., Cereia, M., Rechia, C. G. V., Maller, A., Kadowaki, M. K., Ward, R. J., & Polizeli, M. d. L. T. d. M. (2024). Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design. Fermentation, 10(5), 241. https://doi.org/10.3390/fermentation10050241