Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Samples
2.2. Production Process of AUS
2.3. Reagents
- Gallic acid—CAS Number: 149-91-7; purity of 98%; supplier: Fluka, Buchs, Switzerland;
- 5-Hydroxymethylfurfural—CAS Number: 67-47-0; purity 98%; Fluka, Buchs, Switzerland;
- Furfural—CAS Number: 98-01-1; purity of 98%; supplier: Fluka, Buchs, Switzerland;
- 5-Methylfurfural—CAS Number: 620-02-0; purity of 99%; supplier: Sigma, Steinheim, Germany;
- Syringic acid—CAS Number: 530-57-4; purity of 98%; supplier: Alfa Aesar, Kandel, Germany;
- Ferulic acid—CAS Number: 1135-24-6; purity of 99%; supplier: Fluka, Buchs, Switzerland;
- Ellagic acid—CAS Number: 476-66-4; purity of 98%; supplier: Fluka, Buchs, Switzerland;
- Vanillin—CAS Number: 121-33-5; purity of 99%; supplier: Fluka, Buchs, Switzerland;
- Syringaldehyde—CAS Number: 134-96-3; purity of 98%; supplier: Sigma, Steinheim, Germany;
- Coniferaldehyde—CAS Number: 458-36-6; purity of 98%; supplier: Sigma, Steinheim, Germany;
- Sinapaldehyde—CAS Number: 4206-58-0; purity of 98%; supplier: Sigma, Steinheim, Germany.
2.4. Chromatic Characteristics
2.5. Colour Sensory Analysis
2.6. Total Polyphenol Index
2.7. Low Molecular Weight Compounds Analysis
2.8. Vibrational Spectroscopy
2.9. Data Analysis
3. Results and Discussion
- 5176 cm−1: combination of O–H group stretching and deformation, alongside first overtones of water and ethanol, as well as C–H stretch first overtones;
- 4412 cm−1: ethanol, sugars and phenolic compound absorption band;
- 4337 cm−1: second overtone of stretching C–H and O–H vibrations, often associated with functional groups found in alcohols and carboxylic acids. The two previous bands are characteristics of samples with methanol;
- 4258 cm−1: the combination of stretching and bending deformation of C–H units;
- 5689 cm−1 (three small peaks): ascribed to the C–H stretch of the first overtones of CH2 and CH3 groups and O–H from aromatic groups;
- 6896–8434 cm−1 (peak with lower intensity): second overtone of the C–H stretch of ethanol and the combination of the bending vibration of O–H bend and the first overtone of the stretching O–H related to the water influence.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santo, D.E.; Galego, L.; Gonçalves, T.; Quintas, C. Yeast diversity in the Mediterranean strawberry tree (Arbutus unedo L.) fruits’ fermentations. Food Res. Int. 2012, 47, 45–50. [Google Scholar] [CrossRef]
- Miguel, M.; Faleiro, M.; Guerreiro, A.; Antunes, M. Arbutus unedo L.: Chemical and Biological Properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef] [PubMed]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef]
- Celikel, G.; Demirsoy, L.; Demirsoy, H. The strawberry tree (Arbutus unedo L.) selection in Turkey. Sci. Hortic. 2008, 118, 115–119. [Google Scholar] [CrossRef]
- Morgado, S.; Morgado, M.; Plácido, A.I.; Roque, F.; Duarte, A.P. Arbutus unedo L.: From traditional medicine to potential uses in modern pharmacotherapy. J. Ethnopharmacol. 2018, 225, 90–102. [Google Scholar] [CrossRef]
- Oliveira, P.N.; dos Gomes, P.C.S.; Alcarde, A.R.; Bortoletto, A.M.; Leite Neta, M.T.S.; Narain, N.; de Abud, A.K.S.; Oliveira Júnior, A.M. Characterization and volatile profile of passion fruit spirit. Int. J. Gastron. Food Sci. 2020, 21, 100223. [Google Scholar] [CrossRef]
- Morales, D. Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022, 11, 3838. [Google Scholar] [CrossRef] [PubMed]
- Soufleros, E.H.; Mygdalia, S.A.; Natskoulis, P. Production process and characterization of the traditional Greek fruit distillate “Koumaro” by aromatic and mineral composition. J. Food Compos. Anal. 2005, 18, 699–716. [Google Scholar] [CrossRef]
- Spaho, N. Distillation Techniques in the Fruit Spirits Production. Distill.-Innov. Appl. Model. 2017, 129–152. [Google Scholar] [CrossRef]
- Versini, G.; Franco, M.A. Characterisation of strawberry tree distillate (Arbutus unedo L.) produced in Sardinia. J. Commod. Sci. Tech. Qual. 2011, 53, 197–206. [Google Scholar]
- Anjos, O.; Pedro, S.I.; Caramelo, D.; Semedo, A.; Antunes, C.A.L.; Canas, S.; Caldeira, I. Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale. Appl. Sci. 2021, 11, 5065. [Google Scholar] [CrossRef]
- Galego, L. Traditional Algarvian Distillats and Liqueurs Historic Scientific Aspects. In Proceedings of the Traditional Food Processing and Technological Innovation in Peripheral Regions, Faro, Portuguese Republic, 26 May 2006; pp. 68–70. [Google Scholar]
- Delgado-González, M.J.; García-Moreno, M.V.; Sánchez-Guillén, M.M.; García-Barroso, C.; Guillén-Sánchez, D.A. Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control 2021, 119, 107468. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Franc, C.; Mora, N.; Marchand, S.; Perello, M.-C.; Revel, G. de Quantification of three galloylglucoside flavour precursors by liquid chromatography tandem mass spectrometry in brandies aged in oak wood barrels. J. Chromatogr. A 2016, 1442, 26–32. [Google Scholar] [CrossRef]
- Híc, P.; Horák, M.; Balík, J.; Martinák, K. Assessment of spirit aging on different kinds of wooden fragments. Wood Sci. Technol. 2021, 55, 257–270. [Google Scholar] [CrossRef]
- Correia, A.C.; Miljić, U.; Jordão, A.M. Storage of a white wine with different untoasted wood species: Impact on the chemical composition and sensory characteristics. Eur. Food Res. Technol. 2023, 249, 2689–2703. [Google Scholar] [CrossRef]
- De Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Zhang, B.; Zeng, X.-A.; Lin, W.T.; Sun, D.-W.; Cai, J.-L. Effects of electric field treatments on phenol compounds of brandy aging in oak barrels. Innov. Food Sci. Emerg. Technol. 2013, 20, 106–114. [Google Scholar] [CrossRef]
- Otsuka, K.; Imai, S. Studies on the Mechanism of Aging of Distilled Liquors. Agric. Biol. Chem. 1964, 28, 356–362. [Google Scholar] [CrossRef]
- Mosedale, J.; Puech, J.-L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Giannakourou, M.; Stratati, I.F.; Maria Manika, E.; Resiti, V.; Tataridis, P.; Zoumpoulakis, P.; Sinanoglou, V.J. Assessment of Phenolic Content, Antioxidant Activity, Colour and Sensory Attributes of Wood Aged “Tsipouro”. Curr. Res. Nutr. Food Sci. J. 2018, 6, 318–328. [Google Scholar] [CrossRef]
- Winstel, D.; Gautier, E.; Marchal, A. Role of Oak Coumarins in the Taste of Wines and Spirits: Identification, Quantitation, and Sensory Contribution through Perceptive Interactions. J. Agric. Food Chem. 2020, 68, 7434–7443. [Google Scholar] [CrossRef] [PubMed]
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The Impact of Compounds Extracted from Wood on the Quality of Alcoholic Beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef] [PubMed]
- Abramova, I.; Medrish, M.; Romanova, A.; Ovchinnikov, V.; Gavrilova, D. The quality control system of distilled spirits. BIO Web Conf. 2021, 36, 05006. [Google Scholar] [CrossRef]
- Es-Safi, N.-E.; Cheynier, V.; Moutounet, M. Study of the Reactions between (+)-Catechin and Furfural Derivatives in the Presence or Absence of Anthocyanins and Their Implication in Food Color Change. J. Agric. Food Chem. 2000, 48, 5946–5954. [Google Scholar] [CrossRef]
- Caldeira, I.; Santos, R.; Ricardo-da-Silva, J.M.; Anjos, O.; Mira, H.; Belchior, A.P.; Canas, S. Kinetics of odorant compounds in wine brandies aged in different systems. Food Chem. 2016, 211, 937–946. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Xu, Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques. Compr. Rev. Food Sci. Food Saf. 2023, 22, 502–534. [Google Scholar] [CrossRef]
- ISO 3591:1977; Sensory Analysis-Wine-Tasting Glass. This Standard Was Last Reviewed and Confirmed in 2016. International Organization for Standardization: Geneva, Switzerland, 2006.
- Granja-Soares, J.; Roque, R.; Cabrita, M.J.; Anjos, O.; Belchior, A.P.; Caldeira, I.; Canas, S. Effect of innovative technology using staves and micro-oxygenation on the odorant and sensory profile of aged wine spirit. Food Chem. 2020, 333, 127450. [Google Scholar] [CrossRef]
- Cetó, X.; Gutiérrez, J.M.; Gutiérrez, M.; Céspedes, F.; Capdevila, J.; Mínguez, S.; Jiménez-Jorquera, C.; del Valle, M. Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Anal. Chim. Acta 2012, 732, 172–179. [Google Scholar] [CrossRef]
- Canas, S.; Belchior, A.P.; Spranger, M.I.; Bruno-de-Sousa, R. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes, and furanic derivatives in brandies. Development and validation. J. Sep. Sci. 2003, 26, 496–502. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Fernandes, T.A.; Pedro, S.I.; Vitória, C.; Oliveira-Alves, S.; Catarino, S.; Canas, S. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy. Sensors 2021, 22, 286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Ren, Y.F.; Dong, G.M.; Yang, R.J.; Liu, H.X.; Du, Y.H.; Zhang, W.Y. Determination of Methanol in Alcoholic Beverages by Two-Dimensional Near-Infrared Correlation Spectroscopy. Anal. Lett. 2016, 49, 2279–2289. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. LWT 2022, 154, 112658. [Google Scholar] [CrossRef]
- Perkowska, I.; Siwinska, J.; Olry, A.; Grosjean, J.; Hehn, A.; Bourgaud, F.; Lojkowska, E.; Ihnatowicz, A. Identification and Quantification of Coumarins by UHPLC-MS in Arabidopsis thaliana Natural Populations. Molecules 2021, 26, 1804. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.A.; do Nascimento, E.S.P.; Cardoso, D.R.; Franco, D.W. Coumarins and phenolic fingerprints of oak and Brazilian woods extracted by sugarcane spirit. J. Sep. Sci. 2009, 32, 3681–3691. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Tao, H.; Liao, L.; Li, Y.; Zhang, Z. Direct Analysis in Real-time Mass Spectrometry for Rapid Identification of Traditional Chinese Medicines with Coumarins as Primary Characteristics. Phytochem. Anal. 2017, 28, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Canas, S.; Leandro, M.C.; Spranger, M.I.; Belchior, A.P. Low Molecular Weight Organic Compounds of Chestnut Wood (Castanea sativa L.) and Corresponding Aged Brandies. J. Agric. Food Chem. 1999, 47, 5023–5030. [Google Scholar] [CrossRef]
- Alañón, M.E.; Rubio, H.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Monosaccharide anhydrides, new markers of toasted oak wood used for ageing wines and distillates. Food Chem. 2010, 119, 505–512. [Google Scholar] [CrossRef]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, Á.M.; Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic Compounds in Chestnut (Castanea sativa Mill.) Heartwood. Effect of Toasting at Cooperage. J. Agric. Food Chem. 2010, 58, 9631–9640. [Google Scholar] [CrossRef]
- Lisov, N.; Čakar, U.; Milenković, D.; Čebela, M.; Vuković, G.; Despotović, S.; Petrović, A. The Influence of Cabernet Sauvignon Ripeness, Healthy State and Maceration Time on Wine and Fermented Pomace Phenolic Profile. Fermentation 2023, 9, 695. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. First Approach to the Analytical Characterization of Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters. Food Technol. Biotechnol. 2014, 52, 391–402. [Google Scholar] [CrossRef]
- Collins, T.S.; Miles, J.L.; Boulton, R.B.; Ebeler, S.E. Targeted volatile composition of oak wood samples taken during toasting at a commercial cooperage. Tetrahedron 2015, 71, 2971–2982. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Aging marker profile in cachaça is influenced by toasted oak chips. J. Inst. Brew. 2015, 121, 70–77. [Google Scholar] [CrossRef]
- Le Floch, A.; Jourdes, M.; Teissedre, P.-L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydr. Res. 2015, 417, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [Google Scholar] [CrossRef]
- Jakubíková, M.; Sádecká, J.; Kleinová, A.; Májek, P. Near-infrared spectroscopy for rapid classification of fruit spirits. J. Food Sci. Technol. 2016, 53, 2797–2803. [Google Scholar] [CrossRef]
- Engelhard, S.; Löhmannsröben, H.-G.; Schael, F. Quantifying Ethanol Content of Beer Using Interpretive Near-Infrared Spectroscopy. Appl. Spectrosc. 2004, 58, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, D.; An, X.; Wang, X.; Gao, Q. Visible light photoredox-catalyzed deoxydisulfuration of alcohols. Org. Chem. Front. 2024, 11, 358–363. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; Taylor & Francis Group: Boca Raton, FL, USA, 2007; ISBN 978-1-57444-784-2. [Google Scholar]
- Chen, H.; Tan, C.; Wu, T.; Wang, L.; Zhu, W. Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 245–249. [Google Scholar] [CrossRef]
Samples | L | a* | b* | C | A470 | TPI |
---|---|---|---|---|---|---|
C | 100.00 ± 0.06 | −0.08 ± 0.01 | 0.55 ± 0.01 | 0.56 ± 0.00 | 100.02 ± 0.06 | -- |
LT3 | 96.57 ± 0.1 ab | −2.44 ± 0.02 a | 17.29 ± 0.52 a | 17.46 ± 0.52 a | 88.23 ± 0.39 b | 7.17 ± 0.06 a |
MT3 | 95.20 ± 3.86 a | −2.14 ± 0.39 ab | 36.35 ± 1.83 bc | 36.42 ± 1.81 bc | 77.47 ± 5.64 a | 18.51 ± 0.41 bc |
MPT3 | 97.14 ± 0.66 ab | −1.47 ± 0.29 b | 39.48 ± 2.29 bc | 39.51 ± 2.28 bc | 78.13 ± 2.01 a | 17.72 ± 1.09 b |
LT6 | 99.94 ± 2.17 b | −2.61 ± 0.40 a | 31.96 ± 9.97 b | 32.24 ± 9.75 b | 85.53 ± 3.65 b | 15.20 ± 5.16 b |
MT6 | 97.19 ± 1.55 ab | −1.67 ± 0.90 b | 41.99 ± 4.84 c | 42.04 ± 4.79 c | 76.94 ± 4.63 a | 23.98 ± 2.77 c |
MPT6 | 97.87 ± 1.13 ab | −1.54 ± 0.46 b | 37.88 ± 3.72 bc | 37.92 ± 3.70 bc | 79.84 ± 3.31 a | 18.41 ± 1.71 bc |
TL | n.s. | 41.7 ** | 46.4 ** | 45.8 *** | 44.9 ** | 57.1 *** |
T | 23.5 * | n.s. | 12.1 * | 12.5 * | n.s. | 23.6 *** |
TLxT | n.s. | n.s. | 18.2 * | 18.9 * | n.s. | n.s. |
R | 76.5 | 58.3 | 23.3 | 22.8 | 55.1 | 19.3 |
Samples | C | LT3 | MT3 | MPT3 | LT6 | MT6 | MPT6 |
---|---|---|---|---|---|---|---|
AS (% v/v) [11] | 46.2 ± 0.00 a | 47.9 ± 0.11 c | 46.9 ± 0.01 b | 46.9 ± 0.01 b | 46.8 ± 0.13 b | 47.0 ± 0.03 b | 47.0 ± 0.03 bc |
HMF | nd | 2.41 ± 0.85 a | 14.54 ± 0.36 b | 4.86 ± 1.26 a | 7.44 ± 0.44 a | 19.84 ± 6.86 b | 7.65 ± 0.29 a |
Furf | 6.07 ± 0.06 a | 12.19 ± 1.52 b | 41.44 ± 1.43 c | 47.66 ± 7.95 c | 17.97 ± 1.91 b | 56.73 ± 22.52 c | 37.20 ± 1.55 c |
5Mfurf | nd | 0.43 ± 0.07 a | 2.43 ± 0.29 c | 1.66 ± 0.02 b | 0.61 ± 0.04 a | 3.96 ± 1.84 c | 1.79 ± 0.08 b |
Gall | nd | 1.67 ± 0.42 a | 7.60 ± 3.15 b | 0.58 ± 0.48 a | 9.86 ± 6.56 b | 7.79 ± 2.07 b | 0.02 ± 0.09 a |
Syrg | nd | 1.16 ± 0.01 a | 2.41 ± 0.34 b | 9.83 ± 0.22 c | 1.38 ± 0.05 a | 3.80 ± 0.60 b | 12.41 ± 1.15 d |
Ferul | nd | 0.07 ± 0.01 a | 0.05 ± 0.00 a | 0.08 ± 0.03 a | 0.16 ± 0.06 b | 0.05 ± 0.00 a | 0.14 ± 0.01 b |
Ellag | nd | 2.53 ± 0.09 a | 4.40 ± 0.34 ab | 8.30 ± 0.17 c | 4.56 ± 0.40 ab | 5.32 ± 0.01 b | 7.16 ± 1.57 c |
Vanil | nd | 0.88 ± 0.04 a | 3.94 ± 0.26 c | 3.45 ± 0.21 c | 1.51 ± 0.07 b | 4.77 ± 0.15 d | 5.71 ± 0.19 e |
Syrde | nd | 0.90 ± 0.08 a | 5.17 ± 1.68 b | 11.42 ± 0.78 d | 1.86 ± 0.29 a | 8.80 ± 0.05 c | 18.88 ± 0.24 e |
Cofde | nd | 2.26 ± 0.25 ab | 12.64 ± 0.81 c | 1.52 ± 0.13 a | 3.09 ± 0.51 b | 15.06 ± 1.21 d | 1.42 ± 0.26 a |
Spide | nd | 2.36 ± 0.36 a | 22.00 ± 3.68 b | 4.34 ± 0.00 a | 4.64 ± 0.23 a | 30.89 ± 0.18 c | 4.59 ± 0.77 a |
Sum-LMWC | nd | 26.89 ± 13.67 a | 116.66 ± 58.43 bc | 93.75 ± 47.07 b | 53.10 ± 27.22 a | 157.06 ± 81.88 c | 97.02 ± 48.52 b |
Samples | TL (%) | T (%) | TLxT (%) | R (%) |
---|---|---|---|---|
HMF | 69.0 *** | 13.6 ** | n.s. | 17.4 |
Furf | 70.5 *** | n.s. | n.s. | 29.5 |
5Mfurf | 68.6 *** | n.s. | n.s. | 31.4 |
Gall | 50.5 ** | n.s. | n.s. | 49.5 |
Syrg | 93.4 *** | 3.2 *** | 2.0 ** | 1.4 |
Ferul | 24.2 ** | 29.1 ** | 20.8 * | 25.9 |
Ellag | 99.3 *** | n.s. | n.s. | 0.7 |
Vanil | 75.0 *** | 16.1 *** | 8.1 *** | 0.8 |
Syrde | 77.4 *** | 12.9 *** | 8.3 *** | 1.3 |
Cofde | 96.4 *** | 1.0 ** | 1.4 * | 1.2 |
Spide | 89.6 *** | 3.7 *** | 5.0 *** | 1.7 |
Sum-LMWC | 81.7 *** | 8.7 ** | n.s. | 9.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjos, O.; Antunes, C.A.L.; Oliveira-Alves, S.; Canas, S.; Caldeira, I. Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood. Fermentation 2024, 10, 253. https://doi.org/10.3390/fermentation10050253
Anjos O, Antunes CAL, Oliveira-Alves S, Canas S, Caldeira I. Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood. Fermentation. 2024; 10(5):253. https://doi.org/10.3390/fermentation10050253
Chicago/Turabian StyleAnjos, Ofélia, Carlos A. L. Antunes, Sheila Oliveira-Alves, Sara Canas, and Ilda Caldeira. 2024. "Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood" Fermentation 10, no. 5: 253. https://doi.org/10.3390/fermentation10050253
APA StyleAnjos, O., Antunes, C. A. L., Oliveira-Alves, S., Canas, S., & Caldeira, I. (2024). Characterisation of Low Molecular Weight Compounds of Strawberry Tree (Arbutus unedo L.) Fruit Spirit Aged with Oak Wood. Fermentation, 10(5), 253. https://doi.org/10.3390/fermentation10050253