Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles
Abstract
:1. Introduction
2. Review Methodology
3. Technological and Scientific Prospection: Timeline and Territoriality
3.1. Temporal Evolution of Patent Documents and Scientific Articles
3.2. Country of Origin of Patent Documents and Scientific Articles
4. Technological Prospection
4.1. Main Depositors and Key Investors of Patent Documents
4.2. Technological Domains of Patent Documents
4.2.1. Food Science
4.2.2. Biotechnology
4.2.3. Chemistry
4.2.4. Engineering
5. Scientific Prospection
5.1. Authors and Universities
5.2. Subject Area of Scientific Articles
Purpose | How | References |
---|---|---|
To increase cocoa quality during fermentation | Using starter cultures | [9,37,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75] |
Using enzymes | [76,77,78] | |
Using fruits and probiotics | [32] | |
By changing/optimizing fermentation method or conditions | [52,53,54,79,80,81] | |
By studying potential starter cultures (e.g., metagenomics) | [61,82,83,84,85,86,87,88,89] | |
To measure fermentation quality/determine origin | Spectroscopy techniques | [90,91] |
Terahertz hyperspectral imaging | [92] | |
Machine-learning techniques | [93,94] | |
To characterize cocoa beans during fermentation | Measurement of phenolic content, antioxidant activity, and volatile and non-volatile compounds | [5,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114] |
6. Trends
7. Considerations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Intellectual Property Organization—WIPO. Frequently Asked Questions (FAQs). Available online: https://www.wipo.int/pct/en/faqs/ (accessed on 9 July 2023).
- Spherical Insights Website. Available online: https://www.sphericalinsights.com/reports/cocoa-and-chocolate-market (accessed on 9 July 2023).
- Calvo, A.M.; Botina, B.L.; García, M.C.; Cardona, W.A.; Montenegro, A.C.; Criollo, J. Dynamics of cocoa fermentation and its effect on quality. Sci. Rep. 2021, 11, 16746. [Google Scholar] [CrossRef]
- Mota-Gutierrez, J.; Botta, C.; Ferrocino, I.; Giordano, M.; Bertolino, M.; Dolci, P.; Cannoni, M.; Cocolin, L. Dynamics and biodiversity of bacterial and yeast communities during fermentation of cocoa beans. Appl. Environ. Microbiol. 2018, 84, e01164-18. [Google Scholar] [CrossRef]
- Martinez, S.J.; Batista, N.N.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Brazilian cocoa hybrid-mix fermentation: Impact of microbial dominance as well as chemical and sensorial properties. J. Food Sci. 2021, 86, 2604–2614. [Google Scholar] [CrossRef]
- Pereira, G.V.D.M.; Miguel, M.G.d.C.P.; Ramos, C.L.; Schwan, R.F. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl. Environ. Microbiol. 2012, 78, 5395–5405. [Google Scholar] [CrossRef]
- Schwan, R.F.; Wheals, A.E. The Microbiology of Cocoa Fermentation and its Role in Chocolate Quality. Crit. Rev. Food Sci. Nutr. 2004, 44, 205–221. [Google Scholar] [CrossRef]
- Korcari, D.; Fanton, A.; Ricci, G.; Rabitti, N.S.; Laureati, M.; Hogenboom, J.; Pellegrino, L.; Emide, D.; Barbiroli, A.; Fortina, M.G. Fine Cocoa Fermentation with Selected Lactic Acid Bacteria: Fermentation Performance and Impact on Chocolate Composition and Sensory Properties. Foods 2023, 12, 340. [Google Scholar] [CrossRef]
- Díaz-Muñoz, C.; De Vuyst, L. Functional yeast starter cultures for cocoa fermentation. J. Appl. Microbiol. 2022, 133, 39–66. [Google Scholar] [CrossRef]
- Brown, M.C. Method of Fermenting or Curing Cocoa Beans and Product Resulting from Such Fermentation or Curing. 1926. Available online: https://worldwide.espacenet.com/patent/search/family/024742978/publication/US1575372A?q=US1575372A (accessed on 22 May 2023).
- Blanck, F.C. Fermentation in the Food Industries. Ind. Eng. Chem. 1930, 22, 1166–1168. [Google Scholar] [CrossRef]
- World Intellectual Property Organization—WIPO. PCT—The International Patent System. Available online: https://www.wipo.int/pct/en/ (accessed on 14 July 2023).
- International Cocoa Organization—ICCO. Production of Cocoa Beans. Available online: https://www.icco.org/wp-content/uploads/Production_QBCS-XLIX-No.-2.pdf (accessed on 11 July 2023).
- Bangerter, U.; Beh, B.H.; Callis, A.B.; Pilkington, I.J. Cocoa Fermentation. 1991. Available online: https://worldwide.espacenet.com/patent/search/family/008203634/publication/CA2035657A1?q=CA2035657A1 (accessed on 22 May 2023).
- United Nations Educational, Scientific and Cultural Organization(UNESCO). UNESCO Science Report Towards 2030. Available online: http://unesdoc.unesco.org/images/0023/002354/235407por.pdf (accessed on 13 July 2023).
- Ulrich, B.; Hwa, B.B.; Brenton, C.A.; James, P.I. Improved Cocoa fermentation. 1992. Available online: https://worldwide.espacenet.com/patent/search/family/019929658/publication/OA09489A?q=OA09489A (accessed on 22 May 2023).
- International Cocoa Organization—ICCO. Producing Countries Exporting Either Exclusively or Partially Fine or Flavour Cocoa. Available online: https://www.icco.org/wp-content/uploads/2019/07/ED-MEM-975-Fine-and-Flavour-Panel-September-2015-English-w.pdf (accessed on 9 July 2023).
- Who Are the Fine Flavour Cocoa Exporting Countries? Available online: https://www.icco.org/fine-or-flavor-cocoa/ (accessed on 9 July 2023).
- Holgersson, M.; Aaboen, L. A literature review of intellectual property management in technology transfer offices: From appropriation to utilization. Technol. Soc. 2019, 59, 101132. [Google Scholar] [CrossRef]
- Nugent, A.; Chan, H.F. Outsourcing university research commercialization to a sophisticated technology transfer office: Evidence from Australian universities. Technovation 2023, 125, 102762. [Google Scholar] [CrossRef]
- Belitski, M.; Aginskaja, A.; Marozau, R. Commercializing university research in transition economies: Technology transfer offices or direct industrial funding? Res. Policy 2019, 48, 601–615. [Google Scholar] [CrossRef]
- Hansen, C.E.; Klueppel, A.; Raetz, E. Enzymatic Treatment of Cocoa. 1997. Available online: https://worldwide.espacenet.com/patent/search/family/008220394/publication/EP0755632A2?q=EP0755632A2 (accessed on 22 May 2023).
- Hansen, C.E.; Kochhar, S.; Juillerat, M.A. Enzymatically Hydrolysed Cocoa in Chocolate Flavour Reactions. 2002. Available online: https://worldwide.espacenet.com/patent/search/family/009908709/publication/WO02063974A1?q=WO02063974A1 (accessed on 22 May 2023).
- Schnell, I.R.J.; Seguine, E.S.; Dias, C.; Bizzotto, C.; Marelli, J.; Mills, D.; Motamayor-Arias, J.C. Anaerobic Fermentation of Seeds of Fruit. 2014. Available online: https://worldwide.espacenet.com/patent/search/family/050190798/publication/WO2014127130A1?q=WO2014127130A1 (accessed on 22 May 2023).
- Camu, N.; Bernaert, H.; Lohmueller, T. Microbial Composition for the Fermentation of Cocoa Material. 2011. Available online: https://worldwide.espacenet.com/patent/search/family/042937129/publication/WO2011012680A2?q=WO2011012680A2 (accessed on 22 May 2023).
- De, V.L.; Camu, N. Starter Cultures and Fermentation Method. 2007. Available online: https://worldwide.espacenet.com/patent/search/family/037430817/publication/WO2007031186A1?q=WO2007031186A1 (accessed on 22 May 2023).
- Bernaert, H.; Camu, N.; Lohmueller, T. Method for Processing Cocoa Beans. 2009. Available online: https://worldwide.espacenet.com/patent/search/family/040941912/publication/WO2009138419A2?q=WO2009138419A2 (accessed on 22 May 2023).
- Lefeber, T.; Gobert, W.; Vrancken, G.; Camu, N.; De Vuyst, L. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol. 2011, 28, 457–464. [Google Scholar] [CrossRef]
- Papalexandratou, Z.; Camu, N.; Falony, G.; De Vuyst, L. Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiol. 2011, 28, 964–973. [Google Scholar] [CrossRef]
- Daniel, H.-M.; Vrancken, G.; Takrama, J.F.; Camu, N.; De Vos, P.; De Vuyst, L. Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res. 2009, 9, 774–783. [Google Scholar] [CrossRef]
- Dario, A.; Eskes, A.B. Process for the Fermentation of Cocoa Beans to Modify Their Aromatic Profile. 2009. Available online: https://worldwide.espacenet.com/patent/search/family/040985968/publication/WO2009103137A2?q=WO2009103137A2 (accessed on 22 May 2023).
- Vizcaino-Almeida, C.R.; Guajardo-Flores, D.; Caroca-Cáceres, R.; Serna-Saldívar, S.O.; Briones-García, M.; Lazo-Vélez, M.A. Non-conventional fermentation at laboratory scale of cocoa beans: Using probiotic microorganisms and substitution of mucilage by fruit pulps. Int. J. Food Sci. Technol. 2022, 57, 4307–4315. [Google Scholar] [CrossRef]
- Lee, A.H.; Neilson, A.P.; O’keefe, S.F.; Ogejo, J.A.; Huang, H.; Ponder, M.; Chu, H.S.S.; Jin, Q.; Pilot, G.; Stewart, A.C. A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. Eur. Food Res. Technol. 2019, 245, 511–519. [Google Scholar] [CrossRef]
- Camu, N.; De Winter, T.; Addo, S.K.; Takrama, J.S.; Bernaert, H.; De Vuyst, L. Fermentation of cocoa beans: Influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J. Sci. Food Agric. 2008, 88, 2288–2297. [Google Scholar] [CrossRef]
- Biehl, B.; Meyer, B.; Crone, G.; Pollmann, L.; Bin Said, M. Chemical and physical changes in the pulp during ripening and post-harvest storage of cocoa pods. J. Sci. Food Agric. 1989, 48, 189–208. [Google Scholar] [CrossRef]
- Junior, G.C.A.C.; Ferreira, N.R.; Gloria, M.B.A.; Martins, L.H.D.S.; Lopes, A.S. Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem. 2021, 338, 127834. [Google Scholar] [CrossRef]
- Junior, G.C.A.C.; Ferreira, N.R.; Andrade, E.H.d.A.; Nascimento, L.D.D.; de Siqueira, F.C.; Lopes, A.S. Profile of volatile compounds of on-farm fermented and dried cocoa beans inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY. Molecules 2021, 26, 344. [Google Scholar] [CrossRef]
- Junior, G.C.A.C.; Ferreira, N.R.; Lopes, A.S. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: An overview. Int. J. Food Sci. Technol. 2021, 56, 544–552. [Google Scholar] [CrossRef]
- Ahnert, D.; Eskes, A.B.; Pujol, D. Improved Cocoa Bean Quality by Enhanced Fermentation Technology. 2021. Available online: https://worldwide.espacenet.com/patent/search/family/069411096/publication/EP3837988A1?q=EP3837988A1 (accessed on 22 May 2023).
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Tan, L.; Gu, F.; Chu, Z.; Li, H.; Lai, J.; Wu, G. Method for Fermenting Wet Cocoa Beans. 2017. Available online: https://worldwide.espacenet.com/patent/search/family/058170387/publication/CN106417844A?q=CN106417844A (accessed on 22 May 2023).
- Wollgast, J.; Anklam, E. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Stark, T.; Bareuther, S.; Hofmann, T. Molecular Definition of the Taste of Roasted Cocoa Nibs (Theobroma cacao) by Means of Quantitative Studies and Sensory Experiments. J. Agric. Food Chem. 2006, 54, 5530–5539. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Uribe, D.; Gallego, V.; Bedoya, C.; Arango-Varela, S. Traceability of polyphenols in cocoa during the postharvest and industrialization processes and their biological antioxidant potential. Heliyon 2021, 7, e07738. [Google Scholar] [CrossRef] [PubMed]
- Biehl, B.; Lindblom, M.G. Low-Flavor Cocoa, a Method of Its Production and a Use Thereof. 2000. Available online: https://worldwide.espacenet.com/patent/search/family/008167096/publication/WO0022935A1?q=WO0022935A1 (accessed on 22 May 2023).
- Martín, M.A.; Ramos, S. Cocoa polyphenols in oxidative stress: Potential health implications. J. Funct. Foods 2016, 27, 570–588. [Google Scholar] [CrossRef]
- Lecoupeau, J.P. Cocoa Bean Extract with High Polyphenol Content, Antioxidant and Radical Scavenging Activity, Is Useful in Food, Cosmetic or Drug Applications, Obtained by Maceration of Ground Fresh Bean Kernels. 2002. Available online: https://worldwide.espacenet.com/patent/search/family/008853517/publication/FR2812873A1?q=FR2812873A1 (accessed on 22 May 2023).
- Kealey, K.S.; Snyder, R.M.; Romancyzk, L.J.J.; Geyer, H.M.; Meyers, M.E.; Whitcare, E.J.; Hammerstone, J.F.J.; Schmitz, H.H. Cocoa Component, Edible Product Having Enhanced Polyphenol Content, Method of Making the Same, and Medical Use of the Same. 2010. Available online: https://worldwide.espacenet.com/patent/search/family/024849720/publication/JP2010187704A?q=JP2010187704A (accessed on 22 May 2023).
- Garcia, P.A.C. Automated Revolving Cocoa Fermenter. 2021. Available online: https://worldwide.espacenet.com/patent/search/family/077492150/publication/WO2021170197A1?q=WO2021170197A1 (accessed on 22 May 2023).
- Hernández, C.H.; López-Andrade, P.A.; Ramírez-Guillermo, M.A.; Ramírez, D.G.; Pérez, J.F.C. Evaluation of different fermentation processes for use by small cocoa growers in mexico. Food Sci. Nutr. 2016, 4, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Guehi, S.T.; Dabonne, S.; Ban-Koffi, L.; Kedjebo, D.K.; Zahouli, G.I.B. Effect of turning beans and fermentation method on the acidity and physical quality of raw cocoa beans. Adv. J. Food Sci. Technol. 2010, 2, 163–171. [Google Scholar]
- Dulce, V.-R.; Anne, G.; Manuel, K.; Carlos, A.-A.; Jacobo, R.-C.; de Jesús, C.-E.S.; Eugenia, L.-C. Cocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation. Heliyon 2021, 7, e07694. [Google Scholar] [CrossRef]
- Hamdouche, Y.; Meile, J.C.; Lebrun, M.; Guehi, T.; Boulanger, R.; Teyssier, C.; Montet, D. Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Res. Int. 2019, 119, 477–491. [Google Scholar] [CrossRef]
- Burbano-Cachiguango, R.A.; Abreu-Naranjo, R.; Caicedo-Vargas, C.E.; Ramírez-Romero, C.A.; Calero-Cárdenas, A.S.; Llumiquinga-Marcillo, E.M.; Ruiz-Urigüen, M. Effect of a semi-automated fermentation system on the physical and chemical characteristics of Theobroma cacao L. grown in the northern Ecuadorian Amazon. J. Food Meas. Charact. 2023, 17, 337–345. [Google Scholar] [CrossRef]
- Ghisolfi, R.; Bandini, F.; Vaccari, F.; Bellotti, G.; Bortolini, C.; Patrone, V.; Puglisi, E.; Morelli, L. Bacterial and Fungal Communities Are Specifically Modulated by the Cocoa Bean Fermentation Method. Foods 2023, 12, 2024. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.V.D.M.; Magalhães, K.T.; de Almeida, E.G.; Coelho, I.D.S.; Schwan, R.F. Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: Influence on the dynamics of microbial populations and physical–chemical properties. Int. J. Food Microbiol. 2013, 161, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Centro de Inovação do Cacau—CIC Website. Available online: https://pctsb.org/cic/ (accessed on 14 July 2023).
- Ferreira, O.D.S.; Chagas-Junior, G.C.A.; Chisté, R.C.; Martins, L.H.d.S.; Andrade, E.H.d.A.; Nascimento, L.D.D.; Lopes, A.S. Saccharomyces cerevisiae and Pichia manshurica from Amazonian biome affect the parameters of quality and aromatic profile of fermented and dried cocoa beans. J. Food Sci. 2022, 87, 4148–4161. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.; Costa, J.; Vilela, L.; Lima, N.; Santos, C.; Schwan, R. Influence of S. cerevisiae and P. kluyveri as starters on chocolate flavour. J. Sci. Food Agric. 2021, 101, 4409–4419. [Google Scholar] [CrossRef]
- Santos, D.S.; Rezende, R.P.; dos Santos, T.F.; Marques, E.d.L.S.; Ferreira, A.C.R.; Silva, A.B.d.C.e.; Romano, C.C.; Santos, D.W.d.C.; Dias, J.C.T.; Bisneto, J.D.T. Fermentation in fine cocoa type Scavina: Change in standard quality as the effect of use of starters yeast in fermentation. Food Chem. 2020, 328, 127110. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.O.D.C.; De Castro, G.M.; Solar, R.; Vaz, A.B.M.; Lobo, F.; Pereira, G.; Rodrigues, C.; Vandenberghe, L.; Pinto, L.R.M.; da Costa, A.M.; et al. Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Front. Microbiol. 2022, 13, 994524. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Villagomez, K.; Ledesma-Escobar, C.; Priego-Capote, F.; Robles-Olvera, V.; García-Alamilla, P. Influence of the starter culture on the volatile profile of processed cocoa beans by gas chromatography–mass spectrometry in high resolution mode. Food Biosci. 2022, 47, 101669. [Google Scholar] [CrossRef]
- Assi-Clair, B.J.; Koné, M.K.; Kouamé, K.; Lahon, M.C.; Berthiot, L.; Durand, N.; Lebrun, M.; Julien-Ortiz, A.; Maraval, I.; Boulanger, R.; et al. Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. Eur. Food Res. Technol. 2019, 245, 1459–1471. [Google Scholar] [CrossRef]
- Nuñez, J.C.; Ramirez-Toro, C.; Bolivar, G.; A, A.P.S.; Tovar, M.D.L. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. J. Sci. Food Agric. 2023, 103, 2425–2435. [Google Scholar] [CrossRef]
- Díaz-Muñoz, C.; Van de Voorde, D.; Tuenter, E.; Lemarcq, V.; Van de Walle, D.; Maio, J.P.S.; Mencía, A.; Hernandez, C.E.; Comasio, A.; Sioriki, E.; et al. An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiol. 2023, 109, 104115. [Google Scholar] [CrossRef]
- Farrera, L.; de la Noue, A.C.; Strub, C.; Guibert, B.; Kouame, C.; Grabulos, J.; Montet, D.; Teyssier, C. Towards a starter culture for cocoa fermentation by the selection of acetic acid bacteria. Fermentation 2021, 7, 42. [Google Scholar] [CrossRef]
- Gonzalez, E.G.; Orejuela, J.M.; Banguera, J.S.; Moreno, D.C.; Narváez, G.O.; Muñoz, A.O.; Rodriguez, C.M. Ecology and population dynamics of yeast starter cultures in cocoa beans fermentation. BioTechnologia 2022, 103, 343–353. [Google Scholar] [CrossRef]
- Kouamé, C.; Loiseau, G.; Grabulos, J.; Boulanger, R.; Mestres, C. Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. Int. J. Food Microbiol. 2021, 337, 108917. [Google Scholar] [CrossRef]
- Salazar, M.M.M.; Álvarez, O.L.M.; Castañeda, M.P.A.; Medina, P.X.L. Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol. 2022, 101, 103896. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.S.; Ting, A.S.Y.; Siow, L.F. Volatile organic compounds and sensory profile of dark chocolates made with cocoa beans fermented with Pichia kudriavzevii and Hanseniaspora thailandica. J. Food Sci. Technol. 2022, 59, 2714–2723. [Google Scholar] [CrossRef]
- Ouattara, H.G.; Niamké, S.L. Mapping the functional and strain diversity of the main microbiota involved in cocoa fermentation from Cote d’Ivoire. Food Microbiol. 2021, 98, 103767. [Google Scholar] [CrossRef] [PubMed]
- Romanens, E.; Leischtfeld, S.F.; Volland, A.; Stevens, M.J.; Krähenmann, U.; Isele, D.; Fischer, B.; Meile, L.; Schwenninger, S.M. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int. J. Food Microbiol. 2019, 290, 262–272. [Google Scholar] [CrossRef]
- Romanens, E.; Pedan, V.; Meile, L.; Schwenninger, S.M. Influence of two anti-fungal Lactobacillus fermentum-Saccharomyces cerevisiae co-cultures on cocoa bean fermentation and final bean quality. PLoS ONE 2020, 15, e0239365. [Google Scholar] [CrossRef]
- Saunshi, Y.B.; Sandhya, M.V.S.; Rastogi, N.K.; Murthy, P.S. Starter consortia for on-farm cocoa fermentation and their quality attributes. Prep. Biochem. Biotechnol. 2020, 50, 272–280. [Google Scholar] [CrossRef]
- Viesser, J.A.; Pereira, G.V.d.M.; Neto, D.P.D.C.; Favero, G.R.; de Carvalho, J.C.; Goés-Neto, A.; Rogez, H.; Soccol, C.R. Global cocoa fermentation microbiome: Revealing new taxa and microbial functions by next generation sequencing technologies. World J. Microbiol. Biotechnol. 2021, 37, 1–17. [Google Scholar] [CrossRef]
- Dang, Y.K.T.; Nguyen, H.V.H. Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans. Plant Foods Hum. Nutr. 2019, 74, 54–60. [Google Scholar] [CrossRef]
- Murthy, P.S.; Palakshappa, S.H.; Padela, J.; Kusumoto, K.-I. Amelioration of cocoa organoleptics using A.oryzae cysteine proteases. LWT 2019, 120, 108919. [Google Scholar] [CrossRef]
- Purbaningrum, K.; Hidayat, C.; Witasari, L.D.; Utami, T. Flavor Precursors and Volatile Compounds Improvement of Unfermented Cocoa Beans by Hydrolysis Using Bromelain. Foods 2023, 12, 820. [Google Scholar] [CrossRef]
- Guzman-Armenteros, T.M.; Ramos-Guerrero, L.A.; Guerra, L.S.; Weckx, S.; Ruales, J. Optimization of cacao beans fermentation by native species and electromagnetic fields. Heliyon 2023, 9, e15065. [Google Scholar] [CrossRef]
- Mori, D.; Barrena, M.; Oliva, S.; Chavez, S. Response surface optimization of the cacao criollo fermentation process in the province of Utcubamba, Amazonas-Peru | Optimização através da superfície de resposta do processo de fermentação do cacau criollo na província de Utcubamba, Amazonas-Peru|Opti. Rev. De La Fac. De Agron. De La Univ. Del Zulia 2022, 39, e223917. [Google Scholar] [CrossRef]
- Putranto, A.W.; Nugroho, O.P.; Maulidah, W.; Risaldi, R.; Saputro, I.H.E.; Mulyono, A.W.D.A. Application of Ohmic Heating Technology on Cocoa Beans Fermentation: Design, Physicochemical Properties and Techno-Economic Analysis. Food Sci. Technol. 2023, 11, 71–83. [Google Scholar] [CrossRef]
- Agyirifo, D.S.; Wamalwa, M.; Otwe, E.P.; Galyuon, I.; Runo, S.; Takrama, J.; Ngeranwa, J. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 2019, 5, e02170. [Google Scholar] [CrossRef]
- Almeida, O.G.G.; De Martinis, E.C.P. Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Appl. Environ. Microbiol. 2021, 87, AEM0058421. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Niño, M.; Rodríguez-Cubillos, M.J.; Herrera-Rocha, F.; Anzola, J.M.; Cepeda-Hernández, M.L.; Mejía, J.L.A.; Chica, M.J.; Olarte, H.H.; Rodríguez-López, C.; Calderón, D.; et al. Dissecting industrial fermentations of fine flavour cocoa through metagenomic analysis. Sci. Rep. 2021, 11, 8638. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rocha, F.; Cala, M.P.; Mejía, J.L.A.; Rodríguez-López, C.M.; Chica, M.J.; Olarte, H.H.; Fernández-Niño, M.; Barrios, A.F.G. Dissecting fine-flavor cocoa bean fermentation through metabolomics analysis to break down the current metabolic paradigm. Sci. Rep. 2021, 11, 21904. [Google Scholar] [CrossRef] [PubMed]
- Pelicaen, R.; Gonze, D.; Teusink, B.; De Vuyst, L.; Weckx, S. Genome-Scale Metabolic Reconstruction of Acetobacter pasteurianus 386B, a Candidate Functional Starter Culture for Cocoa Bean Fermentation. Front. Microbiol. 2019, 10, 2801. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Lozano, C.J.; Caballero-Torres, D.; López-Giraldo, L.J. Screening Wild Yeast Isolated from Cocoa Bean Fermentation Using Volatile Compounds Profile. Molecules 2022, 27, 902. [Google Scholar] [CrossRef] [PubMed]
- Serra, J.L.; Moura, F.G.; Pereira, G.V.d.M.; Soccol, C.R.; Rogez, H.; Darnet, S. Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT 2019, 106, 229–239. [Google Scholar] [CrossRef]
- Verce, M.; Schoonejans, J.; Aguirre, C.H.; Molina-Bravo, R.; De Vuyst, L.; Weckx, S. A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front. Microbiol. 2021, 12, 641185. [Google Scholar] [CrossRef]
- Anyidoho, E.K.; Teye, E.; Agbemafle, R.; Amuah, C.L.Y.; Boadu, V.G. Application of portable near infrared spectroscopy for classifying and quantifying cocoa bean quality parameters. J. Food Process. Preserv. 2021, 45, e15445. [Google Scholar] [CrossRef]
- Ferreira, F.N.; Chagas-Junior, G.C.A.; de Oliveira, M.S.; Barbosa, J.R.; Oliveira, M.E.C.; Lopes, A.S. Geographical Discrimination of Ground Amazon Cocoa by Near-Infrared Spectroscopy: Influence of Sample Preparation. J. Food Qual. 2022, 2022, 8126810. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Pissard, A.; Pierna, J.A.F.; Rogez, H.; Souza, J.; Dortu, F.; Goel, S.; Hernandez, Y.; Baeten, V. A method for non-destructive determination of cocoa bean fermentation levels based on terahertz hyperspectral imaging. Int. J. Food Microbiol. 2022, 365, 109537. [Google Scholar] [CrossRef]
- Essah, R.; Anand, D.; Singh, S. An intelligent cocoa quality testing framework based on deep learning techniques. Meas. Sensors 2022, 24, 100466. [Google Scholar] [CrossRef]
- Tan, J.; Balasubramanian, B.; Sukha, D.; Ramkissoon, S.; Umaharan, P. Sensing fermentation degree of cocoa (Theobroma cacao L.) beans by machine learning classification models based electronic nose system. J. Food Process. Eng. 2019, 42, e13175. [Google Scholar] [CrossRef]
- Apriyanto, M.; Umanailo, M.C.B. Decrease polyphenols, ethanol, lactic acid, and acetic acid during fermentation with addition of cocoa beans innoculum. Int. J. Sci. Technol. Res. 2019, 8, 461–465. [Google Scholar]
- Bastos, V.S.; Uekane, T.M.; Bello, N.A.; de Rezende, C.M.; Paschoalin, V.M.F.; Del Aguila, E.M. Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. J. Food Sci. Technol. 2019, 56, 2874–2887. [Google Scholar] [CrossRef] [PubMed]
- Cortez, D.; Quispe-Sanchez, L.; Mestanza, M.; Oliva-Cruz, M.; Yoplac, I.; Torres, C.; Chavez, S.G. Changes in bioactive compounds during fermentation of cocoa (Theobroma cacao) harvested in Amazonas-Peru. Curr. Res. Food Sci. 2023, 6, 100494. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, M.d.R.; Gallignani, M.; Orozco, W.; Clavijo, S.; Delgado, Y.; Ayala, C.; Zambrano, A. The effect of fermentation and roasting on free amino acids profile in Criollo cocoa (Theobroma cacao L.) grown in Venezuela|Efeitos da fermentação e torrefação no perfil de aminoácidos livres do cacau Criollo (Theobroma cacao L.) cultivado na Venezuela. Braz. J. Food Technol. 2020, 23, e2019150. [Google Scholar] [CrossRef]
- Deus, V.L.; Bispo, E.S.; Franca, A.S.; Gloria, M.B.A. Understanding amino acids and bioactive amines changes during on-farm cocoa fermentation. J. Food Compos. Anal. 2020, 97, 103776. [Google Scholar] [CrossRef]
- Fahrurrozi; Juanssilfero, A.B.; Perwitasari, U.; Stepanie; Purwanto, A.P.; Nugroho, I.B.; Ratnakomala, S.; Dewi, R.T.; Ajijah, N.; Lisdiyanti, P. Effect of Small-Scale Box-Fermentation on Catechin and Epicatechin Content of Lampung Cocoa Beans Varieties. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1029–1034. [Google Scholar] [CrossRef]
- Fang, Y.; Li, R.; Chu, Z.; Zhu, K.; Gu, F.; Zhang, Y. Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci. Nutr. 2020, 8, 4121–4133. [Google Scholar] [CrossRef]
- Febrianto, N.A.; Wang, S.; Zhu, F. Chemical and biological properties of cocoa beans affected by processing: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 8403–8434. [Google Scholar] [CrossRef]
- Hernández, M.d.P.L.; Núñez, J.C.; Gómez, M.S.H.; Tovar, M.D.L. Physicochemical and microbiological dynamics of the fermentation of the ccn51 cocoa material in three maturity stages|Dinâmica físico-química e microbiológica da fermentação de material de cacau CCN51 em três fases de maturidade. Rev. Bras. Frutic. 2019, 41, e-010. [Google Scholar] [CrossRef]
- Koné, K.M.; Assi-Clair, B.J.; Kouassi, A.D.D.; Yao, A.K.; Ban-Koffi, L.; Durand, N.; Lebrun, M.; Maraval, I.; Bonlanger, R.; Guehi, T.S. Pod storage time and spontaneous fermentation treatments and their impact on the generation of cocoa flavour precursor compounds. Int. J. Food Sci. Technol. 2021, 56, 2516–2529. [Google Scholar] [CrossRef]
- Kouassi, A.D.D.; Koné, K.M.; Assi-Clair, B.J.; Lebrun, M.; Maraval, I.; Boulanger, R.; Fontana, A.; Guehi, T.S. Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. J. Food Sci. Technol. 2022, 59, 4466–4478. [Google Scholar] [CrossRef] [PubMed]
- Machuca-Guevara, J.I.; Suárez-Peña, E.A.; Darricau, E.M.; Mialhe-Matonnier, E.L. Molecular characterization of microorganisms during cocoa-bean fermentation process (Theobroma cacao)|Caracterización molecular de los microorganismos presentes durante el proceso fermentativo de los granos de cacao (Theobroma cacao). Rev. Peru. De Biol. 2019, 26, 535–542. [Google Scholar] [CrossRef]
- Melo, T.S.; Pires, T.C.; Engelmann, J.V.P.; Monteiro, A.L.O.; Maciel, L.F.; Bispo, E.d.S. Evaluation of the content of bioactive compounds in cocoa beans during the fermentation process. J. Food Sci. Technol. 2021, 58, 1947–1957. [Google Scholar] [CrossRef]
- Kotey, R.N.; Odoom, D.A.; Kumah, P.; Akowuah, J.O.; Donkor, E.F.; Quartey, E.K.; Sam, E.K.; Owusu-Kwarteng, J.; Santo, K.G.; Kwami-Adala, F.; et al. Effects of Fermentation Periods and Drying Methods on Postharvest Quality of Cocoa (Theobroma cacao) Beans in Ghana. J. Food Qual. 2022, 2022, 7871543. [Google Scholar] [CrossRef]
- Obinze, S.; Ojimelukwe, P.C.; Eke, B.A. Box fermentation and solar drying improve the nutrient composition and organoleptic quality of chocolate from cocoa beans. Front. Sustain. Food Syst. 2022, 6, 1023123. [Google Scholar] [CrossRef]
- Rawel, H.M.; Huschek, G.; Sagu, S.T.; Homann, T. Cocoa Bean Proteins—Characterization, Changes and Modifications due to Ripening and Post-Harvest Processing. Nutrients 2019, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Rottiers, H.; Sosa, D.A.T.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Septianti, E.; Salengke; Langkong, J.; Sukendar, N.K.; Hanifa, A.P. Characteristic Quality of Pinrang’s Cocoa Beans During Fermentation Used Styrofoam Containers. Canrea J. Food Technol. Nutr. Culin. J. 2020, 3, 10–25. [Google Scholar] [CrossRef]
- Tikapunya, T. Changes in Physico-Chemical and Microbiological Properties in Thai Cocoa Bean Fermentation. Walailak J. Sci. Technol. 2021, 18, 21443. [Google Scholar] [CrossRef]
- Utrilla-Vázquez, M.; Rodríguez-Campos, J.; Avendaño-Arazate, C.H.; Gschaedler, A.; Lugo-Cervantes, E. Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res. Int. 2020, 129, 108834. [Google Scholar] [CrossRef]
Title | Microorganism | Purpose | Findings | Reference |
---|---|---|---|---|
An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation | Saccharomyces cerevisiae, Hanseniaspora opuntiae | To examine the effects of the cocoa isolate H. opuntiae IMDO 040108 as part of three different starter culture mixtures compared with spontaneous fermentation | The inoculated H. opuntiae strain was unable to prevail over background yeasts present in the fermenting cocoa mass. Cocoa fermentation processes inoculated with a Saccharomyces cerevisiae strain enhanced flavor production during fermentation, reflected in richer and more reproducible aroma profiles of the cocoa liquors and chocolates. | [65] |
Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype | Pichia kudriavzevii microencapsulated | To establish the effective dose for applying the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation for the cocoa variety CCN-51 | A 2% microencapsulation of Pichia kudriavzevii is suitable for cocoa starters. The higher presence of volatile compounds such as 2,3-butanediol, associated with cocoa aroma, and 1-phenyl-2-ethanol and acetophenone, associated with aromatic descriptors of fruity and floral series, was observed. | [64] |
Fine Cocoa Fermentation with Selected Lactic Acid Bacteria: Fermentation Performance and Impact on Chocolate Composition and Sensory Properties | Lactiplantibacillus fabifermentans Furfurilactibacillus rossiae | To evaluate the impact of adjunct cultures of selected lactic acid bacteria (LAB) on the fermentation parameters, chemical composition, and sensory profile of fine cocoa and chocolate | The addition of adjunct cultures influenced the proteolytic processes and the free amino acid profile and increased the complexity of the flavor profile of the chocolate. | [8] |
Ecology and population dynamics of yeast starter cultures in cocoa beans fermentation | Saccharomyces spp., Kloeckera spp., Candida spp., and Rhodotorula spp. | To understand how microorganisms and their proliferation influence cocoa bean fermentation | Saccharomyces ssp. and Hanseniaspora ssp. strains can be used together as starter cultures in cocoa bean fermentation. | [67] |
Saccharomyces cerevisiae and Pichia manshurica from Amazonian biome affect the parameters of quality and aromatic profile of fermented and dried cocoa beans | Saccharomyces cerevisiae, Pichia manshurica | To evaluate the physical and chemical transformations of cocoa beans during fermentation after inoculation with starter cultures of yeast species Pichia manshurica and Saccharomyces cerevisiae | The use of Pichia manshurica presented a superior performance compared to that of the culture of S. cerevisisae with respect to the quantity of desirable aromatic compounds for the production of chocolate, low acidity level, and high content of phenolic compounds. | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, L.L.; Pereira, M.S.; de Almeida, L.S.; da Silveira Ferreira, L.; de Moura Pita, B.L.; de Souza, C.O.; Ribeiro, C.D.F.; Fricks, A.T. Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles. Fermentation 2024, 10, 251. https://doi.org/10.3390/fermentation10050251
Nascimento LL, Pereira MS, de Almeida LS, da Silveira Ferreira L, de Moura Pita BL, de Souza CO, Ribeiro CDF, Fricks AT. Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles. Fermentation. 2024; 10(5):251. https://doi.org/10.3390/fermentation10050251
Chicago/Turabian StyleNascimento, Luciana Lordelo, Marizania Sena Pereira, Lorena Santos de Almeida, Larissa da Silveira Ferreira, Bruna Louise de Moura Pita, Carolina Oliveira de Souza, Camila Duarte Ferreira Ribeiro, and Alini Tinoco Fricks. 2024. "Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles" Fermentation 10, no. 5: 251. https://doi.org/10.3390/fermentation10050251
APA StyleNascimento, L. L., Pereira, M. S., de Almeida, L. S., da Silveira Ferreira, L., de Moura Pita, B. L., de Souza, C. O., Ribeiro, C. D. F., & Fricks, A. T. (2024). Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles. Fermentation, 10(5), 251. https://doi.org/10.3390/fermentation10050251