Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silica
Silica Characterization
2.2. Determination of the Volumetric Mass Trans Coefficient (kLa)
2.3. Influence of Silica Particles in the kLa
2.4. Statistical Analysis
3. Results and Discussion
3.1. Production, Treatment, and Characterization of Silica Particles
3.2. Effect of Agitation and Aeration on the Oxygen Mass Transference (kLa)
3.3. Effect of Silica Particles on the Oxygen Mass Transference (kLa)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borisov, V.B.; Verkhovsky, M.I. Oxygen as acceptor. EcoSal Plus 2022, 6, 10128. [Google Scholar] [CrossRef]
- Suresh, S.; Srivastava, V.C.; Mishra, I.M. Techniques for oxygen transfer measurement in bioreactors: A review. J. Chem. Technol. Biotechnol. 2009, 84, 1091–1103. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, H.Y.; Li, Y.L.; Chu, J.; Huang, M.Z.; Zhuang, Y.P.; Zhang, S.L. Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour. Technol. 2020, 101, 2845–2852. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Suasnavart, R.A.; Valdez-Cruz, N.A.; Gaytan-Ortega, G.; Reynoso-Cerecedal, G.I.; Cabrera-Santos, D.; López-Griegol, L.; Klöckner, B.J.; Trujillo-Roldán, M.A. The metabolic switch can be activated in a recombinant strain of Streptomyces lividans by a low oxygen transfer rate in shake fasks. Microb. Cell Factories. 2018, 17, 189. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
- Ju, L.K.; Ho, C.S.; Baddour, R.F. Simultaneous measurements of oxygen diffusion coefficients and solubilities in fermentation media with polarographic oxygen electrodes. Biotechnol. Bioeng. 1988, 31, 995–1005. [Google Scholar] [CrossRef]
- Tromans, D. Temperature and pressure dependent solubility of oxygen in water: A thermodynamic analysis. Hydrometallurgy 1998, 48, 327–342. [Google Scholar] [CrossRef]
- Ntwampe, S.K.O.; Williams, C.C.; Sheldon, M.S. Water immiscible dissolved oxygen carries in combination with pluronic F 68 in bioreactors. Afr. J. Biotechnol. 2010, 9, 1106–1114. [Google Scholar] [CrossRef]
- Vieira, E.S.; Fontes, T.K.O.; Pereira, M.M.; Alexandre, H.V.; Silva, D.P.; Soares, C.M.F.; Lima, A.S. New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: Minimisation and reuse. Bioprocess Biosy. Eng. 2015, 38, 721–728. [Google Scholar] [CrossRef]
- Amaral, P.F.F.; Rocha-Leão, M.H.M.; Marrucho, I.M.; Coutinho, J.A.P.; Coelho, M.A.Z. Improving lipase production using a perfluorocarbon as oxygen carrier. J. Chem. Technol. Biotechnol. 2006, 81, 1368–1374. [Google Scholar] [CrossRef]
- Littlejohns, J.V.; Daugulis, A.J. Oxygen transfer in a gas–liquid system containing solids of varying oxygen affinity. Chem. Eng. J. 2007, 129, 67–74. [Google Scholar] [CrossRef]
- Olle, B.; Wang, D.I.C. Novel and new concept to increase oxygen transfer in bioreactors. Chem. Eng. Trans. 2008, 14, 1–12. [Google Scholar]
- Shet, A.S.; Shetty, K.V. TiO2 nanofluid for oxygen mass transfer intensification in pulsed plate column. Chem. Eng. Commun. 2021, 208, 653–1675. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Bhattacharya, P.; Phelan, P.E.; Prasher, R.S. Enhanced mass transport in nanofluids. Nano Lett. 2006, 6, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Martínez, D.T.; Torres, R.M.; Rojas, M.G.; Vázquez, L.A.; Micheletti, M.; Lye, G.J.; Ochoaa, S.H. Hydrodynamic and oxygen mass transfer studies in a three-phase (air–water–ionic liquid) stirred tank bioreactor. Biochem. Eng. J. 2009, 45, 209–217. [Google Scholar] [CrossRef]
- Labbeiki, G.; Attar, H.; Heydarinasab, A.; Sorkhabadi, S.; Rashidi, A. Enhanced oxygen transfer rate and bioprocess yield by using magnetite nanoparticles in fermentation media of erythromycin. J. Pharm. Sci. 2014, 22, 66. [Google Scholar] [CrossRef]
- Fatollahi, P.; Ghasemi, M.; Yazdian, F.; Sadeghi, A. Ectoine production in bioreactor by Halomonas elongate DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnol. Progress. 2021, 37, 23073. [Google Scholar] [CrossRef]
- Esperança, M.N.; Cunha, F.M.; Cerri, M.O.; Zangirolami, T.C.; Farinas, C.S.; Badino, A.C. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions. Bioprocess Biosyst. Eng. 2014, 37, 805–812. [Google Scholar] [CrossRef]
- Ojima, S.; Sasaki, S.; Hayashi, K.; Tomiyama, A. Effects of particle diameter on bubble coalescence in a slurry bubble column. J. Chem. Eng. Jpn. 2015, 48, 181–189. [Google Scholar] [CrossRef]
- Sasaki, S.; Uchida, K.; Hayashi, K.; Tomiyama, A. Effect of particle concentration and slurry height on gas hodup in a slurry bubble column. J. Chem. Eng. Jpn. 2016, 49, 824–830. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Fan, P.P.; Sun, L.P. Enhancement of gas-to-liquid oxygen transfer in the presence of fine solid particles for air-exposed multiphase system. Chem. Eng. Res. Des. 2015, 100, 434–443. [Google Scholar] [CrossRef]
- Mokwatlo, S.C.; Brink, H.G.; Nicol, W. Effect of shear on morphology, viability and metabolic activity of succinic acid-producing Actinobacillus succinogenes biofilms. Bioprocess and Biosyst. Eng. 2020, 43, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.Q.; van der Lans, R.G.J.M.; Luyben, K.C.A.M. Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol. Bioeng. 1997, 55, 715–726. [Google Scholar] [CrossRef]
- Soares, C.M.F.; Santos, O.A.; Olivio, J.E.; Castro, H.F.; Moraes, F.F.; Zaniin, G.M. Influence of the alkyl-substituted silane precursor on sol-gel encapsulated lipase activity. J. Mol. Catal. B 2004, 29, 69–79. [Google Scholar] [CrossRef]
- Soares, C.M.F.; Santos, O.A.; Castro, H.F.; Moraes, F.F.; Zanin, G.M. Studies on lipase immobilization in hydrophobic sol-gel matrix. Appl. Biochem. Biotechnol. 2004, 113, 307–319. [Google Scholar] [CrossRef]
- Lin, J.; Chen, H.; Yao, L. Surface tailoring of SiO2 nanoparticles by mechanochemical method based on simple milling. Appl. Surf. Sci. 2010, 256, 5978–5984. [Google Scholar] [CrossRef]
- Iler, R.K. The Chemistry of Silica; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Continuous mesoporous silica film with highly ordered large pore structures. Adv. Mater. 1998, 10, 1380–1385. [Google Scholar] [CrossRef]
- Biswas, R.K.; Khan, P.; Mukherjee, S.; Mukhopahyay, A.K.; Ghosh, J.; Muraleedharan, K. Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J. Non-Cryst. Solids. 2018, 488, 1–9. [Google Scholar] [CrossRef]
- Popa, A.; Sasca, V.; Kiss, E.E.; Marinkovic-Neducin, R.; Bokorov, M.T.; Holclajtner-Antunovi, I. Studies in structural characterization of silica–heteropolyacids composites prepared by sol–gel method. Mater. Chem. Phys. 2010, 119, 465–470. [Google Scholar] [CrossRef]
- Mechri, M.L.; Chihi, S.; Mahdadi, N.; Beddiaf, S. Study of heat effect on the composition of dunes sand of Ouargla (Algeria) using XRD and FTIR. Silicon 2017, 9, 933–941. [Google Scholar] [CrossRef]
- Yu, L.Y.; Huang, Z.X.; Shi, M.X. Synthesis and characterization of silica by sol-gel method. Adv. Mater. Res. 2014, 1030–1031, 189–192. [Google Scholar] [CrossRef]
- Badapalli, P.K.; Kottala, R.B.; Rajasekhar, M.; Ramachandra, M.; Krupavathi, C. Modeling of comparative studies on surface micro morphology of Aeolian, River Lake, and beach sand samples using SEM and EDS/EDAX. Mater. Today Proc. 2022, 50, 655–660. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids. 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Beganskienė, A.; Sirutkaitis, V.; Kurtinaitienė, M.; Juškėnas, R.; Kareiva, A. FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mater. Sci. 2004, 10, 287–290. [Google Scholar]
- Vásquez-A., M.A.; Rodríguez, G.A.; García-Salgado, G.; Romero-Paredes, G.; Peña-Sierra, R. FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions. Rev. Mex. Fis. 2007, 53, 431–435. [Google Scholar]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Tiwari, M.; Sahu, S.K.; Rathod, T.; Bhangare, R.C.; Ajmal, P.Y.; Pulhani, V.; Kumar, A.V. Comprehensive review on sampling, characterization and distribution of microplastics in beach sand and sediments. Trends Environ. Anal. Chem. 2023, 40, e00221. [Google Scholar] [CrossRef]
- Souza, R.L.; Faria, E.L.P.; Figueiredo, R.T.; Freitas, L.S.; Iglesias, M.; Mattedi, S.; Zanin, G.M.; Santos, O.A.A.; Coutinho, J.A.P.; Lima, A.S.; et al. Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzym. Microb. Technol. 2013, 52, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, R.C.; Soares, C.M.F.; Santos, O.A.A.; Castro, H.F.; Moraes, F.F.; Zanin, G.M. Influence of gelation time on the morphological and physico-chemical properties of the sol–gel entrapped lipase. J. Mol. Catal. B Enzym. 2008, 52–53, 27–33. [Google Scholar] [CrossRef]
- Klingshirn, M.A.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Ionic liquids as solvent and solvent additives for the synthesis of sol–gel materials. J. Mater. Chem. 2005, 15, 5174–5180. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Sdiri, A.; Higashi, T.; Bouaziz, S.; Benziana, M. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arab. J. Chem. 2014, 7, 486–493. [Google Scholar] [CrossRef]
- Hadinia, N.; Dovom, M.R.E.; Yavarmanesh, M. The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing short chain fatty acids. LWT 2022, 165, 113709. [Google Scholar] [CrossRef]
- Degeest, B.; Mozzi, F.; De Vuyst, L. Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int. J. Food Microbiol. 2002, 79, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-C.; Kwong, H.K.; Chen, H.-Y.; Hsu, H.-Y.; Yu, S.-H.; Hsieh, C.-W.; Lin, H.-W.; Chu, Y.-L.; Cheng, K.-C. Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PLoS ONE 2021, 16, e0249250. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lu, Y.; Yan, H.; Li, X.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; Lü, X. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess Biosyst. Eng. 2020, 43, 515–528. [Google Scholar] [CrossRef] [PubMed]
- López-Trujillo, J.; Mellado-Bosque, M.; Ascacio-Valdés, J.A.; Prado-Barragán, L.A.; Hernández-Herrera, J.A.; Aguilera-Carbó, A.F. Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation 2023, 9, 819. [Google Scholar] [CrossRef]
- Guo, Q.; Zabed, H.; Zhang, H.; Wang, X.; Yun, J.; Zhang, G.; Yang, M.; Sun, W.; Qi, X. Optimization of fermentation medium for a newly isolated yeast strain (Zygosaccharomyces rouxii JM-C46) and evaluation of factors affecting biosynthesis of D-arabitol. LWT 2019, 99, 319–327. [Google Scholar] [CrossRef]
- Alahmad, H.; Yazji, S.; Azizieh, A. Optimization of protease production from Rhizomucor miehei Rm4 isolate under solid-state fermentation. J. Genet. Eng. Biotechnol. 2022, 20, 82. [Google Scholar] [CrossRef]
- Aboyeji, O.O.; Oloke, J.K.; Arinkoola, A.O.; Oke, M.A.; Ishola, M.M. Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. Sci. Afr. 2020, 10, e00554. [Google Scholar] [CrossRef]
- Özbek, B.; Gayic, S. The studies on the oxygen mass transfer coefficient in a bioreactor. Process Biochem. 2001, 36, 729–741. [Google Scholar] [CrossRef]
- Bandaiphet, C.; Prasertsan, P. Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7 C. Carbohydr. Polym. 2006, 66, 216–228. [Google Scholar] [CrossRef]
- Santos-Moreau, V.; Lopes, J.C.B.; Fonte, C.P. Estimation of kLa values in bench-scale stirred tank reactors with self-inducing impeller by multiphase CFD simulations. Chem. Eng. Technol. 2019, 42, 1545–1554. [Google Scholar] [CrossRef]
- Satitrueg, K.; Soottitantawat, A. Influence of agitator speed and aeration rate on the oxygen mass transfer rate coefficient in the stirred tank bioreactor. J. Funct. Mater. Chem. Eng. 2019, 1, 83–88. [Google Scholar]
- Chern, J.M.; Yu, C.F. Oxygen transfer modelling of diffused aeration systems. Ind. Eng. Chem. Res. 1997, 36, 5447–5453. [Google Scholar] [CrossRef]
- McWhirter, J.R.; Hutterm, J.C. Improved oxygen mass transfer modelling for difussed/subsurface aeration systems. AIChE J. 1989, 35, 1527–1534. [Google Scholar] [CrossRef]
- Lakhdissi, E.M.; Soleimani, I.; Guy, C.; Chaouki, J. Simultaneous effect of particle size and solid concentration on the hydrodynamics of slurry bubble column reactors. AIChE J. 2020, 66, e16813. [Google Scholar] [CrossRef]
- Ding, C.; Xu, C.; He, T.; Liu, X.; Zhu, Y.; Sun, L.; Ouyang, J.; Gu, X. Oxygen mass transfer enhancement by activated carbon particles in xylose fermentation media. Bioprocess Biosyst. Eng. 2023, 46, 15–23. [Google Scholar] [CrossRef]
- Olle, B.; Bucak, S.; Holmes, T.C.; Bromberg, L.; Hatton, T.A.; Wang, D.I.C. Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind. Eng. Chem. Res. 2006, 45, 4355–4363. [Google Scholar] [CrossRef]
Microparticle | Surface Area (m2g−1) | Mean Pore Diameter (Å) | Pore Volume (cm3g−1) |
---|---|---|---|
Silica | 223.73 | 17.33 | 0.213 |
Commercial sand | 90.36 | 17.13 | 0.071 |
Pre-treatment beach sand | 89.50 | 15.33 | 0.079 |
Post-treatment beach sand | 89.71 | 17.14 | 0.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.M.; Matos, I.L.O.; Cordeiro, F.M.M.; Silva, A.C.M.d.; Cavalcanti, E.B.; Lima, Á.S. Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles. Fermentation 2024, 10, 255. https://doi.org/10.3390/fermentation10050255
Pereira MM, Matos ILO, Cordeiro FMM, Silva ACMd, Cavalcanti EB, Lima ÁS. Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles. Fermentation. 2024; 10(5):255. https://doi.org/10.3390/fermentation10050255
Chicago/Turabian StylePereira, Matheus M., Ivus Lorenzo Oliveira Matos, Filipe Moreira Mascarenhas Cordeiro, Ana Cristina Morais da Silva, Eliane Bezerra Cavalcanti, and Álvaro Silva Lima. 2024. "Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles" Fermentation 10, no. 5: 255. https://doi.org/10.3390/fermentation10050255
APA StylePereira, M. M., Matos, I. L. O., Cordeiro, F. M. M., Silva, A. C. M. d., Cavalcanti, E. B., & Lima, Á. S. (2024). Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles. Fermentation, 10(5), 255. https://doi.org/10.3390/fermentation10050255