Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed
Abstract
:1. Introduction
2. Toxicity
2.1. Trypsin Inhibitors
2.2. Lectins
2.3. Phytate
2.4. Saponins
2.5. Phorbol Esters
3. Detoxification Methodologies
3.1. Physical and Chemical Treatments
3.2. Biological Treatments
Treatment | Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | AT | BT | AT | BT | AT | BT | AT | BT | AT | |
Fungi—Zygomycota | ||||||||||
R. olisgosporus [7] | 0.21 | 0.08 | - | - | 9.10 | 4.18 | 2.47 | 0.33 | 0.013 | 0.012 |
R. olisgosporus [70] | 33.50 | 20.15 | - | - | 8.90 | 5.27 | 2.50 | 1.30 | 3.650 | 3.050 |
R. nigricans [7] | 0.21 | 0.08 | - | - | 9.10 | 3.88 | 2.47 | 0.22 | 0.013 | 0.010 |
R. oryzae [28] | - | - | - | - | 6.08 | 0.61 | - | - | 0.830 | 0.310 |
C. echimulata [28] | - | - | - | - | 6.08 | 0.42 | - | - | 0.830 | 0.210 |
M. mucedo [11] | - | - | - | - | 6.68 | 6.26 | 2.13 | 0.35 | - | - |
Fungi—Basydomycota | ||||||||||
B. adusta [74] | - | - | - | - | - | - | - | - | 0.820 | 0.070 |
P. rufa [74] | - | - | - | - | - | - | - | - | 0.820 | 0.020 |
G. resinaceum [74] | - | - | - | - | - | - | - | - | 0.820 | 0.656 |
G. lucidum (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.075 |
G. lucidum (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.043 |
G. lucidum [75] | - | - | - | - | - | - | - | - | 1.072 | ND |
P. chrysosporium [75] | - | - | - | - | - | - | - | - | 1.072 | 0.591 |
T. hirsute [75] | - | - | - | - | - | - | - | - | 1.072 | 0.197 |
T. zonata [75] | - | - | - | - | - | - | - | - | 1.072 | ND |
T. gibbosa [75] | - | - | - | - | - | - | - | - | 1.072 | 0.089 |
T. versicolor [75] | - | - | - | - | - | - | - | - | 1.072 | 0.118 |
T. versicolor (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.214 |
T. versicolor (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.257 |
Pleurotus sp. (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.104 |
Pleurotus sp. (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.341 |
P. ostreatus (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.058 |
P. ostreatus (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.375 |
P. ostreatus (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.100 |
P. ostreatus (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.176 |
Treatment | Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | AT | BT | AT | BT | AT | BT | AT | BT | AT | |
Fungi—Basydomycota | ||||||||||
P. florida (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.163 |
P. florida (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.157 |
P. florida [75] | - | - | - | - | - | - | - | - | 1.072 | 0.344 |
P. sapidus (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.150 |
P. sapidus (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.281 |
P. sapidus [75] | - | - | - | - | - | - | - | - | 1.072 | 0.257 |
P. pulmonaris (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | ND |
P. pulmonaris (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.262 |
P. eryngii (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.123 |
P. ostreatus [14] | - | - | - | - | - | - | - | - | 1.090 | 0.002 |
P. ostreatus [75] | - | - | - | - | - | - | - | - | 1.072 | 0.295 |
P. ostreatus [73] | - | - | - | - | 3.06 | 0.77 | - | - | 1.080 | ND |
P. sajor-caju [75] | - | - | - | - | - | - | - | - | 1.072 | 0.344 |
P. pulmonaris [72] | - | - | - | - | - | - | - | - | 2.170 | 0.060 |
P. lecomtei (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.125 |
P. lecomtei (SSF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.115 |
F. hepatica (SmF) [46] | - | - | - | - | - | - | - | - | 1.072 | 0.043 |
F. hepatica (SSF) [46] | 1.072 | 0.021 | ||||||||
Coriolopsis sp. [76] | 1.072 | 0.023 | ||||||||
Fungi—Ascomycota | ||||||||||
T. longibrachitum [7] | 0.21 | 0.08 | 0.34 | 0.14 | 9.10 | 4.12 | 2.47 | 0.43 | 0.013 | 0.011 |
T. harzianum [77] | - | - | - | - | - | - | - | - | 2.780 | 0.060 |
T. harzianum [77] | - | - | - | - | - | - | - | - | 2.780 | 0.110 |
P. sinensis [77] | - | - | - | - | - | - | - | - | 2.780 | 0.160 |
C. cladosporioides [77] | - | - | - | - | - | - | - | - | 2.780 | 0.220 |
F. chlamydosporum [77] | - | - | - | - | - | - | - | - | 2.780 | 0.280 |
F. chlamydosporum [77] | - | - | - | - | - | - | - | - | 2.780 | 0.300 |
F. chlamydosporum [77] | - | - | - | - | - | - | - | - | 2.780 | 0.390 |
4. Utilization of Detoxified JSC in Animal Feeding
Treatment | Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | AT | BT | AT | BT | AT | BT | AT | BT | AT | |
Fungi—Ascomycota | ||||||||||
Penicillium sp. [7] | 0.21 | 0.08 | 0.34 | 0.15 | 9.10 | 4.32 | 2.47 | 0.53 | 0.013 | 0.011 |
P. micynskii [28] | - | - | - | - | 6.08 | 0.91 | - | - | 0.830 | 0.380 |
P. micynskii [28] | - | - | - | - | 6.08 | 0.62 | - | - | 0.830 | 0.360 |
S. cerevisiae [28] | - | - | - | - | 6.08 | 0.53 | - | - | 0.830 | 0.300 |
A. niger [78] | - | - | - | - | - | - | - | - | 1.400 | ND |
A. niger [7] | 0.21 | 0.07 | 0.34 | 0.08 | 9.10 | 2.70 | 2.47 | 0.13 | 0.013 | 0.003 |
A. niger [11] | - | - | - | - | 6.67 | 5.92 | 2.13 | 0.48 | - | - |
A. niger [28] | - | - | - | - | 6.08 | 0.21 | - | - | 0.830 | 0.250 |
A. versicolor [28] | - | - | - | - | 6.08 | 2.15 | - | - | 0.830 | 0.260 |
A. versicolor [28,79] | 0.70 | 0.01 | 0.31 | 0.03 | 6.08 | 1.70 | - | - | 0.832 | 0.158 |
A. oryzae [28] | - | - | - | - | 6.08 | 0.43 | - | - | 0.830 | 0.350 |
A. terreus [28] | - | - | - | - | 6.08 | 0.48 | - | - | 0.830 | 0.350 |
A. niger+N. sitophila [80] | - | - | - | - | - | - | - | - | 0.007 | 0.002 |
Bacteria | ||||||||||
P. aeruginosa [21] | 0.11 | 0.05 | - | - | 0.07 | 0.29 | 0.10 | 0.10 | 0.887 | 0.796 |
L. acidophilus [72] | 23.30 | 4.20 | 55.41 | 7.35 | 6.50 | 2.75 | 4.50 | 2.40 | - | - |
Bacillus sp. [81] | 1.47 | 0.41 | - | - | 8.80 | 0.39 | - | - | - | - |
Bacillus sp. [81] | 1.47 | 0.16 | - | - | 8.80 | 0.09 | - | - | - | - |
B. subtilis (SmF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.087 |
B. subtilis (SSF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.180 |
B. licheniformis [71] | 23.30 | 0.30 | - | - | 16.10 | 9.20 | - | - | 0.120 | 0.002 |
B. licheniformis [82] | - | - | - | - | - | - | - | - | 0.600 | 0.232 |
B. smithii (SmF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.252 |
B. smithii (SSF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.075 |
B. sonorensis (SmF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.245 |
B. sonorensis (SSF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.150 |
B. coagulans (SmF) [82] | - | - | - | - | - | - | - | - | 0.600 | 0.086 |
M. morganii [50] | - | - | - | - | - | - | - | - | 7.530 | 1.210 |
M. morganii [50] | - | - | - | - | - | - | - | - | 1.720 | 0.190 |
M. morganii [50] | - | - | - | - | - | - | - | - | 7.750 | 0.560 |
Enterobacter sp. [83] | 0.08 | 0.01 | 0.31 | 0.03 | 6.08 | 1.06 | - | - | 1.220 | 0.590 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.H.; Ou, L.; Fu, L.L.; Zheng, S.; Lou, J.D.; Gomes-Laranjo, J.; Li, J.; Zhang, C. Detoxification of Jatropha curcas Kernel Cake by a Novel Streptomyces Fimicarius Strain. J. Hazard. Mater. 2013, 260, 238–246. [Google Scholar] [CrossRef]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Optimization of Conditions for the Extraction of Phorbol Esters from Jatropha Oil. Biomass Bioenergy 2010, 34, 1125–1133. [Google Scholar] [CrossRef]
- Pasha, C.; Balakrishna, K.; Hanumalal, N.; Srinivas, B.; Chandrasekhar, B. Evaluation of Toxins, Antinutrients and Nutrients of Indian Cultivating Varieties of Jatropha curcas. Asian J. Chem. 2013, 25, 1638–1642. [Google Scholar]
- Faria-Machado, A.F.; Licurgo, F.M.S.; Pires, J.M.F.; Campos, R.d.S.; Wilhelm, A.E.; de Souza, M.d.L.M.; Antoniassi, R. Method Validation for Analysis of Phorbol Esters from Jatropha curcas. Ind. Crops Prod. 2019, 140, 111627. [Google Scholar] [CrossRef]
- Abdalla, A.L.; da Silva Filho, J.C.; de Godoi, A.R.; de Almeida Carmo, C.; de Paula Eduardo, J.L. Utilização de subprodutos da indústria de biodiesel na alimentação de ruminantes. Rev. Bras. Zootec. 2008, 37, 260–268. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Carle, R.; Mittelbach, M.; Wink, M.; Martinez Herrera, J.; Kodekalra, R.; Becker, K. Critique on Conclusions Regarding Toxic Compounds in Jatropha curcas Kernel Cake. Commun. Biol. 2021, 4, 1348. [Google Scholar] [CrossRef] [PubMed]
- Belewu, M.A.; Sam, R. Solid State Fermentation of Jatropha curcas Kernel Cake: Proximate Composition and Antinutritional Components. J. Yeast Fungal Res. 2010, 1, 44–46. [Google Scholar]
- Martínez-Herrera, J.; Siddhuraju, P.; Francis, G.; Dávila-Ortíz, G.; Becker, K. Chemical Composition, Toxic/Antimetabolic Constituents, and Effects of Different Treatments on Their Levels, in Four Provenances of Jatropha curcas L. from Mexico. Food Chem. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Rakshit, K.D.; Darukeshwara, J.; Rathina Raj, K.; Narasimhamurthy, K.; Saibaba, P.; Bhagya, S. Toxicity Studies of Detoxified Jatropha Meal (Jatropha curcas) in Rats. Food Chem. Toxicol. 2008, 46, 3621–3625. [Google Scholar] [CrossRef] [PubMed]
- Saetae, D.; Suntornsuk, W. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake. Int. J. Mol. Sci. 2011, 12, 66–77. [Google Scholar] [CrossRef]
- Ameen, O.M.; Belewu, M.A.; Onifade, O.O.; Adetutu, S.O. Chemical Composition of Biologically Treated Jatropha curcas Kernel Cake. Int. J. Sci. Nat. 2011, 2, 757–759. [Google Scholar]
- Azzaz, N.A.E.; El-Nisr, N.A.; Elsharkawy, E.E.; Elmotleb, E.A. Chemical and Pathological Evaluation of Jatropha curcas Seed Meal Toxicity with or without Heat and Chemical Treatment. Aust. J. Basic Appl. Sci. 2011, 5, 49–59. [Google Scholar]
- Makkar, H.P.S. State-of-the-Art on Detoxification of Jatropha curcas Products Aimed for Use as Animal and Fish Feed: A Review. Anim. Feed Sci. Technol. 2016, 222, 87–99. [Google Scholar] [CrossRef]
- Kasuya, M.C.M.; da Luz, J.M.R.; da Silva Pereira, L.P.; da Silva, J.S.; Cuquetto, H.; Teixeira, M. Bio-Detoxification of Jatropha Seed Cake and Its Use in Animal Feed. In Biodiesel—Feedstocks, Production and Applications; InTech: London, UK, 2012; pp. 309–330. ISBN 978-953-51-0910-5. [Google Scholar]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Jatropha Diterpenes: A Review. J. Am. Oil Chem. Soc. 2011, 88, 301–322. [Google Scholar] [CrossRef]
- Pabón, L.C.; Hernández-Rodríguez, P. Importancia Química de Jatropha curcas y Sus Aplicaciones Biológicas, Farmacológicas e Industriales. Rev. Cuba. Plantas Med. 2012, 17, 194–209. [Google Scholar]
- Wink, M.; Grimm, C.; Koschmieder, C.; Sporer, F.; Bergeot, O. Sequestration of Phorbolesters by the Aposematically Coloured Bug Pachycoris Klugii (Heteroptera: Scutelleridae) Feeding on Jatropha curcas (Euphorbiaceae). Chemoecology 2000, 10, 179–184. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Nutritional Studies on Rats and Fish (Carp Cyprinus carpio) Fed Diets Containing Unheated and Heated Jatropha curcas Meal of a Non-Toxic Provenance. Plant Foods Hum. Nutr. 1999, 53, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Becker, K.; Schmook, B. Edible Provenances of Jatropha curcas from Quintana Roo State of Mexico and Effect of Roasting on Antinutrient and Toxic Factors in Seeds. Plant Foods Hum. Nutr. 1998, 52, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ojediran, T.K.; Adisa, Y.A.; Yusuf, S.A.; Emiola, I.A. Nutritional Evaluation of Processed Jatropha curcas Kernel Meals: Effect on Growth Performance of Broiler Chicks. J. Anim. Sci. Adv. 2014, 4, 1110–1121. [Google Scholar] [CrossRef]
- Ghosh, S.; Bitra, V.S.P.; Dasi, D.S.; Godugula, V. Detoxification of Jatropha Kernel Meal to Utilize It as Aqua-Feed. J. Sci. Food Agric. 2021, 101, 5089–5096. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Niu, L.; Wang, X.; Lu, X. Evaluation of Detoxification Methods on Toxic and Antinutritional Composition and Nutritional Quality of Proteins in Jatropha curcas Meal. J. Agric. Food Chem. 2011, 59, 4040–4044. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.M.; Adam, S.E.I. Effects of Jatropha curcas on Calves. Vet. Pathol. 1979, 16, 476–482. [Google Scholar] [CrossRef] [PubMed]
- el Badwi, S.M.; Adam, S.E.; Hapke, H.J. Comparative Toxicity of Ricinus Communis and Jatropha curcas in Brown Hisex Chicks. DTW Dtsch. Tierarztl. Wochenschr. 1995, 102, 75–77. [Google Scholar] [PubMed]
- Chivandi, E.; Erlwanger, K.H.; Makuza, S.M.; Read, J.S.; Mtimuni, J.P. Effects of Dietary Jatropha curcas Meal on Percent Packed Cell Volume, Serum Glucose, Cholesterol and Triglyceride Concentration and Alpha-Amylase Activity of Weaned Fattening Pigs. Res. J. Anim. Vet. Sci. 2006, 1, 18–24. [Google Scholar]
- Makkar, H.P.S.; Aderibigbe, A.O.; Becker, K. Comparative Evaluation of Non-Toxic and Toxic Varieties of Jatropha curcas for Chemical Composition, Digestibility, Protein Degradability and Toxic Factors. Food Chem. 1998, 62, 207–215. [Google Scholar] [CrossRef]
- Aderibigbe, A.O.; Johnson, C.O.L.E.; Makkar, H.P.S.; Becker, K.; Foidl, N. Chemical Composition and Effect of Heat on Organic Matter-and Nitrogen-Degradability and Some Antinutritional Components of Jatropha Meal. Anim. Feed Sci. Tecnhol. 1997, 67, 223–243. [Google Scholar] [CrossRef]
- Sharath, B.S.; Mohankumar, B.V.; Somashekar, D. Bio-Detoxification of Phorbol Esters and Other Anti-Nutrients of Jatropha curcas Seed Cake by Fungal Cultures Using Solid-State Fermentation. Appl. Biochem. Biotechnol. 2014, 172, 2747–2757. [Google Scholar] [CrossRef]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Localisation of Antinutrients and Qualitative Identification of Toxic Components in Jatropha curcas Seed. J. Sci. Food Agric. 2012, 92, 1519–1525. [Google Scholar] [CrossRef]
- Huang, H.; Kwok, K.-C.; Liang, H.-H. Inhibitory Activity and Conformation Changes of Soybean Trypsin Inhibitors Induced by Ultrasound. Ultrason. Sonochem. 2008, 15, 724–730. [Google Scholar] [CrossRef]
- Oskoueian, E.; Oskoueian, A.; Shakeri, M.; Jahromi, M.F. Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production. Vet. Sci. 2021, 8, 179. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Protein Concentrate from Jatropha curcas Screw-Pressed Seed Cake and Toxic and Antinutritional Factors in Protein Concentrate. J. Sci. Food Agric. 2008, 88, 1542–1548. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H. Comparative Evaluation of Jatropha curcas L. Seed Meals Obtained by Different Methods of Defatting on Toxic, Antinutritional and Nutritive Factors. J. Food Sci. Technol. 2014, 51, 1126–1132. [Google Scholar] [CrossRef]
- Aregheore, E.M.; Makkar, H.P.S.; Becker, K. Assessment of Lectin Activity in a Toxic and a Non-Toxic Variety of Jatropha curcas Using Latex Agglutination and Haemagglutination Methods and Inactivation of Lectin by Heat Treatments. J. Sci. Food Agric. 1998, 77, 349–352. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Kumar, V.; Becker, K. Use of Detoxified Jatropha Kernel Meal and Protein Isolate in Diets of Farm Animals; FAO: Rome, Italy, 2012. [Google Scholar]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A Review of Phytic Acid Sources, Obtention, and Applications. Food Rev. Int. 2023, 39, 73–92. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K.; Sporer, F.; Wink, M. Studies on Nutritive Potential and Toxic Constituents of Different Provenances of Jatropha curcas. J. Agric. Food Chem. 1997, 45, 3152–3157. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional Quality of Jatropha curcas Seeds and Effect of Some Physical and Chemical Treatments on Their Anti-Nutritional Factors. Afr. J. Food Sci. 2010, 4, 93–103. [Google Scholar]
- Sanusi, G.O.; Belewu, M.A.; Oduguwa, B.O.; Enujiugha, T.F.; Oluwole, J.Y.T.; Okunlola, A. Changes in Chemical Composition of Jatropha curcas Kernel Cake after Solid-State Fermentation Using Some Selected Fungi. Glob. J. Biol. Agric. Health Sci. 2013, 2, 62–66. [Google Scholar]
- Kannoju, B.; Ganapathiwar, S.; Nunavath, H.; Sunkar, B.; Bhukya, B. Plausible Exploitation of Jatropha De-Oiled Seed Cake for Lipase and Phytase Production and Simultaneous Detoxification by Candida Parapsilosis Isolated from Poultry Garbage. Bioresour. Technol. 2017, 225, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Wakandigara, A.; Nhamo, L.R.M.; Kugara, J. Chemistry of Phorbol Ester Toxicity in Jatropha curcas Seed-A Review. Int. J. Biochem. Res. Rev. 2013, 3, 146–161. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S.; Francis, G.; Becker, K. Phorbol Esters: Structure, Biological Activity, and Toxicity in Animals. Int. J. Toxicol. 2007, 26, 279–288. [Google Scholar] [CrossRef]
- Gomes, T.G.; Hadi, S.I.I.A.; Costa Alves, G.S.; Mendonça, S.; De Siqueira, F.G.; Miller, R.N.G. Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review. J. Agric. Food Chem. 2018, 66, 2510–2522. [Google Scholar] [CrossRef] [PubMed]
- Silinsky, E.M.; Searl, T.J. Phorbol Esters and Neurotransmitter Release: More than Just Protein Kinase C? Br. J. Pharmacol. 2003, 138, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Insanu, M.; Dimaki, C.; Wilkins, R.; Brooker, J.; Van Der Linde, P.; Kayser, O. Rational Use of Jatropha curcas L. in Food and Medicine: From Toxicity Problems to Safe Applications. Phytochem. Rev. 2013, 12, 107–119. [Google Scholar] [CrossRef]
- Cunha, J.R.B. Processo de Destoxificação Da Torta Da Semente de Jatropha curcas L. (Pinhão-Manso) Utilizando Enzimas Extracelulares de Macrofungos. Master’s Thesis (Microbiologia Agrícola), Universidade Federal de Lavras, Lavras, Brazil, 2017. [Google Scholar]
- Gogoi, R.; Niyogi, U.K.; Tyagi, A.K. Reduction of Phorbol Ester Content in Jatropha Cake Using High Energy Gamma Radiation. J. Radiat. Res. Appl. Sci. 2014, 7, 305–309. [Google Scholar] [CrossRef]
- Dimitrijević, S.M.; Humer, U.; Shehadeh, M.; Ryves, W.J.; Hassan, N.M.; Evans, F.J. Analysis and Purification of Phorbol Esters Using Normal Phase HPLC and Photodiode-Array Detection. J. Pharm. Biomed. Anal. 1996, 15, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Brittaine, R.; Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-Poor Development; Integrated Crop Management, Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Volume 8, ISBN 978-92-5-106438-2. [Google Scholar]
- Zhang, X.; Yang, Z.; Liang, J.; Tang, L.; Chen, F. Detoxification of Jatropha curcas Seed Cake in Solid-State Fermentation of Newly Isolated Endophytic Strain and Nutrition Assessment for Its Potential Utilizations. Int. Biodeterior. Biodegrad. 2016, 109, 202–210. [Google Scholar] [CrossRef]
- Barros, C.; Rodrigues, M.; Nunes, F.; Kasuya, M.; da Luz, J.; Alves, A.; Ferreira, L.; Pinheiro, V.; Mourão, J. The Effect of Jatropha curcas Seed Meal on Growth Performance and Internal Organs Development and Lesions in Broiler Chickens. Braz. J. Poult. Sci. 2015. [Google Scholar] [CrossRef]
- Yu, M.; Saga, K.; Imou, K.; Hasegawa, F.; Kaizu, Y.; Tosa, K.; Kato, S. Solid Fuel Production from Jatropha Oil Cake by Heat-Press Treatment. Eng. Agric. Environ. Food 2016, 9, 15–20. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Badr, M.M.; Khalil, S.R.; El-Kholy, M.S. An Overview of Jatropha curcas Meal-Induced Productive and Reproductive Toxicity in Japanese Quail: Potential Mechanisms and Heat Detoxification. Theriogenology 2018, 113, 208–220. [Google Scholar] [CrossRef]
- Aregheore, E.M.; Becker, K.; Makkar, H.P.S. Detoxification of a Toxic Variety of Jatropha curcas Using Heat and Chemical Treatments, and Preliminary Nutritional Evaluation with Rats. S. Pac. J. Nat. Sci. 2003, 21, 50–56. [Google Scholar] [CrossRef]
- Makkar, H.; Maes, J.; De Greyt, W.; Becker, K. Removal and Degradation of Phorbol Esters during Pre-Treatment and Transesterification of Jatropha curcas Oil. J. Am. Oil Chem. Soc. 2009, 86, 173–181. [Google Scholar] [CrossRef]
- El Diwani, G.I.; El Rafei, S.A.; Hawash, S.I. Ozone for Phorbol Esters Removal from Egyptian Jatropha Oil Seed Cake. Pelagia Res. Libr. 2011, 2, 221–232. [Google Scholar]
- Xiao, J.; Mao, X.; Zhang, H.; Niu, L. Detoxification of Jatropha curcas Oil by Ultraviolet Irradiation Combined with Ethanol Washing. Grasas Aceites 2015, 66, e063. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.; Mahmoud, M.H.; Ahmed, D.M.M.; Abu-Salem, F.M. Comparative Study between Chemical, Physical and Enzymatic Methods for Jatropha curcas Kernel Meal Phorbol Ester Detoxification. Heliyon 2019, 5, e01689. [Google Scholar] [CrossRef] [PubMed]
- Saetae, D.; Suntornsuk, W. Antifungal Activities of Ethanolic Extract from Jatropha curcas Seed Cake. J. Microbiol. Biotecnhol. 2010, 20, 319–324. [Google Scholar] [CrossRef]
- Moura, L.T.S.; Souza, D.P.M.; Mendonça, S.; Ribeiro, J.A.D.A.; Sousa, L.; Ramos, A.T.; Maiorka, P.C.; De Araújo, V.L.; Maruo, V.M. Histopathological and Reproductive Evaluation in Male Rats Fed Jatropha curcas Seed Cake with or without Alkaline Hydrolysis and Subjected to Heat Treatment. BioMed Res. Int. 2017, 2017, 6123408. [Google Scholar] [CrossRef] [PubMed]
- Nokkaew, R.; Punsuvon, V. Multistage Solvent Extraction for High Yield Oil and Phorbol Esters Removal from Thai Toxic Jatropha curcas Meal. Walailak J. Sci. Tecnhol. 2015, 12, 299–310. [Google Scholar]
- Guedes, R.E.; Cruz, F.d.A.; de Lima, M.C.; Sant’Ana, L.D.O.; Castro, R.N.; Mendes, M.F. Detoxification of Jatropha curcas Seed Cake Using Chemical Treatment: Analysis with a Central Composite Rotatable Design. Ind. Crop. Prod. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Elangovan, A.V.; Gowda, N.K.S.; Satyanarayana, M.L.; Suganthi, R.U.; Rao, S.B.N.; Sridhar, M. Jatropha (Jatropha curcas) Seed Cake as a Feed Ingredient in the Ratios of Sheep. Anim. Nutr. Feed Tecchnol. 2013, 13, 57–67. [Google Scholar]
- Souza, J.G.; Olini, L.M.G.; Araujo, C.V.; Mendonça, S.; Zervoudakis, J.T.; Cabral, L.S.; Ogunade, I.M.; Oliveira, A.S. Performance, Hepatic Function and Efficiency of Nutrient Utilisation of Grazing Dairy Cows Supplemented with Alkaline-Treated Jatropha curcas L. Meal. Anim. Prod. Sci. 2017, 58, 2280–2287. [Google Scholar] [CrossRef]
- Gaur, S. Development and Evaluation of an Effective Process for the Recovery of Oil and Detoxification of Meal from Jatropha curcas. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2009. [Google Scholar]
- Harter, T.; Buhrke, F.; Kumar, V.; Focken, U.; Makkar, H.P.S.; Becker, K. Substitution of Fish Meal by Jatropha curcas Kernel Meal: Effects on Growth Performance and Body Composition of White Leg Shrimp (Litopenaeus vannamei). Aquac. Nutr. 2011, 17, 542–548. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Nutritional, Physiological and Haematological Responses in Rainbow Trout (Oncorhynchus mykiss) Juveniles Fed Detoxified Jatropha curcas Kernel Meal: Nutritional, Physiological and Haematological Responses in O. Mykiss. Aquac. Nutr. 2011, 17, 451–467. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Zhao, Y.; Liu, H.; Liu, J.; Makkar, H.P.S.; Becker, K. Effects of Replacing Soybean Meal by Detoxified Jatropha curcas Kernel Meal in the Diet of Growing Pigs on Their Growth, Serum Biochemical Parameters and Visceral Organs. Anim. Feed Sci. Technol. 2011, 170, 141–146. [Google Scholar] [CrossRef]
- Chivandi, E.; Mtimuni, J.; Read, J.; Makuza, S. Effect of Processing Method on Phorbol Esters Concentration, Total Phenolics, Trypsin Inhibitor Activity and the Proximate Composition of the Zimbabwean Jatropha curcas Provenance: A Potential Livestock Feed. Pak. J. Biol. Sci. 2004, 7, 1001–1005. [Google Scholar] [CrossRef]
- Belewu, M. Replacement of Fungus Treated Jatropha Kernel Meal for Soybean Meal in the Diet of Rats. Green Farming 2008, 2, 154–157. [Google Scholar]
- Phengnuam, T.; Suntornsuk, W. Detoxification and Anti-Nutrients Reduction of Jatropha curcas Seed Cake by Bacillus Fermentation. J. Biosci. Bioeng. 2013, 115, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Abo El-Fadel, M.H.; Hussein, A.M.; Mohamed, A.H. Incorporation Jatropha curcas Meal on Lambs Ration and It’s Effect on Lambs Performance. J. Am. Sci. 2011, 7, 129–132. [Google Scholar]
- da Luz, J.M.R.; Nunes, M.D.; Paes, S.A.; Torres, D.P.; Kasuya, M.C.M. Bio-Detoxification of Jatropha curcas Seed Cake by Pleurotus Ostreatus. Afr. J. Microbiol. Res. 2014, 8, 1148–1156. [Google Scholar] [CrossRef]
- de Barros, C.R.M.; Ferreira, L.M.M.; Nunes, F.M.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.V.; Cone, J.W.; Marques, G.S.M.; Rodrigues, M.A.M. The Potential of White-Rot Fungi to Degrade Phorbol Esters of Jatropha curcas L. Seed Cake. Eng. Life Sci. 2011, 11, 107–110. [Google Scholar] [CrossRef]
- Bose, A.; Keharia, H. Phorbol Ester Degradation in Jatropha Seed Cake Using White Rot Fungi. 3 Biotech 2014, 4, 447–450. [Google Scholar] [CrossRef]
- Cunha, J.R.B.; Wischral, D.; Pelaez, R.D.R.; de Jesus, M.A.; Sales-Campos, C.; Campanha, R.B.; Mendes, T.D.; Mendonça, S.; Dias, E.S.; de Siqueira, F.G. Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes. Microorganisms 2022, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Najjar, A.; Abdullah, N.; Saad, W.Z.; Ahmad, S.; Oskoueian, E.; Abas, F.; Gherbawy, Y. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma Spp. and Endophytic Fungi. Int. J. Mol. Sci. 2014, 15, 2274–2288. [Google Scholar] [CrossRef] [PubMed]
- Shamna, N.; Sardar, P.; Sahu, N.P.; Pal, A.K.; Jain, K.K.; Phulia, V. Nutritional Evaluation of Fermented Jatropha Protein Concentrate in Labeo Rohita Fingerlings. Aquac. Nutr. 2015, 21, 33–42. [Google Scholar] [CrossRef]
- Veerabhadrappa, M.B.; Shivakumar, S.B.; Devappa, S. Solid-State Fermentation of Jatropha Seed Cake for Optimization of Lipase, Protease and Detoxification of Anti-Nutrients in Jatropha Seed Cake Using Aspergillus Versicolor CJS-98. J. Biosci. Bioeng. 2014, 117, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Kurniati, T. Detoxification through Fermentation by Consortium of Aspergillus Niger and Neurospora Sitophila towards the Degree of Forbol Esther and Nutrition Value of Jatropha curcas L. for Broiler’s Feed. J. Asian Sci. Res. 2012, 2, 317–324. [Google Scholar]
- Okomoda, V.T.; Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Oladimeji, A.S.; Hassan, A.; Alabi, K.I.; Abol-Munafi, A.B. Fermentation of Hydrothermal Processed Jatropha curcas Kernel: Effects on the Performance of Clarias Gariepinus (Burchell, 1822) Fingerlings. Aquac. Rep. 2020, 18, 100428. [Google Scholar] [CrossRef]
- Chang, C.-F.; Weng, J.-H.; Lin, K.-Y.; Liu, L.-Y.; Yang, S.-S. Phorbol Esters Degradation and Enzyme Production by Bacillus Using Jatropha Seed Cake as Substrate. Int. J. Environ. Pollut. Remediat. 2014, 2, 30–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, H.; Wu, Y.; Makkar, H.P.; Liu, J. Nutritional Value of Detoxified Jatropha curcas Seed Cake Protein Isolates Using Rats as an Animal Model. Anim. Nutr. 2018, 4, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Agboola, A.F. Assessment of Some Serum Biochemical and Haematological Parameters in Blood Samples of Japanese Quails Fed Detoxified Jatropha Seed Cake. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12614–12627. [Google Scholar] [CrossRef]
- Attia, Y.A.; Farag, M.R.; Al-Harthi, M.A.; Bovera, F.; Alqurashi, A.D.; Di Cerbo, A.; Alagawany, M. Heat Detoxification of Jatropha Cucas Meal and Its Effect on Productive and Reproductive Performance of Quail. Poult. Sci. 2023, 102, 103072. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; El-Sayed, S.A.A.; Fowler, J. Influence of Dietary Inclusion of Untreated or Heat-Treated Jatropha Meal on Productive and Reproductive Performances and Biochemical Blood Parameters of Laying Japanese Quail. Poult. Sci. 2017, 96, 2761–2767. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Detoxified Jatropha curcas Kernel Meal as a Dietary Protein Source: Growth Performance, Nutrient Utilization and Digestive Enzymes in Common Carp (Cyprinus carpio L.) Fingerlings. Aquac. Nutr. 2011, 17, 313–326. [Google Scholar] [CrossRef]
- Nesseim, T.D.T.; Dieng, A.; Mergeai, G.; Hornick, J.L. Effects of Deffating Combined or Not to Heating of Jatropha curcas Kernel Meal on Feed Intake and Growth Performance in Broiler Chickens and Chicks in Senegal. Tropicultura 2017, 35, 149–157. [Google Scholar]
- Li, Y.; Chen, L.; Lin, Y.; Fang, Z.F.; Che, L.Q.; Xu, S.Y.; Wu, D. Effects of Replacing Soybean Meal with Detoxified Jatropha curcas Kernel Meal in the Diet on Growth Performance and Histopathological Parameters of Growing Pigs. Anim. Feed Sci. Technol. 2015, 204, 18–27. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhang, Y.; Wu, J.; Lin, Y.; Fang, Z.; Che, L.; Xu, S.; Wu, D. Substitution of Soybean Meal with Detoxified Jatropha curcas Kernel Meal: Effects on Performance, Nutrient Utilization, and Meat Edibility of Growing Pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Flora, M.A.L.D.; da Silva Cardoso, A.J.; Hisano, H. Growth, Metabolism and Digestibility of Nile Tilapia Fed Diets with Solvent and Extrusion-Treated Jatropha curcas Cake. Vet. Res. Commun. 2023, 47, 1273–1283. [Google Scholar] [CrossRef]
- Gomes, T.G.; Isa Abdel Hadi, S.I.; Antônio de Aquino Ribeiro, J.; Segatto, R.; Mendes, T.D.; Helm, C.V.; Chagas Júnior, A.F.; Gerard Miller, R.N.; Mendonça, S.; Gonçalves de Siqueira, F. Phorbol Ester Biodegradation in Jatropha curcas Cake and Potential as a Substrate for Enzyme and Pleurotus Pulmonarius Edible Mushroom Production. Biocatal. Agric. Biotechnol. 2022, 45, 102498. [Google Scholar] [CrossRef]
- Belewu, M.; Belewu, K.; Ogunsola, F.O. Nutritive Value of Dietary Fungi Treated Jatropha curcas Kernel Cake: Voluntary Intake, Growth and Digestibility Coefficient of Goat. Agric. Biol. J. N. Am. 2010, 1, 135–138. [Google Scholar]
- Belewu, M.; Ahmed, O.; Ibrahim, S. Solid State Fermentation of Jatropha curcas Kernel Cake with Cocktail of Fungi. Int. J. Biosci. 2011, 1, 12–19. [Google Scholar]
- Okukpe, K.M.; Belewu, M.; Adeyemi, K.; Alli, O.I. Performance Characteristics of West African Dwarf Goats Fed Trichoderma Treated Jatropha curcas Seed Cake. Agrosearch 2012, 12, 69–76. [Google Scholar] [CrossRef]
- Ojediran, T.K.; Ogunmola, B.T.; Ajayi, A.O.; Adepoju, M.A.; Odelade, K.; Emiola, I.A. Nutritive Value of Processed Dietary Fungi Treated Jatropha curcas L. Kernel Meals: Voluntary Intake, Growth, Organ Weight and Hepatic Histology of Broiler Chicks. Trop. Agric. Trinidad 2016, 93, 101–110. [Google Scholar]
- Nesseim, T.D.T.; Benteboula, M.; Dieng, A.; Mergeai, G.; Marechal, F.; Hornick, J.L. Effects of Partial Dietary Substitution of Groundnut Meal by Defatted, Aspergillus Niger–Fermented and Heated Jatropha curcas Kernel Meal on Feed Intake and Growth Performance of Broiler Chicks. Trop. Anim. Health Prod. 2019, 51, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | Reference |
---|---|---|---|---|---|
15.10 | 25.60 | 9.20 | 2.20 | 0.020 | [19] |
22.69 | 0.05 | 8.63 | 2.18 | 0.027 | [20] |
0.16 | 0.43 | 0.52 | 0.03 | 0.199 | [21] |
3.15 | 3.43 | 10.04 | 2.67 | 2.880 | [22] |
0.20 | 0.52 | 0.82 | 0.10 | 0.959 | [21] |
34.00 | 0.71 | 8.55 | 2.55 | 3.850 | [8] |
0.21 | 0.34 | 9.10 | 2.47 | 0.013 | [10] |
Treatment | Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | AT | BT | AT | BT | AT | BT | AT | BT | AT | |
Heat | ||||||||||
Dry heat [19] | 14.60 | ND | 25.60 | 12.80 | 9.30 | 10.70 | 2.30 | 1.90 | ND | ND |
Dry heat [19] | 15.10 | ND | 25.60 | 12.80 | 9.20 | 9.60 | 2.20 | 2.30 | 0.020 | 0.010 |
Dry heat [20] | 22.69 | 0.65 | 0.05 | ND | 8.63 | 2.46 | 2.18 | 1.74 | 0.027 | 0.013 |
Dry heat [20] | 22.69 | 0.00 | 0.05 | ND | 8.63 | 1.84 | 2.18 | 1.24 | 0.027 | 0.010 |
Dry heat [53] | - | - | - | - | - | - | - | - | 0.350 | 0.068 |
Moist heat [54] | - | - | 102 | 1.17 | - | - | - | - | 1.780 | 1.780 |
Moist heat [12] | 18.89 | 0.65 | - | - | - | - | 3.50 | 3.33 | - | - |
Heat + Pressure | ||||||||||
3 mbar [55] | - | - | - | - | - | - | - | - | 3.770 | ND |
1.91 × 105 mbar [52] | - | - | - | - | - | - | - | - | 0.378 | ND |
Ionizing radiation | ||||||||||
50 kGy [56] | - | - | - | - | - | - | - | - | 0.377 | 0.269 |
50 kGy [47] | - | - | - | - | - | - | - | - | 0.290 | 0.041 |
125 kGy [47] | - | - | - | - | - | - | - | - | 0.290 | 0.011 |
UV radiation [21] | 0.16 | 0.14 | 0.43 | 0.26 | 0.52 | 0.05 | 0.03 | 0.02 | 0.199 | 0.016 |
UV radiation [57] | - | - | - | - | - | - | - | - | 3.090 | 2.180 |
Microwave [58] | - | - | - | - | - | - | - | - | 7.660 | 1.050 |
Ultrasonic [58] | - | - | - | - | - | - | - | - | 7.660 | 0.950 |
Microwave and ultrasonic [58] | - | - | - | - | - | - | - | - | 7.660 | 0.890 |
Treatment | Trypsin Inhibitors 1 | Lectins 2 | Phytate 3 | Saponins 4 | Phorbol Esters 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | AT | BT | AT | BT | AT | BT | AT | BT | AT | |
Methanol | ||||||||||
50% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.080 |
70% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.270 |
90% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.360 |
90% [22] | 3.15 | 3.09 | 3.43 | 1.46 | 10.04 | 7.28 | 2.67 | 1.58 | 2.880 | 0.980 |
99.5% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.470 |
Ethanol | ||||||||||
50% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.090 |
70% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.200 |
85% [58] | - | - | - | - | - | - | - | - | 7.660 | 0.140 |
90% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.430 |
90% [22] | 3.15 | 3.12 | 3.43 | 1.62 | 10.04 | 8.83 | 2.67 | 1.46 | 2.880 | 1.160 |
92% [60] | - | - | - | - | - | - | - | - | 1.010 | 0.860 |
95% [59] | - | - | - | - | - | - | - | - | 0.210 | 0.350 |
Ethanol [61] | - | - | - | - | - | - | - | - | 0.656 | 0.023 |
Methanol/ethanol | ||||||||||
(50:50) [58] | - | - | - | - | - | - | - | - | 7.660 | 0.350 |
(50:50) [62] | - | - | - | - | - | - | - | - | 3.600 | 0.100 |
Alkaline treatments | ||||||||||
NaHCO3 [63] | - | - | 70 | ND | - | - | - | - | 1.290 | 0.956 |
Ca(OH)3 [63] | - | - | 70 | ND | - | - | - | - | 1.290 | 1.285 |
NaOH [63] | - | - | 70 | ND | - | - | - | - | 1.290 | 1.065 |
NaOH [64] | - | - | ND | ND | - | - | - | - | 0.449 | 0.145 |
Urea [63] | - | - | 70 | ND | - | - | - | - | 1.290 | 1.249 |
Alkaline hydrolysis + ethanol [60] | - | - | - | - | - | - | - | - | 1.010 | 0.020 |
Mix treatments | ||||||||||
Methanol + NaOH [21] | 0.20 | 0.10 | 0.52 | 0.90 | 0.82 | 0.84 | 0.10 | 0.10 | 0.959 | 0.860 |
Methanol + NaOH [12] | 18.89 | 0.82 | - | - | 11.25 | 11.24 | 3.50 | 3.04 | - | - |
NaOH + methanol [58] | - | - | - | - | - | - | - | - | 7.660 | 0.150 |
Hexane + methanol [65] | - | - | - | - | - | - | - | - | 6.050 | 2.100 |
Combined methods | ||||||||||
Methanol + dry heat [54] | - | - | 102 | ND | - | - | - | - | 1.780 | 0.090 |
Methanol + NaOH + dry heat [66] | ND | ND | ND | ND | - | - | - | - | 1.800 | ND |
Methanol + NaOH + dry heat [67] | ND | ND | ND | ND | - | - | - | - | 1.800 | ND |
Ethanol + NaHCO3 + dry heat [8] | 34.00 | 0.57 | 0.71 | 0.04 | 8.55 | 12.00 | 2.55 | 1.07 | 3.850 | 0.080 |
Methanol + NaOH + moist heat [68] | - | - | - | - | - | - | - | - | 0.980 | ND |
Hexane + ethanol + moist heat [69] | 0.22 | ND | - | - | - | - | - | - | 0.700 | 0.800 |
Hexane + ethanol + moist heat [70] | - | - | - | - | - | - | - | - | 0.580 | 0.023 |
NaOH + dry heat [12] | 18.89 | 0.75 | - | - | 11.25 | 10.56 | 3.50 | 3.15 | - | - |
NaHCO3 + dry heat [8] | 34.00 | 0.66 | 0.71 | 0.09 | 8.55 | 8.92 | 2.85 | 3.00 | 3.850 | 0.950 |
NaHCO3 + moist heat [12] | 11.89 | 1.33 | - | - | 11.25 | 11.25 | 3.50 | 1.75 | - | - |
NaHCO3 + 10 kGy [8] | 34.00 | 34.30 | 0.71 | 1.15 | 8.55 | 6.04 | 2.85 | 1.72 | 3.850 | 3.160 |
NaHCO3 + air bubbling [56] | - | - | - | - | - | - | - | - | 0.377 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Barros, C.R.; Ferreira, L.M.M.; Fraga, I.; Mourão, J.L.; Rodrigues, M.A.M. Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed. Fermentation 2024, 10, 256. https://doi.org/10.3390/fermentation10050256
de Barros CR, Ferreira LMM, Fraga I, Mourão JL, Rodrigues MAM. Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed. Fermentation. 2024; 10(5):256. https://doi.org/10.3390/fermentation10050256
Chicago/Turabian Stylede Barros, Cândida Rita, Luís Miguel Mendes Ferreira, Irene Fraga, José Luís Mourão, and Miguel António Machado Rodrigues. 2024. "Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed" Fermentation 10, no. 5: 256. https://doi.org/10.3390/fermentation10050256
APA Stylede Barros, C. R., Ferreira, L. M. M., Fraga, I., Mourão, J. L., & Rodrigues, M. A. M. (2024). Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed. Fermentation, 10(5), 256. https://doi.org/10.3390/fermentation10050256