Optimized Feeding Strategies for Biosurfactant Production from Acetate by Alcanivorax borkumensis SK2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Medium
2.2. Cultivation Conditions
2.2.1. Pre-Culture
2.2.2. Transfer Rate Online Measurement Cultivation
2.2.3. Offline Shake Flask Cultivation
2.3. Stirred-Tank Bioreactor Conditions
2.3.1. Bubble-Free Stirred-Tank Bioreactor with In Situ Static Membrane Module
2.3.2. DO-Based Fed-Batch Fermentation
2.3.3. pH-Stat Fed-Batch Fermentation with Glacial Acetic Acid
2.4. Analytics
2.4.1. Optical Density
2.4.2. Cell Dry Weight
2.4.3. Ammonium Quantification
2.4.4. Acetate Quantification via HPLC
2.4.5. Urea Quantification via HPLC
2.4.6. Glycolipid Extraction and Purification
2.4.7. Glycolipid Quantification via HPLC
2.5. Checkerboard Growth Inhibition and Survival Assay
3. Results
3.1. Fed-Batch Fermentation Increases Glycolipid Titers
3.1.1. DO-Based Fed-Batch—A Working Process with Bubble Aeration
3.1.2. Membrane Aeration Sustains Foam-Free Fermentation but with Performance Losses
3.2. Changing the Nitrogen Sources Leads to Improved Glycolipid Production
3.2.1. A Promising Nitrogen Source—Urea
3.2.2. Urea in DO-Based Fed-Batch Improves Glycolipid Production
3.3. Alteration in Nitrogen Availability Leads to Improved Glycolipid Production
3.3.1. Increasing C/N Ratio Enhances Glycolipid Production
3.3.2. A Higher C/N Ratio in the Feed Increases Glycolipid Amount but Leads to Acetate Accumulation
3.3.3. Two-Stage Feed Strategy Eliminates Acetate Accumulation
3.3.4. Too High C/N Ratio Leads to Acetate Accumulation Even with the Two-Stage Feed Strategy
3.4. pH-Stat Fed-Batch Fermentation for Optimized Glycolipid Production
3.4.1. pH-Stat Fed-Batch Process—A Highly Optimized Process with Bubble Aeration
3.4.2. Membrane Aeration in pH-Stat Fed-Batch Sustains Foam-Free Fermentation without Performance Loss
3.5. Assessment of Glycine-Glucolipid Bioactivity against Pathogenic Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
µmax | maximal growth rate in h−1 |
C/N-ratio | carbon-to-nitrogen ratio in Cmol Nmol−1 |
CTR | carbon dioxide transfer rate in mmol L−1 h−1 |
DO | dissolved oxygen in % |
Fgas | gas flow in L h−1 |
N | stirring rate in min−1 |
OTR | oxygen transfer rate in mmol L−1 h−1 |
qs | specific substrate uptake rate in g g−1 h−1 |
RQ | respiratory quotient |
rs | volumetric substrate uptake rate in g L−1 h−1 |
STY | space-time yield in mg L−1 h−1 |
TMP | transmembrane pressure in bar |
VL | reactor filling volume in L |
XO2 | oxygen proportion in the supply gas in % |
YP/S | product-to-substrate yield in g g−1 |
YP/X | product-to-biomass yield in g g−1 |
YX/S | biomass-to-substrate yield in g g−1 |
References
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, S.; Bollinger, A.; Katzke, N.; Jaeger, K.-E.; Loeschcke, A.; Thies, S. Marine biosurfactants: Biosynthesis, structural diversity and biotechnological applications. Mar. Drugs 2019, 17, 408. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Schlebusch, I.; Pott, R.W.M.; Tadie, M. The ion flotation of copper, nickel, and cobalt using the biosurfactant surfactin. Discov. Chem. Eng. 2023, 3, 7. [Google Scholar] [CrossRef]
- Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 1998, 4, 551–560. [Google Scholar] [CrossRef]
- Tripathi, L.; Irorere, V.U.; Marchant, R.; Banat, I.M. Marine derived biosurfactants: A vast potential future resource. Biotechnol. Lett. 2018, 40, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Johann, S.; Seiler, T.-B.; Tiso, T.; Bluhm, K.; Blank, L.M.; Hollert, H. Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci. Total Environ. 2016, 548–549, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Poremba, K.; Gunkel, W.; Lang, S.; Wagner, F. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ. Toxicol. Water Qual. 1991, 6, 157–163. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef]
- Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011, 14, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Patiño, A.D.; Montoya-Giraldo, M.; Quintero, M.; López-Parra, L.L.; Blandón, L.M.; Gómez-León, J. Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Sci. Rep. 2021, 11, 16286. [Google Scholar] [CrossRef] [PubMed]
- Joshi-Navare, K.; Prabhune, A. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res. Int. 2013, 2013, 512495. [Google Scholar] [CrossRef] [PubMed]
- Lydon, H.L.; Baccile, N.; Callaghan, B.; Marchant, R.; Mitchell, C.A.; Banat, I.M. Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrob. Agents Chemother. 2017, 61, e02547-16. [Google Scholar] [CrossRef] [PubMed]
- Schneiker, S.; dos Santos, V.A.M.; Bartels, D.; Bekel, T.; Brecht, M.; Buhrmester, J.; Chernikova, T.N.; Denaro, R.; Ferrer, M.; Gertler, C.; et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 2006, 24, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, M.M.; Golyshin, P.N.; Lang, S.; Moore, E.R.B.; Abraham, W.; Lunsdorf, H.; Timmis, K.N. Alcanivorax borkurmensis gen. now, sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 1998, 48, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Passeri, A.; Schmidt, M.; Haffner, T.; Wray, V.; Lang, S.; Wagner, F. Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl. Microbiol. Biotechnol. 1992, 37, 281–286. [Google Scholar] [CrossRef]
- Abraham, W.-R.; Meyer, H.; Yakimov, M. Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim. Biophys. Acta—Lipids Lipid Metab. 1998, 1393, 57–62. [Google Scholar] [CrossRef]
- Karmainski, T.; Dielentheis-Frenken, M.R.E.; Lipa, M.K.; Phan, A.N.T.; Blank, L.M.; Tiso, T. High-quality physiology of Alcanivorax borkumensis SK2 producing glycolipids enables efficient stirred-tank bioreactor cultivation. Front. Bioeng. Biotechnol. 2023, 11, 1325019. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Stöveken, T.; Malkus, U.; Reichelt, R.; Golyshin, P.N.; Sabirova, J.S.; Ferrer, M.; Timmis, K.N.; Steinbüchel, A. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J. Bacteriol. 2007, 189, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Manilla-Pérez, E.; Lange, A.B.; Luftmann, H.; Robenek, H.; Steinbüchel, A. Neutral lipid production in Alcanivorax borkumensis SK2 and other marine hydrocarbonoclastic bacteria. Eur. J. Lipid Sci. Technol. 2011, 113, 8–17. [Google Scholar] [CrossRef]
- Sabirova, J.S.; Ferrer, M.; Lünsdorf, H.; Wray, V.; Kalscheuer, R.; Steinbüchel, A.; Timmis, K.N.; Golyshin, P.N. Mutation in a “tesB-Like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 2006, 188, 8452–8459. [Google Scholar] [CrossRef] [PubMed]
- Manilla-Pérez, E.; Reers, C.; Baumgart, M.; Hetzler, S.; Reichelt, R.; Malkus, U.; Kalscheuer, R.; Wältermann, M.; Steinbüchel, A. Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: Identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J. Bacteriol. 2010, 192, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Dai, W.; Mao, Y.; Cui, Z.; Zhang, Z.; Wang, Z.; Ma, H.; Chen, T. Enhanced 3-hydroxypropionic acid production from acetate via the Malonyl-CoA pathway in Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 2022, 9, 808258. [Google Scholar] [CrossRef] [PubMed]
- Lipphardt, A.; Karmainski, T.; Blank, L.M.; Hayen, H.; Tiso, T. Identification and quantification of biosurfactants produced by the marine bacterium Alcanivorax borkumensis by hyphenated techniques. Anal. Bioanal. Chem. 2023, 415, 7067–7084. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Hölzl, G.; Karmainski, T.; Tiso, T.; Kubicki, S.; Thies, S.; Blank, L.M.; Jaeger, K.-E.; Dörmann, P. The glycine-glucolipid of Alcanivorax borkumensis is resident to the bacterial cell wall. Appl. Environ. Microbiol. 2022, 88, e01126-22. [Google Scholar] [CrossRef] [PubMed]
- Naether, D.J.; Slawtschew, S.; Stasik, S.; Engel, M.; Olzog, M.; Wick, L.Y.; Timmis, K.N.; Heipieper, H.J. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: A physiological and transcriptomic approach. Appl. Environ. Microbiol. 2013, 79, 4282–4293. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Bothun, G.D.; Bose, A. Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 2018, 34, 5352–5357. [Google Scholar] [CrossRef] [PubMed]
- Godfrin, M.P.; Sihlabela, M.; Bose, A.; Tripathi, A. Behavior of marine bacteria in clean environment and oil spill conditions. Langmuir 2018, 34, 9047–9053. [Google Scholar] [CrossRef] [PubMed]
- Rajpurohit, H.; Eiteman, M.A. Nutrient-limited operational strategies for the microbial production of biochemicals. Microorganisms 2022, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Saikia, R.R.; Deka, S.; Deka, M.; Banat, I.M. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 2012, 62, 753–763. [Google Scholar] [CrossRef]
- Moussa, T.A.A.; Mohamed, M.S.; Samak, N. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 2014, 31, 867–880. [Google Scholar] [CrossRef]
- Santos, A.S.; Sampaio, A.P.W.; Vasquez, G.S.; Anna, L.M.S.; Pereira, N.; Freire, D.M.G. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. In Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 2002; Volume 223, pp. 1025–1035. [Google Scholar] [CrossRef]
- Vennestrøm, P.N.R.; Osmundsen, C.M.; Christensen, C.H.; Taarning, E. Beyond petrochemicals: The renewable chemicals industry. Angew. Chem. Int. Ed. 2011, 50, 10502–10509. [Google Scholar] [CrossRef] [PubMed]
- Wendisch, V.F.; Brito, L.F.; Gil Lopez, M.; Hennig, G.; Pfeifenschneider, J.; Sgobba, E.; Veldmann, K.H. The flexible feedstock concept in industrial biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J. Biotechnol. 2016, 234, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, D.; Merkel, M.; Lilge, L.; Henkel, M.; Hausmann, R. From acetate to bio-based products: Underexploited potential for industrial biotechnology. Trends Biotechnol. 2021, 39, 397–411. [Google Scholar] [CrossRef]
- Lee, J.; Cha, S.; Kang, C.; Lee, G.; Lim, H.; Jung, G. Efficient conversion of acetate to 3-hydroxypropionic acid by engineered Escherichia coli. Catalysts 2018, 8, 525. [Google Scholar] [CrossRef]
- Kim, Y.; Lama, S.; Agrawal, D.; Kumar, V.; Park, S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol. Adv. 2021, 49, 107736. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, P.-L.; Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 2015, 6, 134494. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Rozendal, R.A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706–716. [Google Scholar] [CrossRef]
- Cai, C.; Shi, Y.; Guo, J.; Tyson, G.W.; Hu, S.; Yuan, Z. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 2019, 53, 7371–7379. [Google Scholar] [CrossRef]
- Kell, D.B. The transporter-mediated cellular uptake and efflux of pharmaceutical drugs and biotechnology products: How and why phospholipid bilayer transport is negligible in real biomembranes. Molecules 2021, 26, 5629. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, H. The role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 1966, 99, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, D.; Merkel, M.; Lilge, L.; Hausmann, R.; Henkel, M. High cell density cultivation of Corynebacterium glutamicum on bio-based lignocellulosic acetate using pH-coupled online feeding control. Bioresour. Technol. 2021, 340, 125666. [Google Scholar] [CrossRef] [PubMed]
- Merkel, M.; Kiefer, D.; Schmollack, M.; Blombach, B.; Lilge, L.; Henkel, M.; Hausmann, R. Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control. Bioresour. Technol. 2022, 351, 126994. [Google Scholar] [CrossRef] [PubMed]
- Axe, D.D.; Bailey, J.E. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 1995, 47, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.J.; McLaggan, D.; Davidson, I.; O’Byrne, C.; Booth, I.R. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J. Bacteriol. 1998, 180, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Leone, S.; Sannino, F.; Tutino, M.L.; Parrilli, E.; Picone, D. Acetate: Friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microb. Cell Fact. 2015, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Bai, C.; Liu, Y.; Song, L.; Tian, L.; Yan, Y.; Zhou, J.; Zhou, X.; Zhang, Y.; Cai, M. Modulation of acetate utilization in Komagataella phaffii by metabolic engineering of tolerance and metabolism. Biotechnol. Biofuels 2019, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Zhao, X.-Q.; Cheng, C.; Bai, F.-W. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol. J. 2015, 10, 1903–1911. [Google Scholar] [CrossRef]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with low pH: Molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef]
- Schmollack, M.; Werner, F.; Huber, J.; Kiefer, D.; Merkel, M.; Hausmann, R.; Siebert, D.; Blombach, B. Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production. Biotechnol. Biofuels Bioprod. 2022, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.; Henkel, M.; Wanger, J.; Wittgens, A.; Rosenau, F.; Hausmann, R. Heterologous rhamnolipid biosynthesis by P. putida KT2440 on bio-oil derived small organic acids and fractions. AMB Express 2019, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Tiso, T.; Demling, P.; Karmainski, T.; Oraby, A.; Eiken, J.; Liu, L.; Bongartz, P.; Wessling, M.; Desmond, P.; Schmitz, S.; et al. Foam control in biotechnological processes—Challenges and opportunities. Discov. Chem. Eng. 2024, 4, 2. [Google Scholar] [CrossRef]
- Vardar-Sukan, F. Foaming: Consequences, prevention and destruction. Biotechnol. Adv. 1998, 16, 913–948. [Google Scholar] [CrossRef]
- Tiso, T.; Ihling, N.; Kubicki, S.; Biselli, A.; Schonhoff, A.; Bator, I.; Thies, S.; Karmainski, T.; Kruth, S.; Willenbrink, A.-L.; et al. Integration of genetic and process engineering for optimized rhamnolipid production using Pseudomonas putida. Front. Bioeng. Biotechnol. 2020, 8, 976. [Google Scholar] [CrossRef]
- Junker, B. Foam and its mitigation in fermentation systems. Biotechnol. Prog. 2007, 23, 767–784. [Google Scholar] [CrossRef]
- Delvigne, F.; Lecomte, J. Foam formation and control in bioreactors. In Encyclopedia of Industrial Biotechnology; Flickinger, M.C., Ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Routledge, S.J. Beyond de-foaming: The effects of antifoams on bioprocess productivity. Comput. Struct. Biotechnol. J. 2012, 3, e201210014. [Google Scholar] [CrossRef]
- Anic, I.; Apolonia, I.; Franco, P.; Wichmann, R. Production of rhamnolipids by integrated foam adsorption in a bioreactor system. AMB Express 2018, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Beuker, J.; Barth, T.; Steier, A.; Wittgens, A.; Rosenau, F.; Henkel, M.; Hausmann, R. High titer heterologous rhamnolipid production. AMB Express 2016, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Bongartz, P.; Bator, I.; Baitalow, K.; Keller, R.; Tiso, T.; Blank, L.M.; Wessling, M. A scalable bubble-free membrane aerator for biosurfactant production. Biotechnol. Bioeng. 2021, 118, 3545–3558. [Google Scholar] [CrossRef] [PubMed]
- Bongartz, P.; Karmainski, T.; Meyer, M.; Linkhorst, J.; Tiso, T.; Blank, L.M.; Wessling, M. A novel membrane stirrer system enables foam-free biosurfactant production. Biotechnol. Bioeng. 2023, 120, 1269–1287. [Google Scholar] [CrossRef]
- Sha, R.; Meng, Q.; Jiang, L. The addition of ethanol as defoamer in fermentation of rhamnolipids. J. Chem. Technol. Biotechnol. 2012, 87, 368–373. [Google Scholar] [CrossRef]
- Bator, I.; Karmainski, T.; Tiso, T.; Blank, L.M. Killing two birds with one stone—Strain engineering facilitates the development of a unique rhamnolipid production process. Front. Bioeng. Biotechnol. 2020, 8, 596414. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Baker, S.C.; Darton, R.C. Batch production of biosurfactant with foam fractionation. J. Chem. Technol. Biotechnol. 2006, 81, 1923–1931. [Google Scholar] [CrossRef]
- Blesken, C.C.; Bator, I.; Eberlein, C.; Heipieper, H.J.; Tiso, T.; Blank, L.M. Genetic cell-surface modification for optimized foam fractionation. Front. Bioeng. Biotechnol. 2020, 8, 572892. [Google Scholar] [CrossRef] [PubMed]
- Weiser, S.; Tiso, T.; Willing, K.; Bardl, B.; Eichhorn, L.; Blank, L.M.; Regestein, L. Foam-free production of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA) by Pseudomonas putida. Discov. Chem. Eng. 2022, 2, 8. [Google Scholar] [CrossRef]
- Von Campenhausen, M.; Demling, P.; Bongartz, P.; Scheele, A.; Tiso, T.; Wessling, M.; Blank, L.M.; Jupke, A. Novel multiphase loop reactor with improved aeration prevents excessive foaming in rhamnolipid production by Pseudomonas putida. Discov. Chem. Eng. 2023, 3, 2. [Google Scholar] [CrossRef]
- Takesono, S.; Onodera, M.; Ito, A.; Yoshida, M.; Yamagiwa, K.; Ohkawa, A. Mechanical control of foaming in stirred-tank reactors. J. Chem. Technol. Biotechnol. 2001, 76, 355–362. [Google Scholar] [CrossRef]
- Willis, R.B.; Montgomery, M.E.; Allen, P.R. Improved method for manual, colorimetric determination of total Kjeldahl nitrogen using salicylate. J. Agric. Food Chem. 1996, 44, 1804–1807. [Google Scholar] [CrossRef]
- Invally, K.; Ju, L. Increased rhamnolipid concentration and productivity achieved with advanced process design. J. Surfactants Deterg. 2020, 23, 1043–1053. [Google Scholar] [CrossRef]
- Ramana, K.V.; Karanth, N.G. Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J. Chem. Technol. Biotechnol. 1989, 45, 249–257. [Google Scholar] [CrossRef]
- Jahns, T. Regulation of urea uptake in Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 1992, 62, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.; Collier, J.; Berg, G.; Glibert, P. Role of urea in microbial metabolism in aquatic systems: A biochemical and molecular review. Aquat. Microb. Ecol. 2010, 59, 67–88. [Google Scholar] [CrossRef]
- Jahns, T.; Zobel, A.; Kleiner, D.; Kaltwasser, H. Evidence for carrier-mediated, energy-dependent uptake of urea in some bacteria. Arch. Microbiol. 1988, 149, 377–383. [Google Scholar] [CrossRef]
- Silberbach, M.; Hüser, A.; Kalinowski, J.; Pühler, A.; Walter, B.; Krämer, R.; Burkovski, A. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J. Biotechnol. 2005, 119, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Poremba, K.; Gunkel, W.; Lang, S.; Wagner, F. Marine biosurfactants, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z. Naturforschung C 1991, 46, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Schulz, D.; Passeri, A.; Schmidt, M.; Lang, S.; Wagner, F.; Wray, V.; Gunkel, W. Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z. Naturforschung C 1991, 46, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Soberón-Chávez, G.; Lépine, F.; Déziel, E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2005, 68, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.M.; Hörmann, B.; Kugel, M.; Syldatk, C.; Hausmann, R. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 2011, 89, 585–592. [Google Scholar] [CrossRef]
- Medina, G.; Juárez, K.; Díaz, R.; Soberón-Chávez, G. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 2003, 149, 3073–3081. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.S.; Pereira, A.G.; Neves, B.C.; Freire, D.M.G. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—A review. Bioresour. Technol. 2011, 102, 6377–6384. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.J.; O’Byrne, C.; McLaggan, D.; Booth, I.R. Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity. Microbiology 2002, 148, 2215–2222. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamane, T.; Shimizu, S. Mass production of poly-ß-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol. 1986, 24, 370–374. [Google Scholar] [CrossRef]
- Huschner, F.; Grousseau, E.; Brigham, C.J.; Plassmeier, J.; Popovic, M.; Rha, C.; Sinskey, A.J. Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem. 2015, 50, 165–172. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, L.; De Wever, H. Acetic acid as an indirect sink of CO2 for the synthesis of polyhydroxyalkanoates (PHA): Comparison with PHA production processes directly using CO2 as feedstock. Appl. Sci. 2018, 8, 1416. [Google Scholar] [CrossRef]
- Abd El-Salam, F.H. Synthesis, antimicrobial activity and micellization of gemini anionic surfactants in a pure state as well as mixed with a conventional nonionic surfactant. J. Surfactants Deterg. 2009, 12, 363–370. [Google Scholar] [CrossRef]
- Falk, N.A. Surfactants as antimicrobials: A brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J. Surfactants Deterg. 2019, 22, 1119–1127. [Google Scholar] [CrossRef]
- Sheikh, M.S.; Khanam, A.J.; Matto, R.H.; Kabir-ud-Din. Comparative study of the micellar and antimicrobial activity of gemini-conventional surfactants in pure and mixed micelles. J. Surfactants Deterg. 2013, 16, 503–508. [Google Scholar] [CrossRef]
- Hisada, A.; Matsumoto, E.; Hirano, R.; Konomi, M.; Bou Khalil, J.Y.; Raoult, D.; Ominami, Y. Detection of antimicrobial impact on gram-negative bacterial cell envelope based on single-cell imaging by scanning electron microscopy. Sci. Rep. 2023, 13, 11258. [Google Scholar] [CrossRef]
- Santi, I.; Manfredi, P.; Maffei, E.; Egli, A.; Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 2021, 12, e03482-20. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gefen, O.; Ronin, I.; Bar-Meir, M.; Balaban, N.Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020, 367, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.C.; Santos-Gandelman, J.F.; Barros, E.M.; Alvarez, V.M.; Laport, M.S.; Giambiagi-deMarval, M. Staphylococcus haemolyticus as a potential producer of biosurfactants with antimicrobial, anti-adhesive and synergistic properties. Lett. Appl. Microbiol. 2016, 63, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ben Khedher, S.; Boukedi, H.; Dammak, M.; Kilani-Feki, O.; Sellami-Boudawara, T.; Abdelkefi-Mesrati, L.; Tounsi, S. Combinatorial effect of Bacillus amyloliquefaciens AG1 biosurfactant and Bacillus thuringiensis Vip3Aa16 toxin on Spodoptera littoralis larvae. J. Invertebr. Pathol. 2017, 144, 11–17. [Google Scholar] [CrossRef]
- Park, J.O.; Liu, N.; Holinski, K.M.; Emerson, D.F.; Qiao, K.; Woolston, B.M.; Xu, J.; Lazar, Z.; Islam, M.A.; Vidoudez, C.; et al. Synergistic substrate cofeeding stimulates reductive metabolism. Nat. Metab. 2019, 1, 643–651. [Google Scholar] [CrossRef] [PubMed]
Carbon and Nitrogen Concentrations | Evaluation of Nitrogen Sources | Evaluation of C/N Ratios |
---|---|---|
Acetate concentration [g L−1] | 10 | 10 |
Nitrogen sources | Urea, NH4Cl, NH4NO3, NaNO3 | Urea |
C/N ratio [Cmol Nmol−1] | 8.9 | 8.9, 17.8, 26.7, 35.6, 53.4 |
Nitrogen source concentration [g L−1] | 1.1 (Urea), 2.0 (NH4Cl), 1.5 (NH4NO3), 3.2 (NaNO3) | 1.1, 0.56, 0.37, 0.28, 0.19 |
Feed Components | Concentration [g L−1] | |||
---|---|---|---|---|
C/N of 8.9 | C/N of 17.8 | C/N of 26.7 | Glacial Acetic Acid of C/N 17.8 | |
Acetate | 200.0 | 200.0 | 200.0 | 1050.0 |
Urea | 22.4 (40 for NH4Cl) | 11.2 | 7.5 | 59.0 |
NaH2PO4 × 2 H2O | 9.2 | 9.2 | 9.2 | 24.2 |
Fed-Batch Fermentations | CN,batch [g L−1] | Feeding Strategy | Total Acetate Fed [g] | pH Agent |
---|---|---|---|---|
Benchmark NH4Cl with C/N of 8.9 | 2.0 NH4Cl | Feed with C/N of 8.9 | 50 | 4 M H2SO4 |
Benchmark urea with C/N of 8.9 | 1.12 urea | Feed with C/N of 8.9 | 50 | 4 M H2SO4 |
Urea with C/N of 17.8 | 0.75 urea | Feed with C/N of 17.8 | 50 | 4 M H2SO4 |
Urea two-stage feed strategy with C/N of 17.8 | 0.75 urea | Feed with C/N of 8.9 Feed with C/N of 17.8 | 25 25 | 4 M H2SO4 |
Urea two-stage feed strategy with C/N of 26.7 | 0.75 urea | Feed with C/N of 8.9 Feed with C/N of 26.7 | 25 25 | 4 M H2SO4 |
Glacial acetic acid feed with C/N of 17.8 | 0.75 urea | Feed with C/N of 8.9 Glacial acetic acid feed with C/N of 17.8 | 56–59 | 4 M H2SO4, glacial acetic acid |
Process | Time [h] | VL,end [L] | Total Acetate Fed [g] | cGlycolipids [mg L−1] | mGlycolipids [mg] | YX/S [g g−1] | YP/S [mg g−1] | YP/X [mg g−1] | STY [mg L−1 h−1] |
---|---|---|---|---|---|---|---|---|---|
NH4Cl benchmark C/N 8.9 | 56 | 1.45 | 50 | 152 | 220 | 0.36 | 3.9 | 11.0 | 2.7 |
Membrane-aerated NH4Cl benchmark C/N 8.9 | 48 | 2.22 | 50 | 66 | 146 | 0.24 | 2.6 | 11.1 | 1.4 |
Urea benchmark C/N 8.9 | 60 | 1.45 | 50 | 183 | 266 | 0.38 | 5.0 | 13.0 | 3.1 |
Urea one-stage feeding C/N 17.8 | 74 | 1.45 | 50 | 278 | 403 | 0.23 | 9.0 | 39.0 | 3.8 |
Urea two-stage feeding C/N 17.8 | 63 | 1.45 | 50 | 260 | 377 | 0.28 | 7.2 | 26.0 | 4.2 |
Urea two-stage feeding C/N 26.7 | 71 | 1.45 | 50 | 295 | 428 | 0.25 | 8.0 | 32.1 | 4.2 |
Urea pH-stat C/N 17.8 | 60 | 1.20 | 56 | 427 | 512 | 0.22 | 8.2 | 36.8 | 7.1 |
Membrane-aerated urea pH-stat C/N 17.8 | 59 | 2.00 | 54 | 261 | 521 | 0.27 | 8.1 | 30.5 | 4.4 |
cglycine-glucolipid [mg·L−1] | 0 | 0.04 | 0.08 | 0.16 | 0.33 | 0.66 | 1.32 | 2.63 | 5.3 | 12 | 21 | 42 | 84 | 169 | 337 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rel. biomass [%] | C. glutamicum | 100 ± 8 | 82 ± 10 | 100 ± 9 | 90 ± 9 | 96 ± 4 | 81 ± 2 | 95 ± 8 | 72 ± 5 | 52 ± 6 | 62 ± 4 | 62 ± 3 | 60 ± 10 | 64 ± 2 | 61 ± 1 | 59 ± 3 |
S. marcescens | 100 ± 6 | 87 ± 5 | 97 ± 2 | 102 ± 14 | 98 ± 1 | 95 ± 4 | 109 ± 12 | 84 ± 8 | 87 ± 8 | 63 ± 8 | 52 ± 10 | 42 ± 8 | 42 ± 12 | 32 ± 9 | 42 ± 10 | |
S. epidermidis | 100 ± 9 | 78 ± 3 | 81 ± 3 | 82 ± 8 | 83 ± 4 | 73 ± 4 | 85 ± 0 | 93 ± 3 | 98 ± 3 | 91 ± 2 | 94 ± 1 | 104 ± 4 | 109 ± 7 | 104 ± 1 | 103 ± 4 | |
E. faecium | 100 ± 8 | 82 ± 6 | 89 ± 2 | 91 ± 3 | 87 ± 1 | 91 ± 3 | 86 ± 5 | 78 ± 3 | 49 ± 2 | 73 ± 3 | 73 ± 5 | 43 ± 4 | 46 ± 9 | 45 ± 7 | 50 ± 0 | |
S. aureus | 100 ± 2 | 98 ± 8 | 83 ± 9 | 92 ± 9 | 84 ± 0 | 96 ± 2 | 77 ± 5 | 92 ± 3 | 68 ± 7 | 36 ± 9 | 47 ± 1 | 51 ± 1 | 58 ± 2 | 68 ± 2 | 66 ± 2 | |
P. aeruginosa | 100 ± 6 | 100 ± 9 | 92 ± 4 | 100 ± 7 | 111 ± 9 | 102 ± 9 | 122 ± 6 | 94 ± 6 | 93 ± 4 | 95 ± 6 | 77 ± 3 | 72 ± 2 | 85 ± 4 | 101 ± 8 | 104 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmainski, T.; Lipa, M.K.; Kubicki, S.; Bouchenafa, A.; Thies, S.; Jaeger, K.-E.; Blank, L.M.; Tiso, T. Optimized Feeding Strategies for Biosurfactant Production from Acetate by Alcanivorax borkumensis SK2. Fermentation 2024, 10, 257. https://doi.org/10.3390/fermentation10050257
Karmainski T, Lipa MK, Kubicki S, Bouchenafa A, Thies S, Jaeger K-E, Blank LM, Tiso T. Optimized Feeding Strategies for Biosurfactant Production from Acetate by Alcanivorax borkumensis SK2. Fermentation. 2024; 10(5):257. https://doi.org/10.3390/fermentation10050257
Chicago/Turabian StyleKarmainski, Tobias, Marie K. Lipa, Sonja Kubicki, Amina Bouchenafa, Stephan Thies, Karl-Erich Jaeger, Lars M. Blank, and Till Tiso. 2024. "Optimized Feeding Strategies for Biosurfactant Production from Acetate by Alcanivorax borkumensis SK2" Fermentation 10, no. 5: 257. https://doi.org/10.3390/fermentation10050257
APA StyleKarmainski, T., Lipa, M. K., Kubicki, S., Bouchenafa, A., Thies, S., Jaeger, K. -E., Blank, L. M., & Tiso, T. (2024). Optimized Feeding Strategies for Biosurfactant Production from Acetate by Alcanivorax borkumensis SK2. Fermentation, 10(5), 257. https://doi.org/10.3390/fermentation10050257