Exploring Sustainable Aquafeed Alternatives with a Specific Focus on the Ensilaging Technology of Fish Waste
Abstract
:1. Introduction
2. Ensiling Technology of Fish Waste: A Brief Overview
2.1. Acidified Fish Silage Production
2.2. Fermented Fish Silage Production
2.3. Fish Silage Oil Production
3. Nutritional and Health Benefits of Fish Silage
3.1. Protein Content of Fish Silage
3.2. Amino Acid Profile of Fish Silage
3.3. Lipid Content and Fatty Acids Composition of Fish Silage
3.4. Ash Content of Fish Silage
3.5. Microbial Characteristics of Fish Silage
3.6. Biogenic Amines
3.7. Protein and Lipid Digestibility of Fish Silage
3.8. Beneficial Effects of Fish Silage on Animal Health and Feed Quality
4. Utilization of Fish Silage in Aquaculture Feeds
5. Fish Silage as Feed Ingredients: Advantages, Challenges, and Considerations
- (i)
- Waste utilization and environmental sustainability: Ensiling repurposes fish waste and discarded fish unsuitable for human consumption or conventional fish meal production. Fish silage production can address environmental concerns by providing a proper disposal method for fish waste, mitigating the impact of inadequate waste management practices [7,8,9,10,12,27,112,113].
- (ii)
- Cost-effectiveness: Fish silage can be a cost-effective alternative to traditional fish meal, which is often more expensive. Incorporating fish silage into aquafeeds can reduce feeding costs, minimizing overall production expenses by utilizing fish waste instead of costly feed ingredients. Several studies have shown that adding fish silage to aquafeeds can reduce feeding costs by replacing fish meal with fish silage [7,27,101,102,112,113].
- (iii)
- Nutrient-rich feed ingredient: Fish silage is a source of hydrolyzed proteins and lipids, providing essential nutrients for animals and promoting growth and health. Fish silage has similar nutritional qualities to fish meal but offers improved digestibility due to hydrolyzed proteins and lipids. It can be a good source of protein, essential amino acids, and fatty acids, but its nutritional composition may vary depending on the raw materials used and the processing methods [7,27,29,31,32,33,34,36,37,66].
- (iv)
- (v)
- (i)
- Natural compositional variability and quality control: The composition and quality of fish silage can vary due to factors like the type of raw materials used, their freshness and microbiological status, and the fermentation conditions and processing methods employed. This variability can make it challenging to ensure consistent quality and nutritional value in the final product [29,30,32,112,113].
- (ii)
- (iii)
- Transport and storage challenges: The high water content of fish silage poses difficulties during transportation and storage, leading to increased costs. Specialized handling and storage conditions may be required to maintain its quality. For example, it must be stored in airtight containers to prevent the ingress of oxygen, which promotes the growth of aerobic pathogens and leads to spoilage [7,27,112,113,114,115].
- (iv)
- Processing costs and energy consumption: Although ensiling is recognized as a cost-effective process compared to traditional fish meal and fish oil production, some fish silage production methods may require additional energy and increase the processing costs. The advanced methods, such as freeze drying, spray drying, or encapsulation, would likely increase the energy consumption and overall processing costs compared to basic fish silage production [31,114,115].
- (v)
- (vi)
- (vii)
- (i)
- (ii)
- (iii)
- Developing a coordinated collection and transport network: To expand commercial production, a well-organized system for collecting and transporting the fish waste and discarded fish to the processing place is needed, maintaining proper temperature conditions to maintain the quality of raw materials [7,112,113].
- (iv)
- Advanced processing techniques: Utilizing advanced processing techniques such as spray drying, encapsulation, and refractance window drying can enhance the quality control and preservation of the final product. These methods can address challenges like high water content, which can complicate the transportation and storage of fish silage, despite the associated increase in production costs. On the other hand, co-drying the fish silage with other ingredients like soybean, corn, barley, or wheat bran can produce a more stable and easier to handle product [31,34,114,115,116,117,118,119].
- (v)
- Optimization of the fermentation process: Formation of biogenic amines is a critical issue during fermentation. To reduce the risk of biogenic amine formation, it is necessary to monitor acceptable levels of biogenic amines in fermented feeds, optimize fermentation conditions (such as time, temperature, moisture content, and salt concentrations), and select suitable strains of lactic acid bacteria that do not produce biogenic amines. The optimization of the fermentation process is important for controlling the formation of biogenic amines and ensuring the safety and quality of the final fermented product [26,29,31,33,34,35,59,60,77,78].
- (vi)
6. Emerging Technologies for Enhancing the Nutritional Value and Efficiency of Fish Silage Production
6.1. Spray Drying Encapsulation
6.2. Microencapsulation of Bioactive Compounds
6.3. Refractance Window Drying Technology
7. Innovative Approaches to Sustainable Protein Alternatives through Waste Valorization
8. Utilization of Fish Silage as a Fertilizer
9. Conclusions and Future Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tacon, A.G.J.; Metian, M. Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; El-Hais, A.M.; Olivier, A. Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile Pagrus major. Aquaculture 2018, 490, 228–235. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; Olivier, A.; Zaineldin, A.I. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish. Immunol. 2018, 75, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.K.; Kari, Z.A.; Van Doan, H.; Kabir, M.A.; Che Harun, H.; Mohamad Sukri, S.A.; Goh, K.W.; Wee, W.; Khoo, M.I.; Wei, L.S. Fermented Soybean Meal (FSBM) in African Catfish (Clarias gariepinus) Diets: Effects on Growth Performance, Fish Gut Microbiota Analysis, Blood Haematology, and Liver Morphology. Life 2022, 12, 1851. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Kim, I.H. Fish meal—Nutritive value. J. Anim. Physiol. Anim. Nutr. 2011, 95, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.L.; Toppe, J. Fish silage hydrolysates: Not only a feed nutrient, but also a useful feed additive. Trends Food Sci. Technol. 2017, 66, 93–97. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Yu, H.; Loo, S.C.J. Valorisation of industrial food waste into sustainable aquaculture feeds. Future Foods 2023, 7, 100240. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Colombo, S.M.; Roy, K.; Mraz, J.; Wan, A.H.L.; Davies, S.J.; Tibbetts, S.M.; Øverland, M.; Francis, D.S.; Rocker, M.M.; Gasco, L.; et al. Towards achieving circularity and sustainability in feeds for farmed blue foods. Rev. Aquac. 2022, 15, 1115–1141. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac. 2020, 12, 987–1002. [Google Scholar] [CrossRef]
- Howieson, J.; Chaklader, M.R.; Chung, W.H. Market-driven assessment of alternate aquafeed ingredients: Seafood waste transformation as a case study. Anim. Prod. Sci. 2023, 63, 1933–1948. [Google Scholar] [CrossRef]
- Colombo, S.M.; Turchini, G.M. ‘Aquafeed 3.0’: Creating a more resilient aquaculture industry with a circular bioeconomy framework. Rev. Aquac. 2021, 13, 1156–1158. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Mente, E.; Karapanagiotidis, I.T.; Vlontzos, G.; Athanassiou, C.G. Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects 2021, 12, 586. [Google Scholar] [CrossRef] [PubMed]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Duo, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Sec. 2018, 17, 154–161. [Google Scholar]
- García, A.J.; Esteban, M.B.; Márquez, M.C.; Ramos, P. Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs. Waste Manag. 2005, 25, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 2018, 613–614, 635–643. [Google Scholar] [CrossRef]
- Cheng, J.Y.K.; Lo, I.M.C. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong. Environ. Sci. Pollut. Res. 2016, 23, 7169–7177. [Google Scholar] [CrossRef]
- Wang, X.; Luo, H.; Zheng, Y.; Wang, D.; Wang, Y.; Zhang, W.; Chen, Z.; Chen, X.; Shao, J. Effects of poultry by-product meal replacing fish meal on growth performance, feed utilization, intestinal morphology and microbiota communities in juvenile large yellow croaker (Larimichthys crocea). Aquac. Rep. 2023, 30, 101547. [Google Scholar] [CrossRef]
- Irm, M.; Taj, S.; Jin, M.; Luo, J.; Andriamialinirina, H.J.T.; Zhou, Q. Effects of replacement of fish meal by poultry by-product meal on growth performance and gene expression involved in protein metabolism for juvenile black sea bream (Acanthoparus schlegelii). Aquaculture 2020, 528, 735544. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Siddik, M.A.B.; Fotedar, R. Total replacement of fishmeal with poultry by-product meal affected the growth, muscle quality, histological structure, antioxidant capacity and immune response of juvenile barramundi, Lates calcarifer. PLoS ONE 2020, 15, e0242079. [Google Scholar] [CrossRef] [PubMed]
- Hoerterer, C.; Petereit, J.; Lannig, G.; Johansen, J.; Conceição, L.E.C.; Buck, B.H. Effects of dietary plant and animal protein sources and replacement levels on growth and feed performance and nutritional status of market-sized turbot (Scophthalmus maximus) in RAS. Front. Mar. Sci. 2022, 9, 1023001. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Magouz, F.I.; Mansour, M.; Saleh, A.A.; Asely, A.M.E.; Fadl, S.E.; Ahmed, H.A.; Al-Ghanim, K.A.; Mahboob, S.; Al-Misned, F. Evaluation of Yeast Fermented Poultry By-Product Meal in Nile Tilapia (Oreochromis niloticus) Feed: Effects on Growth Performance, Digestive Enzymes Activity, Innate Immunity, and Antioxidant Capacity. Front. Vet. Sci. 2020, 6, 516. [Google Scholar] [CrossRef] [PubMed]
- Dapkevicius, M.L.N.E.; Nout, M.J.R.; Rombouts, F.M.; Houben, J.H.; Wymenga, W. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 2000, 57, 107–114. [Google Scholar] [CrossRef]
- Toppe, J.; Olsen, R.L.; Peñarubia, O.R.; James, D.G. Production and Utilization of Fish Silage. A Manual on How to Turn Fish Waste into Profit and a Valuable Feed Ingredient or Fertilizer; FAO: Rome, Italy, 2018; pp. 1–28. [Google Scholar]
- Sajib, M.; Langeland, M.; Undeland, I. Effect of antioxidants on lipid oxidation in herring (Clupea harengus) co-product silage during its production, heat-treatment and storage. Sci. Rep. 2022, 12, 3362. [Google Scholar] [CrossRef] [PubMed]
- Banze, J.F.; da Silva, M.F.O.; Enke, D.B.S.; Fracalossi, D.M. Acid silage of tuna viscera: Production, composition, quality and digestibility. Bol. Inst. Pesca 2017, 44, 24–34. [Google Scholar] [CrossRef]
- Van ’t Land, M.; Vanderperren, E.; Raes, K. The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Anim. Feed Sci. Technol. 2017, 234, 284–294. [Google Scholar] [CrossRef]
- Özyurt, G.; Özkütük, A.S.; Boğa, M.; Durmuş, M.; Kuley Boğa, E. Biotransformation of Seafood Processing Wastes Fermented with Natural Lactic Acid Bacteria; The Quality of Fermented Products and Their Use in Animal Feeding. Turkish J. Fish. Aquat. Sci. 2017, 17, 543–555. [Google Scholar]
- Santana, T.M.; Dantas, F.D.M.; Monteiro Dos Santos, D.K.; Kojima, J.T.; Pastrana, Y.M.; De Jesus, R.S.; Gonçalves, L.U. Fish Viscera Silage: Production, Characterization, and Digestibility of Nutrients and Energy for Tambaqui Juveniles. Fishes 2023, 8, 111. [Google Scholar] [CrossRef]
- Özyurt, G.; Gökdoğan, S.; Şimşek, A.; Yuvka, I.; Ergüven, M.; Kuley Boğa, E. Fatty acid composition and biogenic amines in acidified and fermented fish silage: A comparison study. Arch. Anim. Nutr. 2016, 70, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, G.; Özogul, Y.; Kuley Boğa, E.; Özkütük, A.S.; Durmuş, M.; Uçar, Y.; Özogul, F. The Effects of Fermentation Process with Acid and Lactic Acid Bacteria Strains on the Biogenic Amine Formation of Wet and Spray-Dried Fish Silages of Discards. J. Aquat. Food Prod. 2019, 28, 314–328. [Google Scholar] [CrossRef]
- Özogul, Y.; Durmuş, M.; Kuley Boğa, E.; Uçar, Y.; Özogul, F. The Function of Emulsions on the Biogenic Amine Formation and their Indices of Sea Bass Fillets (Dicentrarchus labrax) Stored in Vacuum Packaging. J. Food Sci. 2018, 83, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, G.; Özkütük, A.S.; Uçar, Y.; Durmuş, M.; Özoğul, Y. Fatty acid composition and oxidative stability of oils recovered from acid silage and bacterial fermentation of fish (Sea bass—Dicentrarchus labrax) by-products. Int. J. Food Sci. Technol. 2017, 53, 1255–1261. [Google Scholar] [CrossRef]
- Shabani, A.; Boldaji, F.; Dastar, B.; Ghoorchi, T.; Zerehdaran, S.; Ashayerizadeh, A. Evaluation of increasing concentrations of fish waste silage in diets on growth performance, gastrointestinal microbial population, and intestinal morphology of broiler chickens. Anim. Feed Sci. Technol. 2021, 275, 114874. [Google Scholar] [CrossRef]
- Shabani, A.; Boldaji, F.; Dastar, B.; Ghoorchi, T.; Zerehdaran, S. Preparation of fish waste silage and its effect on the growth performance and meat quality of broiler chickens. J. Sci. Food Agric. 2018, 98, 4097–4103. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Jazi, V.; Ashayerizadeh, A.; Barekatain, R. Inclusion of fish waste silage in broiler diets affects gut microflora, cecal short-chain fatty acids, digestive enzyme activity, nutrient digestibility, and excreta gas emission. Poult. Sci. 2019, 98, 4909–4918. [Google Scholar] [CrossRef]
- Hammoumi, A.; Faid, M.; El yachioui, M.; Amarouch, H. Characterization of fermented fish waste used in feeding trials with broilers. Process Biochem. 1998, 33, 423–427. [Google Scholar] [CrossRef]
- Samuels, W.A.; Fontenot, J.P.; Allen, V.G.; Abazinge, M.D. Seafood processing wastes ensiled with straw: Utilization and intake by sheep. J. Anim. Sci. 1991, 69, 4983–4992. [Google Scholar] [CrossRef]
- Nørgaard, J.V.; Petersen, J.K.; Tørring, D.B.; Jørgensen, H.; Lærke, H.N. Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs. Anim. Feed Sci. Technol. 2015, 205, 90–97. [Google Scholar] [CrossRef]
- Ramírez, J.C.R.; Ibarra, J.I.; Romero, F.A.; Ulloa, P.R.; Ulloa, J.A.; Matsumoto, K.S.; Cordoba, B.V.; Manzano, M.Á.M. Preparation of Biological Fish Silage and its Effect on the Performance and Meat Quality Characteristics of Quails (Coturnix coturnix japonica). Braz. Arch. Biol. Technol. 2013, 56, 1002–1010. [Google Scholar] [CrossRef]
- Panda, S.; Babu, L.K.; Panda, A.K.S.T.; Mohanty, A.; Panigrahy, K.K.; Samal, P. Effect of dietary supplementation of fermented fish silage on serum biochemical parameters of broiler Japanese quails (Coturnix coturnix japonica). Vet. World 2017, 10, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Tejeda-Arroyo, E.; Cipriano-Salazar, M.; Camacho-Diaz, L.M.; Salem, A.Z.; Kholif, A.E.; Elghandour, M.M.; Dilorenzo, N.; Cruz-Lagunas, B. Diet inclusion of devil fish (Plecostomus spp.) silage and its impacts on ruminal fermentation and growth performance of growing lambs in hot regions of Mexico. Trop. Anim. Health Prod. 2015, 47, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Fagbenro, O.A.; Jauncey, K. Physical and nutritional properties of moist fermented fish silage pellets as a protein supplement for tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 1998, 71, 11–18. [Google Scholar] [CrossRef]
- Fagbenro, O.; Jauncey, K. Chemical and nutritional quality of dried fermented fish silages and their nutritive value for tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol. 1994, 45, 167–176. [Google Scholar] [CrossRef]
- Karim, N.U.; Lee, M.F.; Arshad, A.M. The effectiveness of fish silage as organic fertilizer on post-harvest quality of pak choy (Brassica rapa L. subsp. chinensis). Eur. Int. J. Sci. Technol. 2015, 4, 163–174. [Google Scholar]
- Gauthankar, M.; Khandeparker, R.; Shivaramu, M.S.; Salkar, K.; Sreepada, R.A.; Paingankar, M. Comparative assessment of amino acids composition in two types of marine fish silage. Sci. Rep. 2021, 11, 15235. [Google Scholar] [CrossRef]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Kuley, E.; Özyurt, G.; Özogul, I.; Boğa, M.; Akyol, I.; Rocha, J.M.; Özogul, F. The Role of Selected Lactic Acid Bacteria on Organic Acid Accumulation during Wet and Spray-Dried Fish-Based Silages. Contributions to the Winning Combination of Microbial Food Safety and Environmental Sustainability. Microorganisms 2020, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Ten Brink, B.; Damink, C.; Joosten, H.M.L.J.; Huis in ‘t Veld, J.H.J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990, 11, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, Z.; Li, J.; Yang, H. Concentrations of biogenic amines in fish, squid and octopus and their changes during storage. Food Chem. 2012, 135, 2604–2611. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Yang, X.; Li, L.; Xia, G.; Cen, J.; Huang, H.; Hao, S. Biogenic amines in commercial fish and fish products sold in southern China. Food Control 2012, 25, 303–308. [Google Scholar] [CrossRef]
- Kim, M.K.; Mah, J.H.; Hwang, H.J. Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem. 2009, 116, 87–95. [Google Scholar] [CrossRef]
- Özogul, F.; Gökbulut, C.; Özogul, Y.; Özyurt, G. Biogenic amine production and nucleotide ratios in gutted wild sea bass (Dicentrarchus labrax) stored in ice, wrapped in aluminium foil and wrapped in cling film at 4 °C. Food Chem. 2006, 98, 76–84. [Google Scholar] [CrossRef]
- Mah, J.H.; Han, H.K.; Oh, Y.J.; Kim, M.G.; Hwang, H.J. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 2002, 79, 239–243. [Google Scholar] [CrossRef]
- Raa, J.; Gildberg, A. Fish silage: A review. Crit. Rev. Food Sci. Nutr. 1982, 16, 383–419. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.; Oikawa, H.; Satomi, M. Reduction of lipids in fishmeal prepared from fish waste by a yeast Yarrowia lipolytica. Int. J. Food Microbiol. 2007, 121, 302–307. [Google Scholar] [CrossRef]
- Ferraz de Arruda, L.; Borghesi, R.; Oetterer, M. Use of Fish Waste as Silage—A Review. Braz. Arch. Biol. Technol. 2007, 50, 879–886. [Google Scholar] [CrossRef]
- Tatterson, I.N. Fish silage—Preparation, properties and uses. Anim. Feed Sci. Technol. 1982, 7, 153–159. [Google Scholar] [CrossRef]
- Espe, M.; Holen, E.; He, J.; Provan, F.; Chen, L.; Øysæd, K.B.; Seliussen, J. Hydrolyzed fish proteins reduced activation of caspase-3 in H2O2 induced oxidative stressed liver cells isolated from Atlantic salmon (Salmo salar). Springerplus 2015, 4, 658. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Fagbenro, O.A.; Jauncey, K. Water stability, nutrient leaching and nutritional properties of moist fermented fish silage diets. Aquac. Eng. 1995, 14, 143–153. [Google Scholar] [CrossRef]
- Rai, A.K.; Swapna, H.C.; Bhaskar, N.; Halami, P.M.; Sachindra, N.M. Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme Microb. Technol. 2010, 46, 9–13. [Google Scholar] [CrossRef]
- Mach, D.T.N.; Nortvedt, R. Chemical and nutritional quality of silage made from raw or cooked lizard fish (Saurida undosquamis) and blue crab (Portunus pelagicus). J. Sci. Food Agric. 2009, 89, 2519–2526. [Google Scholar] [CrossRef]
- Inoue, S.; Suzuki-Utsunomiya, K.; Komori, Y.; Kamijo, A.; Yumura, I.; Tanabe, K.; Miyawaki, A.; Koga, K. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. J. Biosci. Bioeng. 2013, 116, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Vidotti, R.M.; Carneiro, D.J.; Viegas, E.M. Acid and fermented silage characterization and determination of apparent digestibility coefficient of crude protein for Piaractus mesopotamicus. J. World Aquac. Soc. 2002, 33, 57–62. [Google Scholar] [CrossRef]
- Lian, P.Z.; Lee, C.M.; Park, E. Characterization of Squid-Processing Byproduct Hydrolysate and Its Potential as Aquaculture Feed Ingredient. J. Agric. Food Chem. 2005, 53, 5587–5592. [Google Scholar] [CrossRef]
- Raeesi, R.; Shabanpour, B.; Pourashouri, P. Quality Evaluation of Produced Silage and Extracted Oil from Rainbow Trout (Oncorhynchus mykiss) Wastes Using Acidic and Fermentation Methods. Waste Biomass Valor. 2021, 12, 4931–4942. [Google Scholar] [CrossRef]
- Goosen, N.J.; de Wet, L.F.; Görgens, J.F.; Jacobs, K.; de Bruyn, A. Fish silage oil from rainbow trout processing waste as alternative to conventional fish oil in formulated diets for Mozambique tilapia Oreochromis mossambicus. Anim. Feed Sci. Technol. 2014, 188, 74–84. [Google Scholar] [CrossRef]
- Goosen, N.J.; de Wet, L.F.; Görgens, J.F. Rainbow trout silage oil as immunity enhancing feed ingredient in formulated diets for South African abalone Haliotis midae. Aquaculture 2014, 430, 28–33. [Google Scholar] [CrossRef]
- Goosen, N.J.; de Wet, L.F.; Görgens, J.F. Rainbow trout silage as immune stimulant and feed ingredient in diets for Mozambique tilapia (Oreochromis mossambicus). Aquac. Res. 2016, 47, 329–340. [Google Scholar] [CrossRef]
- Saha Turna, N.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Houicher, A.; Bensid, A.; Regenstein, J.M.; Özogul, F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review. Food Biosci. 2021, 39, 100807. [Google Scholar] [CrossRef]
- Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 1999, 12, 117–145. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.K.; Koh, C.B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac. 2017, 9, 342–368. [Google Scholar] [CrossRef]
- Alp, M.; Kocabagli, N.; Kahraman, R.; Bostan, K. Effects of dietary supplementation with organic acids and zinc bacitracin on ileal microflora, pH and performance in broilers. Turk. J. Vet. Anim. Sci. 1999, 23, 451–455. [Google Scholar]
- Goosen, N.J.; de Wet, L.F.; Görgens, J.F. The effects of protein hydrolysates on the immunity and growth of the abalone Haliotis midae. Aquaculture 2014, 428, 243–248. [Google Scholar] [CrossRef]
- Dimitroglou, A.; Merrifield, D.L.; Carnevali, O.; Picchietti, S.; Avella, M.; Daniels, C.; Güroy, D.; Davies, S.J. Microbial manipulations to improve fish health and production—A Mediterranean perspective. Fish Shellfish Immunol. 2011, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dimitroglou, A.; Merrifield, D.L.; Moate, R.; Davies, S.J.; Spring, P.; Sweetman, J.; Bradley, G. Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Anim. Sci. 2009, 87, 3226–3234. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Chungu, P.; Fotedar, R.; Howieson, J. Bioprocessed poultry by-product meals on growth, gut health and fatty acid synthesis of juvenile barramundi, Lates calcarifer (Bloch). PLoS ONE 2019, 14, e0215025. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; He, R.; Xu, W.; Mai, K.; He, G. Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture 2016, 464, 87–94. [Google Scholar] [CrossRef]
- Davies, S.J.; Guroy, D.; Hassaan, M.S.; El-Ajnaf, S.M.; El-Haroun, E.R. Evaluation of co-fermented apple-pomace, molasses and formic acid generated sardine based fish silages as fishmeal substitutes in diets for juvenile European sea bass (Dicentrachus labrax) production. Aquaculture 2020, 521, 735087. [Google Scholar] [CrossRef]
- Góngora, H.G.; Maldonado, A.A.; Ruiz, A.E.; Breccia, J.D. Supplemented feed with biological silage of fish-processing wastes improved health parameters and weight gain of mice. Eng. Agric. Environ. Food 2018, 11, 153–157. [Google Scholar] [CrossRef]
- Shao, J.; Wang, L.; Shao, X.; Liu, M. Dietary Different Replacement Levels of Fishmeal by Fish Silage Could Influence Growth of Litopenaeus vannamei by Regulating mTOR at Transcriptional Level. Front. Physiol. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- De Arruda, L.F.; Borghesi, R.; Portz, L.; Cyrino, J.E.P.; Oetterer, M. Fish silage in black bass (Micropterus salmoides) feed as an alternative to fish meal. Braz. Arch. Biol. Technol. 2009, 52, 1261–1266. [Google Scholar] [CrossRef]
- Liang, M.; Wang, J.; Chang, Q.; Mai, K. Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828). Aquac. Res. 2006, 37, 102–106. [Google Scholar] [CrossRef]
- Espe, M.; Sveier, H.; Høgøy, I.; Lied, E. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture 1999, 174, 119–137. [Google Scholar] [CrossRef]
- Plascencia-Jatomea, M.; Olvera-Novoa, M.A.; Arredondo-Figueroa, J.L.; Hall, G.M.; Shirai, K. Feasibility of fishmeal replacement by shrimp head silage protein hydrolysate in Nile tilapia (Oreochromis niloticus L) diets. J. Sci. Food Agric. 2002, 82, 753–759. [Google Scholar] [CrossRef]
- Ridwanudin, A.; Sheen, S.S. Evaluation of Dietary Fish Silage Combined with Poultry by Product Meal or Soybean Meal to Replace Fish Meal for Orange-Spotted Grouper Epinephelus coioides. J. Fish. Soc. Taiwan 2014, 41, 287–297. [Google Scholar]
- Fagbenro, O.; Jauncey, K. Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed dry diets containing co-dried lactic-acid-fermented fish-silage and protein feedstuffs. Bioresour. Technol. 1995, 51, 29–35. [Google Scholar] [CrossRef]
- Fagbenro, O.; Jauncey, K. Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed moist diets containing autolysed protein from stored lactic-acid-fermented fish-silage. Bioresour. Technol. 1994, 48, 43–48. [Google Scholar] [CrossRef]
- Fagbenro, O.; Jauncey, K.; Haylor, G. Nutritive value of diet containing dried lactic acid fermented fish silage and soybean meal for juvenile Oreochromis niloticus and Clarias gariepinus. Aquat. Living Resour. 1994, 7, 79–85. [Google Scholar] [CrossRef]
- Fagbenro, O.A.; Bello-Olusoji, O.A. Preparation, nutrient composition and digestibility of fermented shrimp head silage. Food Chem. 1997, 60, 489–493. [Google Scholar] [CrossRef]
- Soltan, M.A.; El-Laithy, S.M. Evaluation of fermented silage made from fish, tomato and potato by-products as a feed ingredient for Nile tilapia, Oreochromis niloticus. Egypt. J. Aquat. Biol. Fish 2008, 12, 25–41. [Google Scholar] [CrossRef]
- Soltan, M.A.; Tharwat, A.A. Use of fish silage for partial or complete replacement of fish meal in diets of Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus). Egypt. J. Nutr. Feeds 2006, 9, 299–314. [Google Scholar]
- Soltan, M.A.; Fouad, I.M.; El-Zyat, A.M.; Abou Zead, M.Y. Possibility of Using Fermented Fish Silage as Feed Ingredient in the Diets of Nile Tilapia, Oreochromis niloticus. Glob. Vet. 2017, 18, 59–67. [Google Scholar]
- Soltan, M.A.; Hanafy, M.A.; Wafa, M.I.A. An evaluation of fermented silage made from fish by-products as a feed ingredient for African catfish (Clarias gariepinus). Glob. Vet. 2008, 2, 80–86. [Google Scholar]
- Sun, M.; Kim, Y.C.; Okorie, O.E.; Devnath, S.; Yoo, G.; Lee, S. Use of Fermented Fisheries By-products and Soybean Curd Residues Mixture as a Fish Meal Replacer in Diets of Juvenile Olive Flounder, Paralichthys olivaceus. J. World Aquac. Soc. 2007, 38, 543–549. [Google Scholar] [CrossRef]
- Mondal, K.; Kaviraj, A.; Mukhopadhyay, P.K. Evaluation of fermented fish-offal in the formulated diet of the freshwater catfish Heteropneustes fossilis. Aquac. Res. 2008, 39, 1443–1449. [Google Scholar] [CrossRef]
- Mondal, K.; Kaviraj, A.; Mukhopadhyay, P.K.; Datta, M.; Sengupta, C. Evaluation of fermented fish-offal in formulated diet of the Indian major carp, rohu, Labeo rohita (Hamilton). Acta Ichthyol. Piscat. 2007, 37, 99–105. [Google Scholar] [CrossRef]
- Nwanna, L.C. Nutritional Value and Digestibility of Fermented Shrimp Head Waste Meal by African Catfish Clariasgariepinus. Pak. J. Nutr. 2003, 2, 339–345. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Howieson, J.; Ilham, I.; Fotedar, R. Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and non-fermented tuna hydrolysate as fishmeal protein replacement ingredients. PeerJ 2018, 6, e4870. [Google Scholar] [CrossRef] [PubMed]
- Espe, M.; Ruohonen, K.; El-Mowafi, A. Hydrolysed fish protein concentrate (FPC) reduces viscera mass in Atlantic salmon (Salmo salar) fed plant-protein-based diets. Aquac. Nutr. 2012, 18, 599–609. [Google Scholar] [CrossRef]
- Sachindra, N.M.; Bhaskar, N. In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour. Technol. 2008, 99, 9013–9016. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Kalinowski, T.; Obach, A.; Robaina, L.; Tort, L.; Caballero, M.J.; Izquierdo, M.S. Vegetable lipid sources for gilthead seabream (Sparus aurata): Effects on fish health. Aquaculture 2003, 225, 353–370. [Google Scholar] [CrossRef]
- Kim, H.S.; Jung, W.G.; Myung, S.H.; Cho, S.H.; Kim, D.S. Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture 2014, 431, 92–98. [Google Scholar] [CrossRef]
- Islam, M.J.; Peñarubia, O.R. Seafood Waste Management Status in Bangladesh and Potential for Silage Production. Sustainability 2021, 13, 2372. [Google Scholar] [CrossRef]
- Islam, J.; Yap, E.E.S.; Krongpong, L.; Toppe, J.; Peñarubia, O.R. Fish Waste Management—An Assessment of the Potential Production and Utilization of Fish Silage in Bangladesh, Philippines and Thailand; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2021; No. 1216. [Google Scholar]
- Camaño Echavarria, J.A.; Rivera Torres, A.M.; Zapata Montoya, J.E. Sorption isotherms and thermodynamic properties of the dry silage of red tilapia viscera (Oreochromis spp.) obtained in a direct solar dryer. Heliyon 2021, 7, e06798. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, G.; Sakarya, Y.; Durmuş, M. Chemical and physical characterization of spray dried fish oil with different combination ratios of wall component. J. Food Process. Preserv. 2022, 46, e17223. [Google Scholar] [CrossRef]
- Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Refractance window drying: Principles, applications, and emerging innovations. In Drying Technology in Food Processing; Jafari, S.M., Malekjani, N., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 417–455. [Google Scholar]
- Raghavi, L.M.; Moses, J.A.; Anandharamakrishnan, C. Refractance window drying of foods: A review. J. Food Eng. 2018, 222, 267–275. [Google Scholar] [CrossRef]
- Rajoriya, D.; Shewale, S.R.; Bhavya, M.L.; Hebbar, H.U. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innov. Food Sci. Emerg. Technol. 2020, 66, 102530. [Google Scholar] [CrossRef]
- van ‘t Land, M.; Raes, K. Refractance window drying of fish silage—An initial investigation into the effects of physicochemical properties on drying efficiency and nutritional quality. LWT 2019, 102, 71–74. [Google Scholar] [CrossRef]
- Özyurt, G.; Uslu, L.; Durmuş, M.; Sakarya, Y.; Uzlaşir, T.; Küley, E. Chemical and physical characterization of microencapsulated Spirulina fermented with Lactobacillus plantarum. Algal Res. 2023, 73, 103149. [Google Scholar] [CrossRef]
- Kuley, E.; Uslu, L.; Durmus, M.; Sakarya, Y.; Özyurt, G. Enhancement of Spirulina platensis bioactivity by probiotic fermentation and encapsulation by spray-drying. Int. J. Food Sci. Technol. 2023, 58, 6015–6024. [Google Scholar] [CrossRef]
- Durmus, M.; Özogul, Y.; Ozyurt, G.; Ucar, Y.; Kosker, A.R.; Yazgan, H.; Ibrahim, S.A.; Özogul, F. Effects of citrus essential oils on the oxidative stability of microencapsulated fish oil by spray-drying. Front. Nutr. 2023, 9, 978130. [Google Scholar] [CrossRef]
- Rigon, R.T.; Zapata Noreña, C.P. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). J. Food Sci. Technol. 2016, 53, 1515–1524. [Google Scholar] [CrossRef]
- Jafari, S.; Jafari, S.M.; Ebrahimi, M.; Kijpatanasilp, I.; Assatarakul, K. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocoll. 2023, 134, 108068. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Tan, C.P.; Manap, Y.A.; Muhialdin, B.J.; Hussin, A.S.M. Spray Drying for the Encapsulation of Oils-A Review. Molecules 2020, 25, 3873. [Google Scholar] [CrossRef] [PubMed]
- Tolve, R.; Tchuenbou-Magaia, F.; Di Cairano, M.; Caruso, M.C.; Scarpa, T.; Galgano, F. Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Anim. Feed Sci. Technol. 2021, 279, 115036. [Google Scholar] [CrossRef]
- Libonatti, C.; Agüeria, D.; García, C.; Basualdo, M. Weissella paramesenteroides encapsulation and its application in the use of fish waste. Rev. Argent. Microbiol. 2019, 51, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Ayan, S. A review of fish meal replacement with fermented biodegradable organic wastes in aquaculture. Int. J. Fish. Aquat. Stud. 2018, 6, 203–208. [Google Scholar]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, H.; Feng, K.; Liu, J. Oriented Fermentation of Food Waste towards High-Value Products: A Review. Energies 2020, 13, 5638. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Pateiro, M.; Nawaz, A.; Hano, C.; Walayat, N.; Lorenzo, J.M. Strategies to Increase the Value of Pomaces with Fermentation. Fermentation 2021, 7, 299. [Google Scholar] [CrossRef]
- Panyawoot, N.; So, S.; Cherdthong, A.; Chanjula, P. Effect of Feeding Discarded Durian Peel Ensiled with Lactobacillus casei TH14 and Additives in Total Mixed Rations on Digestibility, Ruminal Fermentation, Methane Mitigation, and Nitrogen Balance of Thai Native–Anglo-Nubian Goats. Fermentation 2022, 8, 43. [Google Scholar] [CrossRef]
- Ahuja, I.; Dauksas, E.; Remme, J.F.; Richardsen, R.; Løes, A.K. Fish and fish waste-based fertilizers in organic farming—With status in Norway: A review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed]
Aquatic Animal | Feeding Trial | Ensiling Conditions | Results | Reference |
---|---|---|---|---|
Black Bass (Micropterus salmoides) | 66 days | Acid-treated fish silage | Up to 15% acidified fish silage can be used as a partial substitute for fish meal in the formulation of carnivorous fish feed | [90] |
Japanese sea bass (Lateolabrax japonicus) | 14 days | Protein hydrolysate produced from acid-treated fish silage | Enhanced growth performance of Japanese sea bass is observed when 15% of the fish meal is replaced with silage protein hydrolysate | [91] |
Atlantic salmon (Salmo salar) | 91 days | Protein hydrolysate produced from acid-treated fish silage | The best growth performance of Atlantic salmon is observed when silage protein hydrolysate is included in the diet at levels below 15% | [92] |
Nile tilapia (Oreochromis niloticus L.) | 56 days | Shrimp head protein hydrolysate | Shrimp head protein hydrolysate is a promising alternative protein source for feeding tilapia, and it can improve the growth rate even at dietary inclusion levels as high as 15% | [93] |
Orange-spotted grouper (Epinephelus coioides) | 42 days | Protein hydrolysate produced from acid-treated fish silage | The combination of 10% or 20% silage protein hydrolysate with poultry by-product meal could replace 50% of fish meal protein in the diets without any adverse effects on growth performance | [94] |
African catfish (Clarias gariepinus) | 70 days | Fermented fish silage, which was produced through fermentation by Lactobacillus plantarum using carbohydrate substrates such as molasses, was co-dried with soybean meal, poultry by-product meal, hydrolyzed feather meal, and meat and bone meal | Fermented fish silage co-dried with protein feedstuffs is a suitable protein supplement, capable of providing up to 50% of dietary protein without adversely affecting feed efficiency, fish growth, or health | [95,96] |
Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus) | 70 days | Co-dried fermented fish silage and soybean meal | Co-dried fermented fish silage and soybean meal can be used as partial replacements for fish meal protein in dry aquaculture diets | [97] |
Catfish (Clarias gariepinus) | 14 days | Raw heads of river prawn were fermented with Lactobacillus plantarum using molasses or cassava starch as the carbohydrate source; hydrolyzed feather meal, poultry by-product meal, or soybean meal, used as an alternative filler, was blended with the liquid silage and solar-dried | Dried shrimp head silage meal is a suitable and promising protein feedstuff for fish diets; the digestibility coefficients of dry matter, crude protein, gross energy, and essential amino acids in the silage fed to catfish fingerlings exceeded 70% | [98] |
Nile tilapia (Oreochromis niloticus) | 15 days | Fermentation by Lactobacillus plantarum using carbohydrate substrates such as molasses; the wet silage was combined with poultry by-product meal, a blend of soybean-hydrolyzed feather meal, or menhaden fishmeal for pellet production | Moist fermented fish silage pellets are both physically stable and highly digestible by Nile tilapia, making them suitable as farm-made fish feeds | [46] |
Nile tilapia (Oreochromis niloticus) | 30 days | Fermentation by Lactobacillus plantarum using carbohydrate substrates such as molasses, corn flour, or tapioca flour | Co-dried fermented fish silage is a suitable protein feedstuff in fish diets; the pellets produced from fermented silage demonstrate higher digestibility and excellent water stability | [47] |
Nile tilapia (Oreochromis niloticus) | 90 days | Dried fermented fish silage was combined with tomato by-product meal and potato by-product meal in a proportion of 30:40:30 w/w/w | Replacing 30% of dietary protein with dried fermented fish silage in tilapia diets does not have adverse effects on growth or feed utilization parameters | [99] |
Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus) | 90 days | Fish silage was prepared by fermenting fish waste (60%), yogurt (5%) as a source of Lactobacillus plantarum, molasses (5%), and rice bran (30%) as a filler for 30 days | Replacing 25% of fish meal with dried fermented fish silage in tilapia diets and 50% of fish meal in catfish diets does not significantly adversely affect the growth or feed utilization parameters of the fish | [100] |
Nile tilapia (Oreochromis niloticus) | 84 days | Fermented fish silage was prepared by mixing fish waste (60%), rice bran (30%), dried molasses (5%), and yogurt (5%) as a source of Lactobacillus spp. for the lactic acid anaerobic fermentation process over 30 days | Replacing up to 50% of fish meal with dried fermented fish silage does not have any negative effects on the growth and feed utilization of tilapia; additionally, it results in a 15.59% reduction in feeding costs | [101] |
African catfish (Clarias gariepinus) | 90 days | Fermented fish silage was prepared by mixing fish waste (60%), rice bran (30%), dried molasses (5%), and yogurt (5%) as a source of Lactobacillus spp. for the lactic acid anaerobic fermentation process over 30 days | Replacing 50% of fish meal with dried fermented fish silage in diets does not significantly adversely affect the growth or feed utilization parameters of catfish, and this replacement reduces feed costs | [102] |
Olive flounder (Paralichthys olivaceus) | 70 days | A mixture of fermented fisheries by-products and soybean curd residues | Up to 30% of fish meal can be replaced by this mixture without affecting the growth performance of juvenile olive flounder | [103] |
Catfish (Heteropneustes fossilis), Indian major carp (Labeo rohita) | 60 days | Fish offal wastes were fermented, along with mustard oil cake and rice bran, using a mixture of a commercial suspension of microorganisms, molasses, and water | Fermented fish offal can be included up to a 30% level as a partial replacement for fish meal in the formulation of the fish diet | [104,105] |
European sea bass (Dicentrachus labrax) | 63 days | Apple pomace fermented fish silage, molasses fish silage, and acidified fish silage | Fish silage produced by formic acid or through fermentation with carbohydrate sources and lactic acid bacteria is an effective partial replacement for fish meal in aquaculture feeds | [87] |
Mozambique tilapia (Oreochromis mossambicus) | 52 days | Fish viscera silage produced from acid ensiling | Fish viscera silage can serve as a source of dietary protein and essential amino acids in tilapia diets. The viscera silage can stimulate the cellular non-specific immunity of Oreochromis mossambicus, and protein hydrolysis products are responsible for this stimulation | [76] |
Jundiá (Rhamdia quelen) | 55 days | Fish viscera silage produced from acid ensiling | Fish viscera silage as a high-nutritional-quality and highly digestible nutrient source for jundiá juveniles | [29] |
Tambaqui (Colossoma macropomum) | 21 days | Acidified fish silage, and fermented fish silage with 5% yogurt and 15% of different carbohydrate sources (molasses, wheat bran, and cassava waste) were produced with 0.25% antifungal agent | Acidified and fermented fish viscera silages function as a energy-rich components in aquafeed due to their high fat content in dry matter, and they are efficiently digested in the diets of juvenile tambaqui; further assessment is required to determine the optimal inclusion level of viscera silages in aquafeeds | [32] |
White shrimp (Litopenaeus vannamei) | 56 days | Acid-treated fish silage | Replacing fish meal with acidified fish silage at a 25% inclusion level results in superior growth performance in white shrimp | [89] |
African catfish (Clarias gariepinus) | 14 days | Fermented shrimp head waste meal was produced by fermenting with Lactobacillus plantarum using carbohydrate substrates such as cane molasses | Replacing fish meal with 30% fermented shrimp head waste meal can be a cost-effective and sustainable option in the diet of African catfish | [106] |
Mozambique tilapia (Oreochromis mossambicus) | 52 days | Fish silage oil recovered from fish processing waste | Fish silage oil effectively substitutes the control oil without any negative effects on production performance, while improving cellular non-specific immunity and simultaneously decreasing total mortalities; additionally, fish silage oil is a cost-effective alternative dietary oil for tilapia diets | [74] |
South African abalone (Haliotis midae) | 153 days | Fish silage oil recovered from fish processing waste | Incorporating fish silage oil can enhance cellular immune function in Haliotis midae, but it is important to optimize the inclusion level to counteract any negative effects on production efficiency | [75] |
Barramundi (Lates calcarifer) | 56 days | Fish protein hydrolysate was prepared through the fermentation of tuna fish waste using baker’s yeast Saccharomyces cerevisiae (instant dried yeast) and Lactobacillus casei | Replacing fish meal with tuna protein hydrolysate at 50% and 75% inclusion levels negatively impacted the growth, feed utilization, and digestibility of juvenile barramundi | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimenko, A.; Belyi, L.; Podvolotskaya, A.; Son, O.; Tekutyeva, L. Exploring Sustainable Aquafeed Alternatives with a Specific Focus on the Ensilaging Technology of Fish Waste. Fermentation 2024, 10, 258. https://doi.org/10.3390/fermentation10050258
Maksimenko A, Belyi L, Podvolotskaya A, Son O, Tekutyeva L. Exploring Sustainable Aquafeed Alternatives with a Specific Focus on the Ensilaging Technology of Fish Waste. Fermentation. 2024; 10(5):258. https://doi.org/10.3390/fermentation10050258
Chicago/Turabian StyleMaksimenko, Anastasiia, Leonid Belyi, Anna Podvolotskaya, Oksana Son, and Liudmila Tekutyeva. 2024. "Exploring Sustainable Aquafeed Alternatives with a Specific Focus on the Ensilaging Technology of Fish Waste" Fermentation 10, no. 5: 258. https://doi.org/10.3390/fermentation10050258
APA StyleMaksimenko, A., Belyi, L., Podvolotskaya, A., Son, O., & Tekutyeva, L. (2024). Exploring Sustainable Aquafeed Alternatives with a Specific Focus on the Ensilaging Technology of Fish Waste. Fermentation, 10(5), 258. https://doi.org/10.3390/fermentation10050258