Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Bacterial Culture and Administration of Strains
2.3. Odor Measurement
2.4. Sample Collection and DNA Extraction
2.5. Microbial Community Analysis
3. Results
3.1. Comparison of Odorant Reduction Rates
3.2. Fecal Microbiota Composition
3.3. Microbial Diversity of Cattle Gut
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Jęczmyk, A.; Uglis, J.; Steppa, R. Can animals be the key to the development of tourism: A case study of livestock in agritourism. Animals 2021, 11, 2357. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.W.; Overballe-Petersen, S.; Ermini, L.; Der Sarkissian, C.; Haile, J.; Hellstrom, M.; Spens, J.; Thomsen, P.F.; Bohmann, K.; Cappellini, E.; et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130383. [Google Scholar] [CrossRef]
- Chung, K.Y.; Lee, S.H.; Cho, S.H.; Kwon, E.G.; Lee, J.H. Current situation and future prospects for beef production in South Korea—A review. Asian Australas. J. Anim. Sci. 2018, 31, 951. [Google Scholar] [CrossRef]
- Kesavan, P.; Swaminathan, M. Ethical, social, environmental and economic issues in animal agriculture. In Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries; Springer: Dordrecht, The Netherlands, 2005; pp. 447–462. [Google Scholar]
- Varel, V.H.; Wells, J.E.; Berry, E.D.; Miller, D.N. Manure odor potential and Escherichia coli concentrations in manure slurries of feedlot steers fed 40% corn wet distillers grains. J. Environ. Qual. 2010, 39, 1498–1506. [Google Scholar] [CrossRef]
- Nowocień, K.; Sokołowska, B. Bacillus spp. as a new direction in biocontrol and deodorization of organic fertilizers. AIMS Environ. Sci. 2022, 9, 95–105. [Google Scholar] [CrossRef]
- Varada, V.V.; Kumar, S.; Chhotaray, S.; Tyagi, A.K. Host-specific probiotics feeding influence growth, gut microbiota, and fecal biomarkers in buffalo calves. AMB Express 2022, 12, 118. [Google Scholar] [CrossRef]
- Alam, J.; Jeong, C.D.; Mamuad, L.L.; Sung, H.G.; Kim, D.W.; Cho, S.B.; Lee, K.; Jeon, C.O.; Lee, S.S. Bacterial community dynamics during swine in vitro fermentation using starch as a substrate with different feed additives for odor reduction. Asian Australas. J. Anim. Sci. 2012, 25, 690–700. [Google Scholar] [CrossRef]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynönen, U.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 2018, 8, 10437. [Google Scholar] [CrossRef]
- Ribeiro, G.O.; Oss, D.B.; He, Z.; Gruninger, R.J.; Elekwachi, C.; Forster, R.J.; Yang, W.; Beauchemin, K.A.; McAllister, T.A. Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle. Sci. Rep. 2017, 7, 1276. [Google Scholar] [CrossRef] [PubMed]
- Nalla, K.; Manda, N.K.; Dhillon, H.S.; Kanade, S.R.; Rokana, N.; Hess, M.; Puniya, A.K. Impact of probiotics on dairy production efficiency. Front. Microbiol. 2022, 13, 805963. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef]
- Lan, R.; Koo, J.; Kim, I. Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs. J. Sci. Food Agric. 2017, 97, 1310–1315. [Google Scholar] [CrossRef]
- Lambo, M.T.; Chang, X.; Liu, D. The recent trend in the use of multistrain probiotics in livestock production: An overview. Animals 2021, 11, 2805. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.F. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed. Sci. Technol. 2016, 212, 18–26. [Google Scholar] [CrossRef]
- Várhidi, Z.; Máté, M.; Ózsvári, L. The use of probiotics in nutrition and herd health management in large Hungarian dairy cattle farms. Front. Vet. Sci. 2022, 9, 957935. [Google Scholar] [CrossRef]
- Hu, J.; Kim, I.H. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, nutrient digestibility, diarrhea score, intestinal microbiota, and excreta odor contents in weanling piglets. Animals 2022, 12, 316. [Google Scholar] [CrossRef]
- Welch, C.B.; Ryman, V.E.; Pringle, T.D.; Lourenco, J.M. Utilizing the gastrointestinal microbiota to modulate cattle health through the microbiome-gut-organ axes. Microorganisms 2022, 10, 1391. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Terry, S.A.; Badhan, A.; Wang, Y.; Chaves, A.V.; McAllister, T.A. Fibre digestion by rumen microbiota—A review of recent metagenomic and metatranscriptomic studies. Can. J. Anim. Sci. 2019, 99, 678–692. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, Y.H.; Yoo, J.H.; Park, J.Y.; Shim, M.Y. The Malodor Decreasing Effect of Saccharomyces cerevisiae on Decomposing Waste Egg. Korean J. Environ. Biol. 2016, 34, 177–182. [Google Scholar] [CrossRef]
- Naidu, A.S.; Xie, X.; Leumer, D.A.; Harrison, S.; Burrill, M.J.; Fonda, E.A. Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr. Microbiol. 2002, 44, 196–205. [Google Scholar] [CrossRef]
- Pinloche, E.; McEwan, N.; Marden, J.P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 2013, 8, e67824. [Google Scholar] [CrossRef]
- Halloran, K.; Underwood, M.A. Probiotic mechanisms of action. Early Hum. Dev. 2019, 135, 58–65. [Google Scholar] [CrossRef]
- Dai, X.; Tian, Y.; Li, J.; Su, X.; Wang, X.; Zhao, S.; Liu, L.; Luo, Y.; Liu, D.; Zheng, H.; et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl. Environ. Microbiol. 2015, 81, 1375–1386. [Google Scholar] [CrossRef]
- Alam, M.J.; Islam, M.; Jeon, C.-O.; Lee, K.; Kim, S.-H.; Yang, C.-J.; Kabir, M.E.; Lee, S.-S. In vitro assessment of probiotic potential of selected bacteria isolated from pig faeces with potential application of odour reduction. Int. J. Vet. Sci. Med. 2021, 9, 22–30. [Google Scholar] [CrossRef]
- Hampson, D.J.; Ahmed, N. Spirochaetes as intestinal pathogens: Lessons from a Brachyspira genome. Gut Pathog. 2009, 1, 10. [Google Scholar] [CrossRef]
- Lein-Jöbstl, D.; Schornsteiner, E.; Mann, E.; Wagner, M.; Drillich, M.; Schmitz-Esser, S. Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Front. Microbiol. 2014, 5, 622. [Google Scholar]
Malodorous Substances | Maximum Allowance (ppb) | Before a (ppb) | After b (ppb) | Change Rate (%) | |||
---|---|---|---|---|---|---|---|
Control | Experimental | Control | Experimental | Control | Experimental | ||
Ammonia | 1000 | 280.1 | 302.7 | 68.0 | 108.7 | −75.7 | −64.1 |
Hydrogen sulfide | 20 | 11.1 | 19.8 | 267.2 | 114.3 | 2298.8 | 476.6 |
Dimethyl sulfide | 10 | 4.6 | 8.0 | 1.7 | 1.5 | −62.9 | −81.3 |
Methyl mercaptan | 2 | 3.7 | 27.2 | 8.2 | 4.5 | 122.0 | −83.3 |
Isovaleric acid | 1 | 2.3 | 2.8 | 1.8 | 1.4 | −22.4 | −49.8 |
Butyric aldehyde | 29 | 4.2 | 8.3 | 2.15 | 1.84 | −48.7 | −77.8 |
Butyric acid | 1 | 4.5 | 14.1 | 2.66 | 2.17 | −40.7 | −84.6 |
Valeraldehyde | 3 | 2.1 | 2.3 | 1.34 | 1.16 | −34.9 | −50.1 |
Propionaldehyde | 50 | 4.7 | 65.1 | 11.97 | 16.21 | 156.9 | −75.1 |
Phylum | Before a | After b | ||
---|---|---|---|---|
Control Group (%) | Experimental Group (%) | Control Group (%) | Experimental Group (%) | |
Bacteroidota | 36.19 | 45.36 | 36.27 | 39.30 |
Bacillota | 56.76 | 47.83 | 57.92 | 56.42 |
Pseudomonadota | 2.05 | 0.74 | 2.03 | 1.01 |
Spirochaetota | 2.76 | 0.92 | 2.52 | 1.57 |
Verrucomicrobiota | 0.47 | 0.73 | 0.49 | 0.55 |
Cyanobacteria | 0.15 | 0.81 | 0.10 | 0.32 |
Desulfobacterota | 0.57 | 0.76 | 0.17 | 0.16 |
Fibrobacterota | 0.00 | 0.27 | 0.00 | 0.01 |
Patescibacteria | 0.00 | 0.12 | 0.00 | 0.00 |
Planctomycetota | 0.19 | 0.12 | 0.17 | 0.12 |
Sumerlaeota | 0.00 | 0.14 | 0.00 | 0.04 |
Actinobacteriota | 0.00 | 0.38 | 0.02 | 0.00 |
Deinococcota | 0.00 | 1.15 | 0.00 | 0.01 |
Others c | 0.86 | 0.67 | 0.31 | 0.49 |
Total | 100 | 100 | 100 | 100 |
Alpha Diversity Index | Group | Month | Mean ± SD | Mann–Whitney Test p-Value |
---|---|---|---|---|
Chao1 | Control | 1 | 62.546 ± 4.949 | 0.3548 |
Experiment | 78.957 ± 8.672 | |||
Control | 2 | 75.678 ± 6.288 | 0.1321 | |
Experiment | 85.958 ± 7.643 | |||
Control | 3 | 88.667 ± 7.654 | 0.0664 | |
Experiment | 137.578 ± 16.692 | |||
Shannon | Control | 1 | 3.542 ± 0.215 | 0.7239 |
Experiment | 3.662 ± 11.451 | |||
Control | 2 | 3.577 ± 0.155 | 0.0217 | |
Experiment | 3.803 ± 0.129 | |||
Control | 3 | 3.773 ± 0.112 | 0.0104 | |
Experiment | 4.000 ± 0.210 | |||
Inverse Simpson | Control | 1 | 23.984 ± 3.897 | 0.7911 |
Experiment | 24.446 ± 3.712 | |||
Control | 2 | 25.954 ± 2.165 | 0.4268 | |
Experiment | 27.816 ± 4.032 | |||
Control | 3 | 23.352 ± 3.101 | 0.0579 | |
Experiment | 32.071 ± 6.262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-K.; Hwang, T.-K.; Kim, W.; Jo, Y.; Park, Y.-J.; Kim, M.-C.; Son, H.; Seo, D.; Shin, J.-H. Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes. Fermentation 2024, 10, 473. https://doi.org/10.3390/fermentation10090473
Park M-K, Hwang T-K, Kim W, Jo Y, Park Y-J, Kim M-C, Son H, Seo D, Shin J-H. Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes. Fermentation. 2024; 10(9):473. https://doi.org/10.3390/fermentation10090473
Chicago/Turabian StylePark, Min-Kyu, Tae-Kyung Hwang, Wanro Kim, YoungJae Jo, Yeong-Jun Park, Min-Chul Kim, HyunWoo Son, DaeWeon Seo, and Jae-Ho Shin. 2024. "Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes" Fermentation 10, no. 9: 473. https://doi.org/10.3390/fermentation10090473
APA StylePark, M. -K., Hwang, T. -K., Kim, W., Jo, Y., Park, Y. -J., Kim, M. -C., Son, H., Seo, D., & Shin, J. -H. (2024). Probiotic Feed Additives Mitigate Odor Emission in Cattle Farms through Microbial Community Changes. Fermentation, 10(9), 473. https://doi.org/10.3390/fermentation10090473