Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brewers Spent Grain
2.2. Physico-Chemical Characterization of Brewers’ Spent Grain (BSG)
2.3. Microorganism and Culture Conditions
2.4. Preparation of Fermentation Medium for β-Glucosidase Induction
2.5. Evaluation of Yeast Growth and β-Glucosidase Production in Experimental Medium Containing BSG-F
2.5.1. Microbial Count
2.5.2. β-Glucosidase Activity
2.6. Evaluation of Enzyme Localization
2.7. Statistical Analysis
3. Results
3.1. Physico-Chemical Evaluation and Nutritional Composition of BSG
3.2. Comparison of Growth of W. anomalus BS91 in BSG-F and YPD Media
3.3. Estimation of β-Glucosidase Activity in Experimental Medium Containing BSG-F
3.4. Enzyme Localization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.R.K.; Esen, A. β-Glucosidases. Cell. Mol. Life Sci. 2010, 67, 3389. [Google Scholar] [CrossRef] [PubMed]
- de Morais Souto, B.; Florentino Barbosa, M.; Marinsek Sales, R.M.; Conessa Moura, S.; de Rezende Bastos Araújo, A.; Ferraz Quirino, B. The Potential of β-Glucosidases for Aroma and Flavor Improvement in the Food Industry. Microbe 2023, 1, 100004. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Spagna, G.; Palmeri, R.; Torriani, S. Assessment of β-Glucosidase Activity in Selected Wild Strains of Oenococcus oeni for Malolactic Fermentation. Enzym. Microb. Technol. 2004, 34, 292–296. [Google Scholar] [CrossRef]
- Monteiro, L.M.O.; Pereira, M.G.; Vici, A.C.; Heinen, P.R.; Buckeridge, M.S.; de Lourdes Teixeira de Moraes Polizeli, M. Efficient Hydrolysis of Wine and Grape Juice Anthocyanins by Malbranchea pulchella β-Glucosidase Immobilized on MANAE-Agarose and ConA-Sepharose Supports. Int. J. Biol. Macromol. 2019, 136, 1133–1141. [Google Scholar] [CrossRef]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could Non-Saccharomyces Yeasts Contribute on Innovative Brewing Fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Challenges of the Non-Conventional Yeast Wickerhamomyces anomalus in Winemaking. Fermentation 2018, 4, 68. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and Non-Conventional Yeasts in Beer Production. Fermentation 2018, 4, 38. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, X.; Zhang, Z.; Jiang, Q.; Yang, F.; Yu, P.; Xia, W.; Liu, S. Application of Wickerhamomyces anomalus and Pichia fermentans to Improve the Aroma of Fermented Sour Fish. LWT 2024, 192, 115725. [Google Scholar] [CrossRef]
- Li, Q.; Du, B.; Chen, X.; Zhao, Y.; Zhu, L.; Ma, H.; Sun, B.; Hao, J.; Li, X. Microbial Community Dynamics and Spatial Distribution of Flavor Compound Metabolism during Solid-State Fermentation of Baijiu Enhanced by Wickerhamomyces anomalus. Food Biosci. 2024, 59, 103909. [Google Scholar] [CrossRef]
- Fredlund, E. Central Carbon Metabolism of the Biocontrol Yeast Pichia anomala: Influence of Oxygen Limitation. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 15: Suitability of Taxonomic Units Notified to EFSA until September 2021. EFSA J. 2022, 20, e07045. [Google Scholar] [CrossRef] [PubMed]
- Ben Atitallah, I.; Ntaikou, I.; Antonopoulou, G.; Alexandropoulou, M.; Brysch-Herzberg, M.; Nasri, M.; Lyberatos, G.; Mechichi, T. Evaluation of the Non-Conventional Yeast Strain Wickerhamomyces anomalus (Pichia anomala) X19 for Enhanced Bioethanol Production Using Date Palm Sap as Renewable Feedstock. Renew. Energy 2020, 154, 71–81. [Google Scholar] [CrossRef]
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Potential Applications of Brewery Spent Grain: Critical an Overview. J. Environ. Chem. Eng. 2022, 10, 106951. [Google Scholar] [CrossRef]
- Rocha dos Santos Mathias, T.; Moretzsohn de Mello, P.P.; Servulo, E. Solid Wastes in Brewing Process: A Review. J. Brew. Distill. 2014, 5, 43. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, Wastewater and Waste Management in Brewing Industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
- Faria, N.T.; Marques, S.; Ferreira, F.C.; Fonseca, C. Production of Xylanolytic Enzymes by Moesziomyces spp. Using Xylose, Xylan and Brewery’s Spent Grain as Substrates. New Biotechnol. 2019, 49, 137–143. [Google Scholar] [CrossRef]
- Adeniran, H.A.; Abiose, S.H.; Ogunsua, A.O. Production of Fungal β-Amylase and Amyloglucosidase on Some Nigerian Agricultural Residues. Food Bioprocess Technol. 2010, 3, 693–698. [Google Scholar] [CrossRef]
- Da Silva Menezes, B.; Rossi, D.M.; Ayub, M.A.Z. Screening of Filamentous Fungi to Produce Xylanase and Xylooligosaccharides in Submerged and Solid-State Cultivations on Rice Husk, Soybean Hull, and Spent Malt as Substrates. World J. Microbiol. Biotechnol. 2017, 33, 58. [Google Scholar] [CrossRef]
- Aita, B.C.; Spannemberg, S.S.; Schmaltz, S.; Zabot, G.L.; Tres, M.V.; Kuhn, R.C.; Mazutti, M.A. Production of Cell-Wall Degrading Enzymes by Solid-State Fermentation Using Agroindustrial Residues as Substrates. J. Environ. Chem. Eng. 2019, 7, 103193. [Google Scholar] [CrossRef]
- Dos Santos Mathias, T.R.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and Determination of Brewer’s Solid Wastes Composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef]
- Kurnik, K.; Krzyżyński, M.; Treder, K.; Tretyn, A.; Tyburski, J. Study on Utilizing Solid Food Industry Waste with Brewers’ Spent Grain and Potato Pulp as Possible Peroxidase Sources. J. Food Biochem. 2018, 42, 12446. [Google Scholar] [CrossRef]
- Emmanuel, J.K.; Nganyira, P.D.; Shao, G.N. Evaluating the Potential Applications of Brewers’ Spent Grain in Biogas Generation, Food and Biotechnology Industry: A Review. Heliyon 2022, 8, e11140. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, [CD-ROM]; Association of Official Analysis Chemists International: Rockville, MA, USA, 2007; Volume 1. [Google Scholar]
- Association of Official Analytical Chemists. Official Method 922.06 Fat in Flour; Acid Hydrolysis Method. In Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Rockville, MA, USA, 2012. [Google Scholar]
- Lee, S.C.; Prosky, L.; Vries, J.W. De Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 1992, 75, 395–416. [Google Scholar] [CrossRef]
- Jones, J.K.L.; Stoodley, R.J. Fractionation Using Copper Complexes. Methods Carbohydr. Chem. 1965, 5, 36–38. [Google Scholar]
- Platania, C.; Restuccia, C.; Muccilli, S.; Cirvilleri, G. Efficacy of Killer Yeasts in the Biological Control of Penicillium digitatum on Tarocco Orange Fruits (Citrus sinensis). Food Microbiol. 2012, 30, 219–225. [Google Scholar] [CrossRef]
- Muccilli, S.; Wemhoff, S.; Restuccia, C.; Meinhardt, F. Exoglucanase-Encoding Genes from Three Wickerhamomyces anomalus Killer Strains Isolated from Olive Brine. Yeast 2013, 30, 33–43. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol Ability and Action Mechanism of Food-Isolated Yeast Strains against Botrytis cinerea Causing Post-Harvest Bunch Rot of Table Grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. The Effect of Locust Bean Gum (LBG)-Based Edible Coatings Carrying Biocontrol Yeasts against Penicillium digitatum and Penicillium italicum Causal Agents of Postharvest Decay of Mandarin Fruit. Food Microbiol. 2016, 58, 87–94. [Google Scholar] [CrossRef]
- Restuccia, C.; Muccilli, S.; Palmeri, R.; Randazzo, C.L.; Caggia, C.; Spagna, G. An Alkaline β-Glucosidase Isolated from an Olive Brine Strain of Wickerhamomyces anomalus. FEMS Yeast Res. 2011, 11, 487–493. [Google Scholar] [CrossRef]
- Parafati, L.; Palmeri, R.; Pitino, I.; Restuccia, C. Killer Yeasts Isolated from Olive Brines: Technological and Probiotic Aptitudes. Food Microbiol. 2022, 103, 103950. [Google Scholar] [CrossRef]
- Pitson, S.M.; Seviour, R.J.; McDougall, B.M. Induction and Carbon Source Control of Extracellular β-Glucosidase Production in Acremonium persicinum. Mycol. Res. 1999, 103, 161–167. [Google Scholar] [CrossRef]
- Kemppainen, K.; Rommi, K.; Holopainen, U.; Kruus, K. Steam Explosion of Brewer’s Spent Grain Improves Enzymatic Digestibility of Carbohydrates and Affects Solubility and Stability of Proteins. Appl. Biochem. Biotechnol. 2016, 180, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Yu, D.; Sun, Y.; Wang, W.; O’Keefe, S.F.; Neilson, A.P.; Feng, H.; Wang, Z.; Huang, H. Recovery of Protein Hydrolysates from Brewer’s Spent Grain Using Enzyme and Ultrasonication. Int. J. Food Sci. Technol. 2020, 55, 357–368. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Ma, S.; Wang, X.X.; Zheng, X.L. Modification and Application of Dietary Fiber in Foods. J. Chem. 2017, 2017, 9340427. [Google Scholar] [CrossRef]
- Allegretti, C.; Bellinetto, E.; D’arrigo, P.; Griffini, G.; Marzorati, S.; Rossato, L.A.M.; Ruffini, E.; Schiavi, L.; Serra, S.; Strini, A.; et al. Towards a Complete Exploitation of Brewers’ Spent Grain from a Circular Economy Perspective. Fermentation 2022, 8, 151. [Google Scholar] [CrossRef]
- Bravi, E.; De Francesco, G.; Sileoni, V.; Perretti, G.; Galgano, F.; Marconi, O. Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants 2021, 10, 165. [Google Scholar] [CrossRef]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; Del Nozal, M.J. Variability of Brewer’s Spent Grain within a Brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Bianco, A.; Budroni, M.; Zara, S.; Mannazzu, I.; Fancello, F.; Zara, G. The Role of Microorganisms on Biotransformation of Brewers’ Spent Grain. Appl. Microbiol. Biotechnol. 2020, 104, 8661–8678. [Google Scholar] [CrossRef]
- Sahin, A.W.; Hardiman, K.; Atzler, J.J.; Vogelsang-O’Dwyer, M.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: The Impact of Two BSG-Derived Ingredients on Techno-Functional and Nutritional Characteristics of Fibre-Enriched Pasta. Innov. Food Sci. Emerg. Technol. 2021, 68, 102633. [Google Scholar] [CrossRef]
- Llimós, J.; Martínez-Avila, O.; Marti, E.; Corchado-Lopo, C.; Llenas, L.; Gea, T.; Ponsá, S. Brewer’s Spent Grain Biotransformation to Produce Lignocellulolytic Enzymes and Polyhydroxyalkanoates in a Two-Stage Valorization Scheme. Biomass Convers. Biorefin. 2022, 12, 3921–3932. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Biotechnological Potential of Brewers Spent Grain and Its Recent Applications. Waste Biomass Valorization 2012, 3, 213–232. [Google Scholar] [CrossRef]
- Bernal-Ruiz, M.; Correa-Lozano, A.; Gomez-Sánchez, L.; Quevedo-Hidalgo, B.; Rojas-Pérez, L.C.; García-Castillo, C.; Gutiérrez-Rojas, I.; Narváez-Rincón, P.C. Brewer’s Spent Grain as Substrate for Enzyme and Reducing Sugar Production Using Penicillium sp. HC1. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2021, 45, 850–863. [Google Scholar] [CrossRef]
- Nishida, V.S.; de Oliveira, R.F.; Brugnari, T.; Correa, R.C.G.; Peralta, R.A.; Castoldi, R.; de Souza, C.G.M.; Bracht, A.; Peralta, R.M. Immobilization of Aspergillus awamori β-Glucosidase on Commercial Gelatin: An Inexpensive and Efficient Process. Int. J. Biol. Macromol. 2018, 111, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Su, Y.; Wang, R.; Zhang, H.; Jing, H.; Meng, J.; Zhang, G.; Huang, L.; Guo, L.; Wang, J.; et al. Microbial Production and Applications of β-Glucosidase—A Review. Int. J. Biol. Macromol. 2024, 256, 127915. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.Y.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
- De Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Su, M.; Hu, Y.; Cui, Y.; Wang, Y.; Yu, H.; Liu, J.; Dai, W.; Piao, C. Production of β-Glucosidase from Okara Fermentation Using Kluyveromyces marxianus. J. Food Sci. Technol. 2021, 58, 366–376. [Google Scholar] [CrossRef]
- Zhang, B.; Wendan, Y.; Wang, F.; Omedi, J.O.; Liu, R.; Huang, J.; Zhang, L.; Zou, Q.; Huang, W.; Li, S. Use of Kluyveromyces marxianus Prefermented Wheat Bran as a Source of Enzyme Mixture to Improve Dough Performance and Bread Biochemical Properties. Cereal Chem. 2019, 96, 142–153. [Google Scholar] [CrossRef]
- Magwaza, B.; Amobonye, A.; Pillai, S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024, 225, 49–67. [Google Scholar] [CrossRef] [PubMed]
Parameters | BSG |
---|---|
Moisture (%) | 3.73 ± 0.04 |
Activity water (aw) | 0.35 ± 0.02 |
Proteins (%) | 20.13 ± 0.37 |
Lipids (%) | 2.18 ± 0.02 |
Ashes (%) | 3.24 ± 0.00 |
Reducing sugar (%) | 2.50 ± 0.03 |
Total carbohydrates (%) | 70.72 ± 0.04 |
Fiber (%) | 65.00 ± 0.06 |
Cell Culture | β-Glucosidase Activity (U/mL) |
---|---|
Extracellular fraction | - |
Intracellular fraction | 2.1 ± 0.2 |
Wall-bound fraction | 366.1 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parafati, L.; Proetto, I.; Palmeri, R.; Pesce, F.; Fallico, B.; Restuccia, C. Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential. Fermentation 2024, 10, 472. https://doi.org/10.3390/fermentation10090472
Parafati L, Proetto I, Palmeri R, Pesce F, Fallico B, Restuccia C. Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential. Fermentation. 2024; 10(9):472. https://doi.org/10.3390/fermentation10090472
Chicago/Turabian StyleParafati, Lucia, Ilaria Proetto, Rosa Palmeri, Fabiola Pesce, Biagio Fallico, and Cristina Restuccia. 2024. "Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential" Fermentation 10, no. 9: 472. https://doi.org/10.3390/fermentation10090472
APA StyleParafati, L., Proetto, I., Palmeri, R., Pesce, F., Fallico, B., & Restuccia, C. (2024). Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential. Fermentation, 10(9), 472. https://doi.org/10.3390/fermentation10090472