Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Processing Waste
2.2. Experimental Setup and Sampling
2.3. Sample Analysis
2.4. Energy Balance
3. Results
3.1. Fermentation Test
3.2. BPP and Biogas Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, M.M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Kulichkova, G.I.; Ivanova, T.S.; Köttner, M.; Volodko, O.I.; Spivak, S.I.; Tsygankov, S.P.; Blume, Y.B. Plant Feedstocks and their Biogas Production Potentials. Open Agric. 2020, 14, 219–234. [Google Scholar] [CrossRef]
- Chew, K.R.; Leong, H.Y.; Khoo, K.S.; Vo, D.-V.N.; Anjum, H.; Chang, C.-K.; Show, P.L. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Subbarao, P.M.V.; D’ Silva, T.C.; Adlak, K.; Kumar, S.; Chandra, R.; Vijay, V.K. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environ. Res. 2023, 234, 116286. [Google Scholar] [CrossRef]
- Petraityte, D.; Arlauskiene, A.; Ceseviciene, J. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Soil Mineral Nitrogen and Winter Wheat Nitrogen Accumulation in Clay Loam. Agronomy 2022, 12, 402. [Google Scholar] [CrossRef]
- Mignogna, D.; Ceci, P.; Cafaro, C.; Corazzi, G.; Avino, P. Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Appl. Sci. 2023, 13, 10219. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, L.; Guo, W.; Zhang, W.; Sajjad, W.; Ilahi, N.; Usman, M.; Faisal, S.; Bahadur, A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Suhartini, S.; Nurika, I.; Paul, R.; Melville, L. Waste and Agricultural crops residues. Bioenerg. Res. 2021, 14, 844–859. [Google Scholar] [CrossRef]
- Wesselak, V.; Schabbach, T.; Link, T.; Fischer, J. Regenerative Energietechnik, 2nd ed.; Springer Vieweg Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; pp. 497–511. [Google Scholar] [CrossRef]
- Eder, B.; Krieg, A. Biogas-Praxis–Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, Umwelt, 5th ed.; Ökobuch: Staufen bei Freiburg, Germany, 2012; pp. 19–81. [Google Scholar]
- Döhler, H. Faustzahlen Biogas, 3rd ed.; Fachagentur Nachwachsende Rohstoffe; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL): Darmstadt, Germany, 2013; pp. 98–165. [Google Scholar]
- Reisinger, H.; Domenig, M.; Thaler, P.; Lampert, C. Rückstände aus der Nahrungs- und Genussmittelproduktion–Materialien zur Abfallwirtschaft; Umweltbundesamt GmbH: Wien, Austria, 2012; ISBN 978-3-99004-207-6. [Google Scholar]
- Rocha-Meneses, L.; Zannerni, R.; Inayat, A.; Abdallah, M.; Shanableh, A.; Ghenai, C.; Kamil, M.; Kikas, T. Current progress in anaerobic digestion reactors and parameters optimization. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA). DWA-M 363: Herkunft und Verwertung von Biogas; German Association for Water, Wastewater and Waste: Hennef, Germany, 2022; Volume 1, pp. 20–32. ISBN 978-3-96862-163-0. [Google Scholar]
- Wu, D.; Li, L.; Peng, Y.; Yang, P.; Peng, X.; Sun, Y.; Wang, X. State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis. Renew. Sustain. Energy Rev. 2021, 148, 111260. [Google Scholar] [CrossRef]
- Isaah, A.-A.; Kabera, T.; Kemausuor, F. Biogas optimisation processes and effluent quality: A review. Biomass Bioenergy 2020, 133, 105449. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Leu Tho, B.; Song Toan, P.P.; Hoang Minh, G. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Bhat, A.H.; Ren, Z.; Tao, L. Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. iScience 2020, 23, 101221. [Google Scholar] [CrossRef] [PubMed]
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse–Grundlagen, Techniken und Verfahren, 3rd ed.; Springer: Berlin, Germany, 2016; pp. 1610–1635. [Google Scholar]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Vienna, Austria, 2013; ISBN 978-1-910154-03-8.
- Skwarek, P.; Karwowska, M. Fruit and vegetable processing by-products as functional meat product ingredients -a chance to improve the nutritional value. LWT 2023, 189, 115442. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Chaudhari, P.K.; Ghosh, P. Anaerobic digestion of fruit and vegetable waste: A critical review of associated challenges. Environ. Sci. Pollut. Res. 2023, 30, 24987–25012. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.; Ahmed, S.; Kumar, A. Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): Potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Conv. Bioref. 2022, 12, 3573–3592. [Google Scholar] [CrossRef]
- Ji, C.; Kong, C.-X.; Mei, Z.-L.; Li, J. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl. Biochem. Biotechnol. 2017, 183, 906–922. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, P.; Sumithra Devi, S.; Nand, K. Anaerobic digestion of fruit and vegetable processing wastes for biogas production. Bioresour. Technol. 1992, 40, 43–48. [Google Scholar] [CrossRef]
- Bardiya, N.; Somayaji, D.; Khanna, S. Biomethanation of banana peel and pineapple waste. Bioresour. Technol. 1996, 58, 73–76. [Google Scholar] [CrossRef]
- Hammid, S.A.; Aini, N.; Selaman, R. Anaerobic Digestion of Fruit Wastes for Biogas Production. Int. J. Adv. Res. Innov. Ideas Educ. 2019, 5, 34–38. [Google Scholar]
- FAO. Banana Market Review–Preliminary Results 2023; FAO: Rome, Italy, 2023.
- FAO. Major Tropical Fruits Market Review–Preliminary Results 2022; FAO: Rome, Italy, 2023.
- DIN EN 12880:2001-02; Characterization of Sludges–Determination of Dry Residue and Water Content; German Version EN 12880:2000. Deutsches Institut für Normung e. V.: Berlin, Germany, 2001. [CrossRef]
- DIN EN 15935:2021-10; Soil, Waste, Treated Biowaste and Sludge–Determination of loss on Ignition; German Version EN 15935:2021. Deutsches Institut für Normung e. V.: Berlin, Germany, 2021. [CrossRef]
- DIN 38414-19:1999-12; German Standard Methods for the Examination of Water, Waste Water and Sludge–Sludge and Sediments (Group S)–Part 19: Determination of the Steam-Volatile Organic Acids (S 19). Deutsches Institut für Normung e. V.: Berlin, Germany, 1999. [CrossRef]
- DIN 38406-5:1983-10; German Standard Methods for the Examination of Water, Wastewater and Sludge; Cations (Group E); Determination of Ammonia-Nitrogen (E5). Deutsches Institut für Normung e. V.: Berlin, Germany, 1983. [CrossRef]
- Wilken, D.; Rauh, S.; Bontempo, G.; Hofmann, F.; Hartel, M.; Wiesheu, M. Biowaste to Biogas. Fachverband Biogas e.V. (FvB). Available online: www.biowaste-to-biogas.com (accessed on 1 March 2024).
- Cruz, I.A.; Andrade, L.R.S.; Bharagava, R.N.; Nadda, A.K.; Bilal, M.; Figueiredo, R.T.; Ferreira, L.F.R. An overview of process monitoring for anaerobic digestion. Biosys. Eng. 2021, 207, 106–119. [Google Scholar] [CrossRef]
- Shen, R.; Geng, T.; Yao, Z.; Yu, J.; Luo, J.; Wang, H.; Zhao, L. Characteristics of instability and suitable early-warning indicators for cornstalk-fed anaerobic digestion subjected to various sudden changes. Energy 2023, 278, 127735. [Google Scholar] [CrossRef]
- Manhongo, T.T.; Chimphango, A.F.A.; Thornley, P.; Röder, M. Current status and opportunities for fruit processing waste biorefineries. Renew. Sustain. Energy Rev. 2022, 155, 111823. [Google Scholar] [CrossRef]
- Monspart-Sényi, J. Fruit Processing Waste Management. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Ed.; Wiley: Hoboken, NJ, USA, 2006; pp. 171–186. [Google Scholar]
- Rani, D.S.; Nand, K. Ensilage of pineapple processing waste for methane generation. J. Waste Manag. 2004, 24, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- FAO. Nitrogen and Protein Content Measurement and Nitrogen to Protein Conversion Factors for Dairy and Soy Protein-Based Foods: A Systematic Review and Modelling Analysis; World Health Organization: Paris, France, 2019.
- Kacprzak, M.; Malińska, K.; Grosser, A.; Sobik-Szołtysek, J.; Wystalska, K.; Dróżdż, D.; Jasińska, A.; Meers, E. Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies–environmental aspects. Crit. Rev. Environ. Sci. Technol. 2023, 53, 914–938. [Google Scholar] [CrossRef]
- Hassan, H.F.; Hassan, U.F.; Usher, O.A.; Ibrahim, A.B.; Tabe, N.N. Exploring the Potentials of Banana (Musa Sapietum) Peels in Feed Formulation. Int. J. Adv. Res. Chem. Sci. 2018, 5, 10–14. [Google Scholar] [CrossRef]
- Clarke, W.P.; Radnidge, P.; Lai, T.E.; Jensen, P.D.; Hardin, M.T. Digestion of waste bananas to generate energy in Australia. J. Waste Manag. 2008, 28, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Gumisiriza, R. Enhancement of Anaerobic Digestion of Banana Waste by Reactor Design and Substrate Pre-treatment for Improved Biogas Production. Ph.D. Thesis, Universität Kassel, Witzenhausen, Kassel, 2021. [Google Scholar]
- Tumutegyereize, P.; Muranga, F.I.; Kawongolo, J.; Nabugoomu, F. Optimization of biogas production from banana peels: Effect of particle size on methane yield. Afr. J. Biotechnol. 2011, 10, 18243–18251. [Google Scholar] [CrossRef]
- De Matos, M.; Bianchi Pedroni Medeiros, A.; De Melo Pereira, G.V.; Thomaz Soccol, V.; Soccol, C.R. Production and Characterization of a Distilled Alcoholic Beverage Obtained by Fermentation of Banana Waste (Musa cavendishii) from Selected Yeast. Fermentation 2017, 3, 62. [Google Scholar] [CrossRef]
- Sevillano, C.A.; Pesantes, A.A.; Peña Carpio, E.; Martínez, E.J.; Gómez, X. Anaerobic Digestion for Producing Renewable Energy-The Evolution of this Technology in a New Uncertain Scenario. Entropy 2021, 23, 145. [Google Scholar] [CrossRef] [PubMed]
- Kodagoda, G.K.; Marapana, U. Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties. J. Phramacogn. Phytochem. 2017, 6, 492–497. [Google Scholar]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of Pineapple Waste: A Review. J. Food Sci. Technol. Nepal 2013, 6, 10–18. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Sivakumar, N. Citric acid production by Koji fermentation using banana peel as a novel substrate. Bioresour. Technol. 2010, 101, 5552–5556. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Fernando, W.M.A.D.B.; Brennan, M.; Brennan, C.S.; Jayasena, V.; Coorey, R. Effect of extraction method and ripening stage on banana peel pigments. Int. J. Food Sci. Technol. 2016, 51, 1449–1456. [Google Scholar] [CrossRef]
- Chulalaksananukul, S.; Sinbuathong, N.; Chulalaksananukul, W. Bioconversion of Pineapple Solid Waste under Anaerobic Condition through Biogas Production. KKU Res. J. 2012, 17, 734–742. [Google Scholar]
- Zhu, Y.; Luan, Y.; Zhao, Y.; Liu, J.; Duan, Z.; Ruan, R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023, 12, 1949. [Google Scholar] [CrossRef] [PubMed]
- Angelonidi, E.; Smith, S. R A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015, 29, 549–557. [Google Scholar] [CrossRef]
- Thaemngoen, A.; Saritpongteeraka, K.; Leu, S.-Y.; Phuttaro, C.; Sawatdeenarunat, C.; Chaiprapat, S. Anaerobic Digestion of Napier Grass (Pennisetum purpureum) in Two-Phase Dry Digestion System Versus Wet Digestion System. Bioenerg. Res. 2020, 13, 853–865. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, D.; Tang, Z.; Li, K.; Guo, H.; Niu, X.; Yi, L. Comparative environmental and economic life cycle assessment of dry and wet anaerobic digestion for treating food waste and biogas digestate. J. Clean. Prod. 2020, 338, 130674. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour. Technol. 2022, 344, 126311. [Google Scholar] [CrossRef] [PubMed]
- Fachagentur Nachwachsende Rohstoffe e.V. (FNR); Deutsches Biomasseforschungszentrum gemeinnützige GmbH (DBFZ); Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL). Leitfaden Biogas–Von der Gewinnung zur Nutzung; Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Gülzow-Prüzen, Germany, 2016; Volume 7, ISBN 3-00-014333-5. [Google Scholar]
- Jehan, O.S.; Sanusi, S.N.A.; Sukor, M.Z. Biogas production from pineapple core-A preliminary study. In Proceedings of the 3rd Electronic and Green Materials International Conference 2017 (EGM 2017), Aonang, Thailand, 30 April 2017. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. J. Chem. Eng. 2019, 3, 76. [Google Scholar] [CrossRef]
- Moreno-Andrade, I.; Moreno, G.; Quijano, G. Theoretical framework for the estimation of H2S concentration in biogas produced from complex sulfur-rich substrates. ESPR 2020, 27, 15959–15966. [Google Scholar] [CrossRef] [PubMed]
Parameter | BW | PW | ||||
---|---|---|---|---|---|---|
Min. | Max. | References | Min. | Max. | References | |
Water content (%) | 62.3 | 85.4 | [44,45,46,47,48,49] | 71.1 | 92.2 | [40,50,51] |
TS (%) | 10.7 | 18.9 | [27,28,46,47,52] | 7.8 | 29.0 | [27,28,50,51] |
9.5 | 18.6 | This study | 8.7 | 14.3 | This study | |
VS (% TS) | 85.6 | 92.3 | [27,28,46,47] | 89.4 | 96.1 | [27,28,40,51] |
82.8 | 86.6 | This study | 93.3 | 96.3 | This study | |
Cellulose (%) | 11.1 | 13.1 | [28,46] | 11.2 | 19.8 | [27,40,51] |
Hemicellulose (%) | 5.4 | 14.7 | [28,46] | 7.0 | 11.7 | [27,40] |
Crude protein (%) | 2.0 | 8.1 | [44,45,46,48,52,53] | 3.1 | 5.0 | [40,50] |
Crude fat (%) | 0.4 | 12.1 | [44,45,46,48,52,53] | 2.4 | 4.8 | [50] |
Crude fibre (%) | 1.9 | 14.2 | [44,49,52,53] | 5.8 | 42.0 | [50] |
Carbohydrates (%) | 11.8 | 60.2 | [27,44,48,52,53] | 35.0 | 83.0 | [27,50] |
C/N ratio | 30:1 | 39:1 | [27,47] | 55:1 | 77:1 | [27,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabinovich, V.A.; Linnenberg, C.; Theilen, U.; Weigand, H. Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion. Fermentation 2024, 10, 261. https://doi.org/10.3390/fermentation10050261
Rabinovich VA, Linnenberg C, Theilen U, Weigand H. Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion. Fermentation. 2024; 10(5):261. https://doi.org/10.3390/fermentation10050261
Chicago/Turabian StyleRabinovich, Vita Aleksandrovna, Carsten Linnenberg, Ulf Theilen, and Harald Weigand. 2024. "Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion" Fermentation 10, no. 5: 261. https://doi.org/10.3390/fermentation10050261
APA StyleRabinovich, V. A., Linnenberg, C., Theilen, U., & Weigand, H. (2024). Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion. Fermentation, 10(5), 261. https://doi.org/10.3390/fermentation10050261