Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeasts Procurement and Cultivation
2.2. Fermentation Experiment
2.3. Analysis of Samples
2.4. Mathematical Modelling
3. Results and Discussion
3.1. SEM Imaging
3.2. Dissolved Oxygen Measurements
3.3. Yeast Growth and Productivity
3.4. Substrate Uptake
3.5. Ethanol Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | Meaning |
µm | Maximum specific growth rate |
Pb | Biomass volumetric productivity |
x | Cell concentration per volume |
x0 | Cell concentration at the initial time |
c | Empirical constant in the Equation (2) |
Specific rate of substrate uptake | |
S | Substrate uptake at specific time |
S0 | Substrate uptake at initial time |
α and β | Constants measured using Equation (3) |
Overall biomass yield | |
Xp | Concentration of alcohol |
a & b | Constants in the Equation (5) |
Specific rate of ethanol production | |
Overall ethanol yield |
References
- Reshmy, R.; Paulose, T.A.P.; Philip, E.; Thomas, D.; Madhavan, A.; Sirohi, R.; Binod, P.; Kumar Awasthi, M.; Pandey, A.; Sindhu, R. Updates on High Value Products from Cellulosic Biorefinery. Fuel 2022, 308, 122056. [Google Scholar] [CrossRef]
- Claassen, P.A.M.; Lopez Contreras, A.M.; Sijtsma, L.; Weusthuis, R.A.; Van Lier, J.B.; Van Niel, E.W.J.; Stams, A.J.M.; De Vries, S.S. Utilisation of Biomass for the Supply of Energy Carriers. Appl. Microbiol. Biotechnol. 1999, 52, 741–755. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Faaij, A.P.C. Outlook for Advanced Biofuels. Energy Policy 2006, 34, 3268–3283. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S. Use of Higher Alcohol Biofuels in Diesel Engines: A Review. Renew. Sustain. Energy Rev. 2016, 60, 84–115. [Google Scholar] [CrossRef]
- Mendiburu, A.Z.; Lauermann, C.H.; Hayashi, T.C.; Mariños, D.J.; Rodrigues da Costa, R.B.; Coronado, C.J.R.; Roberts, J.J.; de Carvalho, J.A. Ethanol as a Renewable Biofuel: Combustion Characteristics and Application in Engines. Energy 2022, 257, 124688. [Google Scholar] [CrossRef]
- Limayem, A.; Ricke, S.C. Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects. Prog. Energy Combust. Sci. 2012, 38, 449–467. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Unni, R.; Paul, S.A.; Sindhu, R.; Madhavan, A.; Sirohi, R.; Pandey, A.; Binod, P. Bioethanol—A Promising Alternative Fuel for Sustainable Future. In Valorization of Biomass to Bioproducts: Organic Acids and Biofuels; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- David, A.J.; Abinandan, S.; Vaidyanathan, V.K.; Xu, C.C.; Krishnamurthi, T. A Critical Review on Current Status and Environmental Sustainability of Pre-Treatment Methods for Bioethanol Production from Lignocellulose Feedstocks. 3 Biotech 2023, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Melendez, J.R.; Mátyás, B.; Hena, S.; Lowy, D.A.; El Salous, A. Perspectives in the Production of Bioethanol: A Review of Sustainable Methods, Technologies, and Bioprocesses. Renew. Sustain. Energy Rev. 2022, 160, 112260. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Zhang, F.; Del Cardayre, S.B.; Keasling, J.D. Microbial Engineering for the Production of Advanced Biofuels. Nature 2012, 488, 320–328. [Google Scholar] [CrossRef]
- Oh, Y.K.; Hwang, K.R.; Kim, C.; Kim, J.R.; Lee, J.S. Recent Developments and Key Barriers to Advanced Biofuels: A Short Review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef]
- Klein, B.C.; de Mesquita Sampaio, I.L.; Mantelatto, P.E.; Filho, R.M.; Bonomi, A. Beyond Ethanol, Sugar, and Electricity: A Critical Review of Product Diversification in Brazilian Sugarcane Mills. Biofuels Bioprod. Biorefining 2019, 13, 809–821. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent Updates on Different Methods of Pretreatment of Lignocellulosic Feedstocks: A Review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Peinemann, J.C.; Pleissner, D. Continuous Pretreatment, Hydrolysis, and Fermentation of Organic Residues for the Production of Biochemicals. Bioresour. Technol. 2020, 295, 122256. [Google Scholar] [CrossRef]
- Zabaniotou, A. Redesigning a Bioenergy Sector in EU in the Transition to Circular Waste-Based Bioeconomy-A Multidisciplinary Review. J. Clean. Prod. 2018, 177, 197–206. [Google Scholar] [CrossRef]
- Conteratto, C.; Artuzo, F.D.; Benedetti Santos, O.I.; Talamini, E. Biorefinery: A Comprehensive Concept for the Sociotechnical Transition toward Bioeconomy. Renew. Sustain. Energy Rev. 2021, 151, 111527. [Google Scholar] [CrossRef]
- Martins, M.; Sganzerla, W.G.; Forster-Carneiro, T.; Goldbeck, R. Recent Advances in Xylo-Oligosaccharides Production and Applications: A Comprehensive Review and Bibliometric Analysis. Biocatal. Agric. Biotechnol. 2023, 47, 102608. [Google Scholar] [CrossRef]
- Weber, C.; Farwick, A.; Benisch, F.; Brat, D.; Dietz, H.; Subtil, T.; Boles, E. Trends and Challenges in the Microbial Production of Lignocellulosic Bioalcohol Fuels. Appl. Microbiol. Biotechnol. 2010, 87, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W. Advanced Biofuels and Bioproducts, 1st ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Capilla, M.; Silvestre, C.; Valles, A.; Álvarez-Hornos, F.J.; San-Valero, P.; Gabaldón, C. The Influence of Sugar Composition and PH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation. Fermentation 2022, 8, 226. [Google Scholar] [CrossRef]
- Ruchala, J.; Kurylenko, O.O.; Dmytruk, K.V.; Sibirny, A.A. Construction of Advanced Producers of First- and Second-Generation Ethanol in Saccharomyces Cerevisiae and Selected Species of Non-Conventional Yeasts (Scheffersomyces Stipitis, Ogataea Polymorpha). J. Ind. Microbiol. Biotechnol. 2020, 47, 109–132. [Google Scholar] [CrossRef]
- Lee, F.A. Alcoholic Fermentation. In Basic Food Chemistry; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Nanda, S.; Pattnaik, F.; Patra, B.R.; Kang, K.; Dalai, A.K. A Review of Liquid and Gaseous Biofuels from Advanced Microbial Fermentation Processes. Fermentation 2023, 9, 813. [Google Scholar] [CrossRef]
- Kasavi, C.; Finore, I.; Lama, L.; Nicolaus, B.; Oliver, S.G.; Toksoy Oner, E.; Kirdar, B. Evaluation of Industrial Saccharomyces Cerevisiae Strains for Ethanol Production from Biomass. Biomass Bioenergy 2012, 45, 230–238. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors Affecting Ethanol Fermentation Using Saccharomyces Cerevisiae BY4742. Biomass Bioenergy 2014, 47, 395–401. [Google Scholar] [CrossRef]
- Abdel-Banat, B.M.A.; Hoshida, H.; Ano, A.; Nonklang, S.; Akada, R. High-Temperature Fermentation: How Can Processes for Ethanol Production at High Temperatures Become Superior to the Traditional Process Using Mesophilic Yeast? Appl. Microbiol. Biotechnol. 2010, 85, 861–867. [Google Scholar] [CrossRef]
- Kurylenko, O.O.; Ruchala, J.; Hryniv, O.B.; Abbas, C.A.; Dmytruk, K.V.; Sibirny, A.A. Metabolic Engineering and Classical Selection of the Methylotrophic Thermotolerant Yeast Hansenula Polymorpha for Improvement of High-Temperature Xylose Alcoholic Fermentation. Microb. Cell Fact. 2014, 13, 112. [Google Scholar] [CrossRef]
- Mohd Azhar, S.H.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Mohd Faik, A.A.; Rodrigues, K.F. Yeasts in Sustainable Bioethanol Production: A Review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Timilsina, G.R. Status and Barriers of Advanced Biofuel Technologies: A Review. Renew. Energy 2011, 36, 3541–3549. [Google Scholar] [CrossRef]
- Hoshida, H.; Akada, R. High-Temperature Bioethanol Fermentation by Conventional and Nonconventional Yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Gellissen, G.; Hollenberg, C.P. Hansenula. In Enyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 976–982. [Google Scholar] [CrossRef]
- Radecka, D.; Mukherjee, V.; Mateo, R.Q.; Stojiljkovic, M.; Foulquié-Moreno, M.R.; Thevelein, J.M. Looking beyond Saccharomyces: The Potential of Non-Conventional Yeast Species for Desirable Traits in Bioethanol Fermentation. FEMS Yeast Res. 2015, 15, fov053. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Sánchez, S.; Bravo, V. Production of Xylitol and Ethanol by Hansenula Polymorpha from Hydrolysates of Sunflower Stalks with Phosphoric Acid. Ind. Crops Prod. 2012, 40, 160–166. [Google Scholar] [CrossRef]
- Martínez-Cartas, M.L.; Olivares, M.I.; Sánchez, S. Production of Bioalcohols and Antioxidant Compounds by Acid Hydrolysis of Lignocellulosic Wastes and Fermentation of Hydrolysates with Hansenula Polymorpha. Eng. Life Sci. 2019, 19, 522–536. [Google Scholar] [CrossRef]
- Yamakawa, C.K.; Kastell, L.; Mahler, M.R.; Martinez, J.L.; Mussatto, S.I. Exploiting New Biorefinery Models Using Non-Conventional Yeasts and Their Implications for Sustainability. Bioresour. Technol. 2020, 309, 123374. [Google Scholar] [CrossRef]
- Ryabova, O.B.; Chmil, O.M.; Sibirny, A.A. Xylose and Cellobiose Fermentation to Ethanol by the Thermotolerant Methylotrophic Yeast Hansenula polymorpha. FEMS Yeast Res. 2003, 4, 157–164. [Google Scholar] [CrossRef]
- du Preez, J.C. Process Parameters and Environmental Factors Affecting D-Xylose Fermentation by Yeasts. Enzyme Microb. Technol. 1994, 16, 944–956. [Google Scholar] [CrossRef]
- Lindegren, C.C.; Nagai, S.; Nagai, H. Induction of Respiratory Deficiency in Yeast by Manganese, Copper, Cobalt and Nickel. Nature 1958, 182, 446–448. [Google Scholar] [CrossRef]
- LSCI General Catalogue 2019. Languedoc Scientifique Company: Rivesaltes, France. Available online: https://lsci.fr/index.php/page-d-exemple/ (accessed on 13 May 2024).
- Sánchez, S.; Bravo, V.; Castro, E.; Moya, A.J.; Camacho, F. The Production of Xylitol from D-Xylose by Fermentation with Hansenula Polymorpha. Appl. Microbiol. Biotechnol. 1998, 50, 608–611. [Google Scholar] [CrossRef]
- Bray, D. Critical Point Drying of Biological Specimens for Scanning Electron Microscopy. In Supercritical Fluid. Methods and Protocols; Humana Press: New York, NY, USA, 2003. [Google Scholar]
- Manfrão-Netto, J.H.C.; Queiroz, E.B.; Rodrigues, K.A.; Coelho, C.M.; Paes, H.C.; Rech, E.L.; Parachin, N.S. Evaluation of Ogataea (Hansenula) Polymorpha for Hyaluronic Acid Production. Microorganisms 2021, 9, 312. [Google Scholar] [CrossRef]
- Stöckmann, C.; Losen, M.; Dahlems, U.; Knocke, C.; Gellissen, G.; Büchs, J. Effect of Oxygen Supply on Passaging, Stabilising and Screening of Recombinant Hansenula Polymorpha Production Strains in Test Tube Cultures. FEMS Yeast Res. 2003, 4, 195–205. [Google Scholar] [CrossRef]
- Ghoul, M.; Mitri, S. The Ecology and Evolution of Microbial Competition. Trends Microbiol. 2016, 24, 833–845. [Google Scholar] [CrossRef]
- Ginovart, M.; Prats, C.; Portell, X.; Silbert, M. Exploring the Lag Phase and Growth Initiation of a Yeast Culture by Means of an Individual-Based Model. Food Microbiol. 2011, 28, 810–817. [Google Scholar] [CrossRef]
- Kanwal, M.; Wattoo, A.G.; Khushnood, R.A.; Liaqat, A.; Iqbal, R.; Song, Z. Advancements and Challenges in Production of Biosurfactants. In Applications of Next Generation Biosurfactants in the Food Sector; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Mian, F.A.; Prokop, A.; Fencl, Z. Growth and Physiology of a Yeast Cultivated in Batch and Continuous Culture Systems. Folia Microbiol. 1971, 16, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Denenu, E.O.; Demain, A.L. Derivation of Aromatic Amino Acid Mutants from a Methanol-Utilizing Yeast, Hansenula Polymorpha. Appl. Environ. Microbiol. 1981, 41, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Feliu, J.A.; Mas, C.D.; González, G. SCP Production by Hansenula Polymorpha from Xylose. Process Biochem. 1990, 25, 136–140. [Google Scholar]
- Escalante, J.; Caminal, G.; de Mas, C. Biomass Production by a Thermotolerant Yeast: Hansenula Polymorpha. J. Chem. Technol. Biotechnol. 1990, 48, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, L.; Zhang, B.; Gao, X.; Wang, D.; Hong, J. Improved Xylose Fermentation of Kluyveromyces Marxianus at Elevated Temperature through Construction of a Xylose Isomerase Pathway. J. Ind. Microbiol. Biotechnol. 2013, 40, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, T.W.; Grigoriev, I.V.; Grimwood, J.; Laplaza, J.M.; Aerts, A.; Salamov, A.; Schmutz, J.; Lindquist, E.; Dehal, P.; Shapiro, H.; et al. Genome Sequence of the Lignocellulose-Bioconverting and Xylose-Fermenting Yeast Pichia Stipitis. Nat. Biotechnol. 2007, 25, 319–326. [Google Scholar] [CrossRef]
- Sibirny, A.A. Metabolic Engineering of Non-Conventional Yeasts for Construction of the Advanced Producers of Biofuels and High-Value Chemicals. BBA Adv. 2023, 3, 100071. [Google Scholar] [CrossRef]
- Kurylenko, O.O.; Ruchala, J.; Vasylyshyn, R.V.; Stasyk, O.V.; Dmytruk, O.V.; Dmytruk, K.V.; Sibirny, A.A. Peroxisomes and Peroxisomal Transketolase and Transaldolase Enzymes Are Essential for Xylose Alcoholic Fermentation by the Methylotrophic Thermotolerant Yeast, Ogataea (Hansenula) Polymorpha. Biotechnol. Biofuels 2018, 11, 197. [Google Scholar] [CrossRef]
- Jeffries, T.W.; Jin, Y.S. Metabolic Engineering for Improved Fermentation of Pentoses by Yeasts. Appl. Microbiol. Biotechnol. 2004, 63, 495–509. [Google Scholar] [CrossRef]
Parameters | Units | Inoculum (g·L−1) | Fructose | Glucose | Xylose |
---|---|---|---|---|---|
µm | h−1 | 1.1 | 0.159 | 0.175 | 0.009 |
µm | h−1 | 5.0 | 0.121 | 0.140 | 0.003 |
Pb | g·L−1h−1 | 1.1 | 0.270 | 0.185 | 0.001 |
Pb | g·L−1h−1 | 5.0 | 0.473 | 0.483 | 0.069 |
Parameters | Units | Inoculum (g·L−1) | Fructose | Glucose | Xylose |
---|---|---|---|---|---|
g·g−1h−1 | 1.1 | 0.579 (5 h) | 0.189 (7 h) | 0.022 (32 h) | |
g·g−1h−1 | 5.0 | 0.129 (5 h) | 0.310 (5 h) | 0.007 (50 h) | |
g·g−1 | 1.1 | 0.307 | 0.144 | 0.042 | |
g·g−1 | 5.0 | 0.314 | 0.264 | 0.126 |
Parameters | Units | Inoculum (g·L−1) | Fructose | Glucose | Xylose |
---|---|---|---|---|---|
g·g−1h−1 | 1.1 | 0.010 (94 h) | 0.010 (94 h) | 0.028 (45 h) | |
g·g−1h−1 | 5.0 | 0.044 (23 h) | 0.053 (20 h) | 0.010 (92 h) | |
g·g−1 | 1.1 | 0.322 | 0.258 | 0.070 | |
g·g−1 | 5.0 | 0.434 | 0.470 | 0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, A.A.; Martínez-Cartas, M.L.; Cuevas-Aranda, M. Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production. Fermentation 2024, 10, 260. https://doi.org/10.3390/fermentation10050260
Karim AA, Martínez-Cartas ML, Cuevas-Aranda M. Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production. Fermentation. 2024; 10(5):260. https://doi.org/10.3390/fermentation10050260
Chicago/Turabian StyleKarim, Adnan Asad, Mª Lourdes Martínez-Cartas, and Manuel Cuevas-Aranda. 2024. "Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production" Fermentation 10, no. 5: 260. https://doi.org/10.3390/fermentation10050260
APA StyleKarim, A. A., Martínez-Cartas, M. L., & Cuevas-Aranda, M. (2024). Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production. Fermentation, 10(5), 260. https://doi.org/10.3390/fermentation10050260