Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Melanoidin Preparation
2.2. Lab-Made Glucose-Based Wastewater
2.3. Experimental Approach: Reactor Design, Operating Conditions, and Inoculation Protocol
2.4. Analytical Methods
2.5. Performance Assessment: Kinetic Assessment, Substrate Conversion, and Metabolic Products
2.6. Molecular Analyses
3. Results and Discussion
3.1. Impacts of Melanoidins on Substrate Conversion and Kinetic Patterns
3.2. Distribution of Soluble Phase Metabolites
3.3. Microbial Community Characterization
3.4. Melanoidins in Real Wastewaters: Needs and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liakos, T.I.; Lazaridis, N.K. Melanoidin removal from molasses effluents by adsorption. J. Water Process Eng. 2016, 10, 156–164. [Google Scholar] [CrossRef]
- Ortega-Martínez, E.; Chamy, R.; Jeison, D. Thermal pre-treatment: Getting some insights on the formation of recalcitrant compounds and their effects on anaerobic digestion. J. Environ. Manag. 2021, 282, 111940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Feng, Y.; Huang, H.; Khunjar, W.; Wang, Z.W. Recalcitrant dissolved organic matter formation in thermal hydrolysis pretreatment of municipal sludge. Environ. Int. 2020, 138, 105629. [Google Scholar] [CrossRef] [PubMed]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Kinetics of color development of melanoidins formed from fructose/amino acid model systems. Food Sci. Technol. Int. 2014, 20, 119–126. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Fogliano, V.; Monti, S.M.; Ames, J.M. Characterization of melanoidins from a glucose-glycine model system. Eur. Food Res. Technol. 2002, 215, 210–215. [Google Scholar] [CrossRef]
- Singh, K.; Tripathi, S.; Chandra, R. Maillard reaction product and its complexation with environmental pollutants. Bioresour. Technol. Rep. 2021, 15, 100779. [Google Scholar]
- Tripathi, S.; Sharma, P.; Singh, K.; Purchase, D.; Chandra, R. Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ. Technol. Innov. 2021, 22, 101434. [Google Scholar] [CrossRef]
- Ibarz, A.; Garza, S.; Pagán, J. Inhibitory effect of melanoidins from glucose-asparagine on carboxypeptidases activity. Eur. Food. Res. Technol. 2008, 226, 1277–1282. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; De La Cueva, S.P. Antimicrobial activity of coffee melanoidins—A study of their metal-chelating properties. J. Agric. Food Chem. 2009, 57, 432–438. [Google Scholar] [CrossRef]
- Rurián-Henares, J.A.; Morales, F.J. Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. J. Agric. Food Chem. 2008, 56, 2357–2362. [Google Scholar] [CrossRef]
- Diaz-Morales, N.; Ortega-Heras, M.; Diez-Maté, A.M.; Gonzalez-SanJose, M.L.; Muñiz, P. Antimicrobial properties and volatile profile of bread and biscuits melanoidins. Food Chem. 2022, 373, 131648. [Google Scholar] [CrossRef] [PubMed]
- Rufián-Henares, J.A.; Morales, F.J. Antimicrobial activity of melanoidins. J. Food Qual. 2007, 30, 160–168. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenburg, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, J.; Cheng, H.; Wang, W.; Dong, R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy 2017, 189, 613–622. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, X.; Fu, B.; Chen, J.; Yu, H.Q. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 2012, 46, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Yin, J.; Liu, J.; Chen, T.; Long, Y.; Shen, D. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids. Bioresour. Technol. 2019, 284, 121–127. [Google Scholar] [CrossRef]
- Arfaioli, P.; Ristori, G.G.; Bosetto, M.; Fusi, P. Humic-like compounds formed from L-tryptophan and D-glucose in the presence of Cu (II). Chemosphere 1997, 35, 575–584. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Fuess, L.T.; Soares, L.A.; Damianovic, M.H.R.Z. Thermophilic biohydrogen production from sugarcane molasses under low pH: Metabolic and microbial aspects. Int. J. Hydrogen Energy 2020, 45, 4182–4192. [Google Scholar] [CrossRef]
- Fuess, L.T.; Fuentes, L.; Bovio-Winkler, P.; Eng, F.; Etchebehere, C.; Zaiat, M.; Nascimento, C.A.O. Full details on continuous biohydrogen production from sugarcane molasses are unraveled: Performance optimization, self-regulation, metabolic correlations and quanti-qualitative biomass characterization. Chem. Eng. J. 2021, 414, 128934. [Google Scholar] [CrossRef]
- Rasmey, A.H.M.; Abd-Alla, M.H.; Tawfik, M.A.; Bashandy, S.R.; Salah, M.; Liu, R.; Sun, C.; Hassan, E.A. Synergistic strategy for the enhancement of biohydrogen production from molasses through coculture of Lactobacillus brevis and Clostridium saccharobutylicum. Int. J. Hydrogen Energy 2023, 48, 25285–25299. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M.; Nascimento, C.A.O. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour. Technol. 2019, 286, 121379. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, F.E.; Fuess, L.T.; Cavalcante, G.S.; Adorno, M.A.T.; Zaiat, M. Value-added soluble metabolite production from sugarcane vinasse within the carboxylate platform: An application of the anaerobic biorefinery beyond biogas production. Fuel 2021, 286, 119378. [Google Scholar] [CrossRef]
- Rogeri, R.C.; Fuess, L.T.; Eng, F.; Borges, A.V.; Araujo, M.N.; Damianovic, M.H.R.Z.; Silva, A.J. Strategies to control pH in the dark fermentation of sugarcane vinasse: Impacts on sulfate reduction, biohydrogen production and metabolite distribution. J. Environ. Manag. 2023, 325, 116495. [Google Scholar] [CrossRef] [PubMed]
- Rafigh, S.M.; Rahimpour Soleymani, A. Melanoidin removal from molasses wastewater using graphene oxide nanosheets. Sep. Sci. Technol. 2020, 55, 2281–2293. [Google Scholar] [CrossRef]
- Del Nery, V. Utilização de Lodo Anaeróbio Imobilizado Em Gel No Estudo de Partida de Reatores de Fluxo Ascendente Com Manta de Lodo. Master’s Thesis, University of São Paulo, São Carlos, SP, Brazil, 1987. [Google Scholar]
- Fernandes, B.S.; Saavedra, N.K.; Maintinguer, S.I.; Sette, L.D.; Oliveira, V.M.; Varesche, M.B.A.; Zaiat, M. The effect of biomass immobilization support material and bed porosity on hydrogen production in an upflow anaerobic packed-bed bioreactor. Appl. Biochem. Biotechnol. 2013, 170, 1348–1366. [Google Scholar] [CrossRef] [PubMed]
- Anzola-Rojas, M.P.; Fonseca, S.G.; Silva, C.C.; Oliveira, V.M.; Zaiat, M. The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnol. Rep. 2015, 5, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Li, J.Z.; Liu, F. Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew. Energy 2011, 36, 1517–1522. [Google Scholar] [CrossRef]
- Zaiat, M.; Cabral, A.K.A.; Foresti, E. Reator anaeróbio de leito fixo para tratamento de águas residuárias: Concepção e avaliação preliminar de desempenho. Rev. Bras. Eng.—Cad. Eng. Quím. 1994, 11, 33–42. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric methods for determination of sugar and related substance. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Adorno, M.A.T.; Hirasawa, J.S.; Varesche, M.B.A. Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: Headspace (automatic and manual) and liquid-liquid extraction (LLE). Am. J. Anal. Chem. 2014, 5, 406–414. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Taylor, K.A.C.C. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Camargo, E.F.M.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M.; Borzani, W. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: Influence of the medium superficial velocity on the stability and performance. Braz. J. Chem. Eng. 2002, 19, 267–275. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [PubMed]
- Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R.; et al. 25 years serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Nishimura, Y. Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 2007, 103, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T. Fermentative biohydrogen production in sugarcane biorefineries: Advances, challenges and prospects. Int. J. Hydrogen Energy 2024, 49, 532–553. [Google Scholar] [CrossRef]
- Bahry, H.; Abdalla, R.; Pons, A.; Taha, S.; Vial, C. Optimization of lactic acid production using immobilized Lactobacillus rhamnosus and carob pod waste from the Lebanese food industry. J. Biotechnol. 2019, 306, 81–88. [Google Scholar] [CrossRef]
- Chen, H.; Chen, B.; Su, Z.; Wang, K.; Wang, B.; Wang, Y.; Si, Z.; Wu, Y.; Cai, D.; Qin, P. Efficient lactic acid production from cassava bagasse by mixed culture of Bacillus coagulans and Lactobacillus rhamnosus using stepwise pH controlled simultaneous saccharification and co-fermentation. Ind. Crop. Prod. 2020, 146, 112175. [Google Scholar] [CrossRef]
- de la Torre, I.; Ladero, M.; Santos, V.E. D-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Ind. Crop. Prod. 2020, 146, 112176. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.Q.; Wu, D.J. Study on the reuse of anaerobic digestion effluent in lactic acid production. J. Clean. Prod. 2019, 239, 118028. [Google Scholar] [CrossRef]
- De Vos, P.; Garrity, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.H.; Whitman, W.B.; Whitman, W.B. (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Volume 3: The Firmicutes; Springer: New York, NY, USA, 2009. [Google Scholar]
- Etchebehere, C.; Castelló, E.; Wenzel, J.; Anzola-Rojas, M.P.; Borzacconi, L.; Buitrón, G.; Cabrol, L.; Carminato, V.M.; Carrillo-Reyes, J.; Cisneros-Pérez, C.; et al. Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl. Microbiol. Biotechnol. 2016, 100, 3371–3384. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, B.; Yin, C.; Zhang, C.; Dai, X.; Yuan, H.; Zhu, N. Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv. 2016, 6, 1581–1588. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Z.Y.; Geng, Z.Q.; Tian, Y.C.; Ji, W.X.; Li, W.T.; Dai, K.; Zeng, R.J.; Zhang, F. Elucidating the production and inhibition of melanoidins products on anaerobic digestion after thermal-alkaline pretreatment. J. Hazard. Mater. 2022, 424, 127377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yan, B.; Ren, Z.J.; Wang, S.; Zhang, Y.; Jiang, H. Highly selective butyric acid production by coupled acidogenesis and ion substitution elecrodialysis. Water Res. 2022, 226, 119228. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhao, L.; Li, C.; Angelidaki, I.; Lv, N.; Ning, J.; Cai, G.; Zhu, G. Deep insights into the network of acetate metabolism in anaerobic digestion: Focusing on syntrophic acetate oxidation and homoacetogenesis. Water Res. 2021, 190, 116774. [Google Scholar] [CrossRef]
- Hatti-Kaul, R.; Chen, L.; Dishisha, T.; El Enshasy, H. Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiol. Lett. 2018, 365, fny213. [Google Scholar] [CrossRef]
- Wiegel, J.; Tanner, R.; Rainey, F.A. An Introduction to the Family Clostridiaceae. In The Prokaryotes, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 654–678. [Google Scholar]
- Costa, O.Y.A.; Souto, B.M.; Tupinambá, D.D.; Bergmann, J.C.; Kyaw, C.M.; Kruger, R.H.; Barreto, C.C.; Quirino, B.F. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J. Ind. Microbiol. Biotechnol. 2015, 42, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Kukuminato, S.; Koyama, K.; Koseki, S. Antibacterial Properties of Melanoidins Produced from Various Combinations of Maillard Reaction against Pathogenic Bacteria. Microbiol. Spectr. 2021, 9, e0114221. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rajakaruna, S.; Pastoriza, S.; Paliy, O.; Rufián-Henares, J.A. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 2020, 316, 126309. [Google Scholar] [CrossRef] [PubMed]
- Heipieper, H.J.; Neumann, G.; Cornelissen, S.; Meinhardt, F. Solvent-tolerant bacteria for biotransformation in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 2007, 74, 961–973. [Google Scholar] [CrossRef]
- Poblete-Castro, I.; Becker, J.; Dohnt, K.; Santos, V.M.; Wittmann, C. Industrial biotechnology of Pseudomonas putida and related species. Appl. Microbiol. Biotechnol. 2012, 93, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Schmidell, W.; Soares, H.M.; Etchebehere, C.; Javier Menes, R.; Bertola, N.C.; Martín Contreras, E. Tratamento Biológico de Águas Residuárias, 1st ed.; Gráfica PaperPrint: Florianópolis, SC, Brazil, 2007. [Google Scholar]
- Chen, A.; Huang, Y. Acyl homoserine lactone based quorum sensing affects phenanthrene removal by Novosphingobium pentaromativorans US6-1 through altering cell surface properties. Int. Biodeterior. Biodegrad. 2020, 147, 104841. [Google Scholar] [CrossRef]
- He, D.; Xiao, J.; Wang, D.; Liu, X.; Li, Y.; Fu, Q.; Li, C.; Yang, Q.; Liu, Y.; Ni, B.J. Understanding and regulating the impact of tetracycline to the anaerobic fermentation of waste activated sludge. J. Clean. Prod. 2021, 313, 127929. [Google Scholar] [CrossRef]
- Carbone, S.R.; Silva, F.M.; Tavares, C.R.G.; Dias Filho, B.P. Bacterial population of a two-phase anaerobic digestion process treating effluent of cassava starch factory. Environ. Technol. 2002, 23, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Summa, C.; McCourt, J.; Cämmerer, B.; Fiala, A.; Probst, M.; Kun, S.; Anklam, E.; Wagner, K.H. Radical scavenging activity, anti-bacterial and mutagenic effects of Cocoa bean Maillard Reaction products with degree of roasting. Mol. Nutr. Food Res. 2008, 52, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Cai, H.Y.; Yan, Z.S.; Jiang, H.L. Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresour. Technol. 2013, 131, 281–287. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Y.; Zhou, Y.; Liu, H.; Wu, Z. Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep. Purif. Technol. 2009, 68, 382–389. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Y.; Zhou, Y.; Liu, H.; Wu, Z. Stoichiometric relationship in the coagulation of melanoidins-dominated molasses wastewater. Desalination 2010, 250, 42–48. [Google Scholar] [CrossRef]
- Yu, J.; Hu, N.; Hou, L.; Hang, F.; Li, K.; Xie, C. Extraction methods of melanoidins and its potential as a natural pigment. Food Sci. Technol. 2023, 43, e113322. [Google Scholar] [CrossRef]
- Pant, D.; Adholeya, A. Biological approaches for treatment of distillery wastewater: A review. Bioresour. Technol. 2007, 98, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Mohana, S.; Acharya, B.K.; Madamwar, D. Distillery spent wash: Treatment, technologies and potential applications. J. Hazard. Mater. 2009, 163, 12–25. [Google Scholar] [CrossRef] [PubMed]
G/M (g Glucose g−1 Melanoidin) | Melanoidins 1 (g L−1) | Glucose 1 (g L−1) | CHt 2 (mg L−1) |
---|---|---|---|
CR 3 | 0.00 | 3.00 | 3360 ± 30 |
0.50 | 6.00 | 3.00 | 3025 ± 80 |
1.50 | 2.00 | 3.00 | 3300 ± 110 |
1.62 4 | 4.00 | 6.50 | 6050 ± 450 |
1.67 | 6.00 | 10.00 | 10,150 ± 580 |
5.00 | 2.00 | 10.00 | 10,260 ± 130 |
G/M | CR (Phase III) 1 | 0.50 (Phase III) 1 | 1.50 (Phase III) 1 | 1.62 2 (Phase III) 1 | 1.67 (Phase II) 1 | 5.00 (Phase III) 1 | |
---|---|---|---|---|---|---|---|
Kinetic parameters | CS0 (mg L−1) | 3040 ± 100 | 3030 ± 185 | 3130 ± 155 | 6265 ± 430 | 10,650 ± 615 | 10,415 ± 50 |
CRS (mg L−1) | 160 ± 120 | 410 ± 90 | 170 ± 120 | 0 3 | 4410 ± 220 | 0 3 | |
k1 (d−1) | 0.62 ± 0.09 | 0.27 ± 0.05 | 0.37 ± 0.06 | 0.13 ± 0.02 | 0.19 ± 0.04 | 0.20 ± 0.01 | |
R2 | 0.99 | 0.93 | 0.96 | 0.93 | 0.76 | 0.99 | |
ECCHt (%) | 95.8 ± 0.3 | 96.1 ± 0.4 | 97.6 ± 0.1 | 96.8 ± 1.5 | 42.1 ± 2.2 | 96.6 ± 2.0 | |
ERCOD (%) | 8.1 ± 0.1 | −0.5 ± 1.9 4 | 2.8 ± 2.0 | −15.7 ± 3.5 4 | 41.9 ± 1.2 | 8.4 ± 2.2 |
Ecological Indices | CR | G/M = 1.67 | G/M = 5.00 |
---|---|---|---|
Shannon–Wiener diversity | 1.62 | 1.31 | 1.28 |
Simpson dominance | 0.31 | 0.44 | 0.45 |
Chao-1 | 35 | 28 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comparato, C.N.; de Araujo, M.N.; Sakamoto, I.K.; Fuess, L.T.; Damianovic, M.H.R.Z.; da Silva, A.J. Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects. Fermentation 2024, 10, 272. https://doi.org/10.3390/fermentation10060272
Comparato CN, de Araujo MN, Sakamoto IK, Fuess LT, Damianovic MHRZ, da Silva AJ. Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects. Fermentation. 2024; 10(6):272. https://doi.org/10.3390/fermentation10060272
Chicago/Turabian StyleComparato, Carolina Nemeth, Matheus Neves de Araujo, Isabel Kimiko Sakamoto, Lucas Tadeu Fuess, Márcia Helena Rissato Zamariolli Damianovic, and Ariovaldo José da Silva. 2024. "Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects" Fermentation 10, no. 6: 272. https://doi.org/10.3390/fermentation10060272
APA StyleComparato, C. N., de Araujo, M. N., Sakamoto, I. K., Fuess, L. T., Damianovic, M. H. R. Z., & da Silva, A. J. (2024). Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects. Fermentation, 10(6), 272. https://doi.org/10.3390/fermentation10060272