A Meta-Analysis of 3-Nitrooxypropanol Dietary Supplementation on Growth Performance, Ruminal Fermentation, and Enteric Methane Emissions of Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Calculations and Statistical Analysis
2.5. Heterogeneity and Publication Bias
2.6. Meta-Regression and Subgroup Analysis
3. Results
3.1. Growth Performance
3.2. Ruminal Fermentation
3.3. Enteric Methane Emissions
3.4. Heterogeneity and Publication Bias
3.5. Subgroup Analysis
4. Discussion
4.1. Growth Performance
4.2. Ruminal Fermentation
4.3. Enteric Methane Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araújo, T.L.; Rabelo, C.H.; Cardoso, A.S.; Carvalho, V.V.; Acedo, T.S.; Tamassia, L.F.; Vasconcelos, G.S.F.M.; Duval, S.M.; Kindermann, M.; Gouvea, V.N.; et al. Feeding 3-nitrooxypropanol reduces methane emissions by feedlot cattle on tropical conditions. J. Anim. Sci. 2023, 101, skad225. [Google Scholar] [CrossRef]
- Alemu, A.; Shreck, A.; Booker, C.; McGinn, S.; Pekrul, L.; Kindermann, M.; Beauchemin, K. Use of 3-nitrooxypropanol in a commercial feedlot to decrease enteric methane emissions from cattle fed a corn-based finishing diet. J. Amim. Sci. 2021, 99, skaa394. [Google Scholar] [CrossRef]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013. [Google Scholar]
- Kirwan, S.F.; Tamassia, L.F.; Walker, N.D.; Karagiannis, A.; Kindermann, M.; Waters, S.M. Effects of dietary supplementation with 3-nitrooxypropanol on enteric methane production, rumen fermentation, and performance in young growing beef cattle offered a 50:50 forage: Concentrate diet. J. Anim. Sci. 2023, 102, skad399. [Google Scholar] [CrossRef]
- Kebreab, E.; Bannink, A.; Pressman, E.M.; Walker, N.; Karagiannis, A.; van Gastelen, S.; Dijkstra, J. A meta-analysis of the effects of 3-nitrooxyptropanol on methane production, yield, and intensity in dairy cattle. J. Dairy Sci. 2023, 106, 927–936. [Google Scholar] [CrossRef]
- Yu, G.; Beauchemin, K.A.; Dong, R. A review of 3-nitrooxypropanol for enteric methane mitigation from ruminant livestock. Animals 2021, 11, 3540. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Anim. Int. J. Anim. Biosci. 2020, 14, S2–S16. [Google Scholar] [CrossRef]
- Thiel, A.; Rümbeli, R.; Mair, P.; Yeman, H.; Beilstein, P. 3-NOP: ADME studies in rats and ruminating animals. Food Chem. Toxicol. 2019, 125, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Hess, P.S.; Moate, P.J.; Williams, S.R.O.; Jacobs, J.L.; Beauchemin, K.A.; Hannah, M.C.; Durmic, Z.; Eckard, R.J. Effect of combining wheat grain with nitrate, fat or 3-nitrooxypropanol on in vitro methane production. Anim. Feed Sci. Technol. 2019, 256, 114237. [Google Scholar] [CrossRef]
- Romero-Pérez, A.; Okine, E.K.; Guan, L.L.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Effects of 3-nitrooxypropanol and monensin on methane production using a forage-based diet in Rusitec fermenters. Anim. Feed Sci. Technol. 2016, 220, 67–72. [Google Scholar] [CrossRef]
- Romero-Pérez, A.; Okine, E.K.; Guan, L.L.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Effects of 3-nitrooxypropanol on methane production using the rumen simulation technique (Rusitec). Anim. Feed Sci. Technol. 2015, 209, 98–109. [Google Scholar] [CrossRef]
- Martínez-Fernández, G.; Abecia, L.; Arco, A.; Cantalapiedra-Hijar, G.; Martín-García, A.I.; Molina-Alcaide, E.; Kindermann, M.; Duval, S.; Yáñez-Ruiz, D.R. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 2014, 97, 3790–3799. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; McGinn, S.; Duval, S.; Kindermann, M.; Beauchemin, K. Optimal dose of 3-nitrooxypropanol for decreasing enteric methane emissions from beef cattle fed high-forage and high-grain diets. Anim. Prod. Sci. 2016, 58, 1049–1055. [Google Scholar] [CrossRef]
- Vyas, D.; McGinn, S.M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. J. Anim. Sci. 2016, 94, 2024–2034. [Google Scholar] [CrossRef]
- Romero-Perez, A.; Okine, E.K.; McGinn, S.M.; Guan, L.L.; Oba, M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J. Anim. Sci. 2014, 92, 4682–4693. [Google Scholar] [CrossRef] [PubMed]
- Romero-Perez, A.; Okine, E.K.; McGinn, S.M.; Guan, L.L.; Oba, M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J. Anim. Sci. 2015, 93, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.W.; Pekrul, L.K.; Shreck, A.L.; Booker, C.W.; McGinn, S.M.; Kindermann, M.; Beauchemin, K.A. 3-Nitrooxypropanol decreased enteric methane production from growing beef cattle in a commercial feedlot: Implications for sustainable beef cattle production. Front. Anim. Sci. 2021, 2, 641590. [Google Scholar] [CrossRef]
- Alemu, A.W.; Gruninger, R.J.; Zhang, X.M.; O’Hara, E.; Kindermann, M.; Beauchemin, K.A. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility. J. Anim. Sci. 2023, 101, skad001. [Google Scholar] [CrossRef]
- Dijkstra, J.; Bannink, A.; France, J.; Kebreab, E.; van Gastelen, S. Short communication: Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. J. Dairy Sci. 2018, 101, 9041–9047. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.G.; Baek, Y.C.; Lee, S.; Seo, J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: A meta-analysis. J. Anim. Sci. Technol. 2020, 62, 31–42. [Google Scholar] [CrossRef]
- Jayanegara, A.; Sarwono, K.A.; Kondo, M.; Matsui, H.; Ridla, M.; Laconi, E.B.; Nahrowi. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. Ital. J. Anim. Sci. 2018, 17, 650–656. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why most published research findings are false. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.D.C.; Pimenta, C.A.D.M.; Nobre, M.R.C. The PICO strategy for the research question construction and evidence search. Rev. Latino-Am. Enferm. 2007, 15, 508–511. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: A meta-analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Almeida, A.K.; Cowley, F.; McMeniman, J.P.; Karagiannis, A.; Walker, N.; Tamassia, L.F.; McGrath, J.J.; Hegarty, R.S. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil. J. Anim. Sci. 2023, 101, skad237. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, C.; Pechtl, H.A.; Hettick, J.M.; Campler, M.R.; Pairis-Garcia, M.D.; Beauchemin, K.A.; Celi, P.; Duval, S.M. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet. J. Anim. Sci. 2019, 97, 2687–2699. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S.-H.; Beauchemin, K.; Celi, P.; Duval, S. Short-term eating preference of beef cattle fed high forage or high grain diets supplemented with 3-nitrooxypropanol. Animals 2020, 10, 64. [Google Scholar] [CrossRef]
- Martinez-Fernandez, G.; Duval, S.; Kindermann, M.; Schirra, H.J.; Denman, S.E.; McSweeney, C.S. 3-NOP vs. Halogenated compound: Methane production, ruminal fermentation and microbial community response in forage fed cattle. Front. Microbiol. 2018, 9, 1582. [Google Scholar] [CrossRef]
- Vyas, D.; Alemu, A.W.; McGinn, S.M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. J. Anim. Sci. 2018, 96, 2923–2938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Smith, M.; Gruninger, R.; Kung, L.; Vyas, D.; McGinn, S.; Kindermann, M.; Wang, M.; Tan, Z.; Beauchemin, K. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. J. Amim. Sci. 2021, 99, skab081. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319214153. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Takeshima, N.; Sozu, T.; Tajika, A.; Ogawa, Y.; Hayasaka, Y.; Furukawa, T.A. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Methodol. 2014, 14, 30. [Google Scholar] [CrossRef]
- Der-Simonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis, 1st ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2009; p. 413. [Google Scholar]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2008; pp. 111–132. [Google Scholar]
- Borenstein, M.; Higgins, J.P.T.; Hedges, L.V.; Rothstein, H.R. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res. Synth. Methods 2017, 8, 5–18. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Altman, D.G. Systematic Reviews in Health Care, 2nd ed.; MBJ Publishing Group: London, UK, 2001; pp. 109–121. [Google Scholar]
- Hernández-García, P.A.; Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Chay-Canul, A.J.; Silva, G.V. A meta-analysis of essential oils as a dietary additive for weaned piglets: Growth performance, antioxidant status, immune response, and intestinal morphology. Rese. Vet. Sci. 2024, 170, 105181. [Google Scholar] [CrossRef]
- Rathert-Williams, A.R.; McConnell, H.L.; Salisbury, C.M.; Lindholm-Perry, A.K.; Lalman, D.L.; Pezeshki, A.; Foote, A.P. Effects of adding ruminal propionate on dry matter intake and glucose metabolism in steers fed a finishing ration. J. Anim. Sci. 2023, 101, skad072. [Google Scholar] [CrossRef]
- Rathert-Williams, A.R.; Salisbury, C.M.; Lindholm-Perry, A.K.; Pezeshki, A.; Lalman, D.L.; Foote, A.P. Effects of increasing calcium propionate in a finishing diet on dry matter intake and glucose metabolism in steers. J. Anim. Sci. 2021, 99, skab314. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef]
- Pathak, A.K. Various factors affecting microbial protein synthesis in the rumen. Vet. World. 2008, 1, 186. [Google Scholar]
- Bach, A.; Calsamiglia, S.; Stern, M. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef]
- Rémond, D.; Chaise, J.P.; Delval, E.; Poncet, C. Net transfer of urea and ammonia across the ruminal wall of sheep. J. Anim. Sci. 1993, 71, 2785–2792. [Google Scholar] [CrossRef]
- Lopes, J.C.; de Matos, L.F.; Harper, M.T.; Giallongo, F.; Oh, J.; Gruen, D.; Ono, S.; Kindermann, M.; Duval, S.; Hristov, A.N. Effect of 3-nitrooxipropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 2016, 99, 5335–5344. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; Bunch, R.; Krause, D.O. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl. Environ. Microbiol. 1999, 65, 3075–3083. [Google Scholar] [CrossRef]
- Krause, D.O.; Russell, J.B. An rRNA approach for assessing the role of obligate amino acid fermenting bacteria in ruminal amino acid deamination. Appl. Environ. Microbiol. 1996, 62, 815–821. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Front. Vet. Sci. 2018, 5, 113. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Zhang, X.M.; Smith, M.L.; Kung, L.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Application of 3-Nitrooxypropanol and Canola Oil to Mitigate Enteric Methane Emissions of Beef Cattle Results in Distinctly Different Effects on the Rumen Microbial Community. Anim. Microbiome 2022, 4, 35. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, B.; Huang, Y.; Kong, Y.; Tan, P.; Zhou, Y.; Yang, J.; Xu, C.; Wang, J. Effects of chromium propionate and calcium propionate on lactation performance and rumen microbiota in postpartum heat-stressed holstein dairy cows. Microorganisms 2023, 11, 1625. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef]
- Smith, P.E.; Kelly, A.K.; Kenny, D.A.; Waters, S.M. Differences in the composition of the rumen microbiota of finishing beef cattle divergently ranked for residual methane emissions. Front. Microbiol. 2022, 13, 855565. [Google Scholar] [CrossRef]
- Melgar, A.; Lage, C.F.A.; Nedelkov, K.; Räisänen, S.E.; Stefenoni, H.; Fetter, M.E.; Chen, X.; Oh, J.; Duval, S.; Kindermann, M.; et al. Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. J. Dairy Sci. 2021, 104, 357–366. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef]
- Meale, S.J.; Popova, M.; Saro, C.; Martin, C.; Bernard, A.; Lagree, M.; Yáñez-Ruiz, D.R.; Boudra, H.; Duval, S.; Morgavi, D.P. Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions. Sci. Rep. 2021, 11, 3003. [Google Scholar] [CrossRef]
- Hernández, P.A.; Mendoza, G.D.; Castro, A.; Lara, A.; Plata, F.X.; Martínez, J.A.; Ferraro, S. Effects of grain level on lamb performance, ruminal metabolism and leptin mRNA expression in perirenal adipose tissue. Anim. Prod. Sci. 2017, 57, 2001–2006. [Google Scholar] [CrossRef]
- Finlay, B.J.; Esteban, G.; Clarke, K.J.; Williams, A.G.; Embley, T.; Hirt, R.P. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 1994, 117, 157–162. [Google Scholar] [CrossRef]
- Tan, C.; Ramírez-Restrepo, C.A.; Shah, A.M.; Hu, R.; Bell, M.; Wang, Z.; McSweeney, C. The Community Structure and Microbial Linkage of Rumen Protozoa and Methanogens in Response to the Addition of Tea Seed Saponins in the Diet of Beef Cattle. J. Anim. Sci. Biotechnol. 2020, 11, 80. [Google Scholar] [CrossRef]
- Melgar, A.; Welter, K.; Nedelkov, K.; Martins, C.; Harper, M.; Oh, J.; Räisänen, S.; Chen, X.; Cueva, S.; Duval, S.; et al. Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. J. Dairy Sci. 2020, 103, 6145–6156. [Google Scholar] [CrossRef]
Reference | Days of Experiment | 3-NOP-Dose (mg/kg DM) | Concentrate, g/kg DM | BW, kg ± SD |
---|---|---|---|---|
Alemu et al. [2] | 28 | 150, 175, 200 | 300 | 282 ± 8 |
Alemu et al. [19] | 84 | 100, 125, 150 | 906 | 421 ± 11 |
Alemu et al. [20] | 33 | 150 | 100 | 515 ± 40.5 |
Almeida et al. [29] | 90 | 50, 75, 100, 125 | 807 | 356 ± 14.4 |
Araújo et al. [1] | 33, 96 | 100, 150 | 930 | 360 ± 37.3 |
Kim et al. [30] | 21 | 100, 104 | 356, 902 | 451 ± 21 |
Kirwan et al. [5] | 84 | 150 | 500 | 147 ± 28 |
Lee et al. [31] | 8 | 100 | 356, 902 | 349 ± 9 |
Martínez-Fernández et al. [32] | 21 | 329 | 0 | 492 ± 7 |
Romero-Pérez et al. [17] | 28 | 35, 109, 217 | 400 | 637 ± 16.2 |
Romero-Pérez et al. [18] | 112 | 280 | 400 | 549 ± 64.3 |
Vyas et al. [15] | 28 | 50, 75, 100, 150, 200 | 350, 920 | 371 ± 18 |
Vyas et al. [16] | 105 | 100, 200 | 300, 920 | 308 ± 22 |
Vyas et al. [33] | 105 | 125, 200 | 350, 920 | 319 ± 30 |
Zhang et al. [34] | 28 | 200 | 100 | 732 ± 43 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
DMI, kg/d | 15 (51) | 9.96 (1.72) | −0.361 (−0.524; −0.199) | <0.001 | <0.001 | 70.07 | 0.379 | 0.644 |
ADG, kg/d | 7 (15) | 1.48 (0.17) | −0.026 (−0.055; 0.003) | 0.077 | 0.529 | 0.00 | 0.076 | 0.064 |
FE, ADG/DMI | 6 (14) | 0.159 (0.026) | 0.004 (0.000; 0.008) | 0.040 | 0.109 | 35.20 | 0.311 | 0.645 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
Ruminal pH | 8 (15) | 6.30 (0.22) | 0.096 (0.057; 0.135) | <0.001 | 0.993 | 0.00 | 0.469 | 0.634 |
NH3-N, mg/dL | 10 (20) | 6.63 (1.94) | −0.666 (−0.973; −0.359) | <0.001 | 0.395 | 4.98 | 0.095 | 0.112 |
TVFA, mM | 10 (20) | 122.07 (22.50) | −7.520 (−10.831; −4.210) | <0.001 | 0.329 | 10.10 | 0.437 | 0.716 |
Acetate, mol/100 mol | 10 (20) | 58.37 (7.67) | −4.741 (–5.576; −3.906) | <0.001 | 0.065 | 48.55 | 0.448 | 0.146 |
Propionate, mol/100 mol | 10 (20) | 24.38 (8.12) | 2.488 (1.705; 3.272) | <0.001 | 0.077 | 37.24 | 0.401 | 0.267 |
Butyrate, mol/100 mol | 10 (20) | 11.86 (1.64) | 0.987 (0.434; 1.539) | <0.001 | 0.060 | 37.56 | 0.426 | 0.856 |
Valerate, mol/100 mol | 9 (17) | 1.84 (0.50) | 0.239 (0.099; 0.378) | <0.001 | 0.081 | 42.12 | 0.087 | 0.681 |
Isobutyrate, mol/100 mol | 9 (17) | 1.30 (0.53) | 0.067 (0.018; 0.117) | 0.008 | 0.138 | 28.43 | 0.071 | 0.064 |
Isovalerate, mol/100 mol | 9 (17) | 1.95 (0.34) | 0.291 (0.157; 0.425) | <0.001 | 0.098 | 33.76 | 0.243 | 0.855 |
Acetate/propionate | 10 (20) | 2.81 (1.04) | −0.452 (−0.575; −0.329) | <0.001 | 0.086 | 46.54 | 0.084 | 0.682 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
CH4, g/d | 14 (48) | 157.86 (41.69) | −55.052 (−62.253; −47.852) | <0.001 | <0.001 | 70.55 | 0.772 | 0.321 |
CH4, g/kg DMI | 14 (48) | 18.40 (4.98) | −5.445 (−6.250; −4.639) | <0.001 | <0.001 | 66.39 | 0.475 | 0.282 |
CH4, % of GEI | 10 (33) | 5.44 (1.76) | −1.634 (−1.874; −1.395) | <0.001 | 0.061 | 48.01 | 0.256 | 0.947 |
H2, g/d | 9 (28) | 0.33 (0.23) | 1.465 (1.163; 1.767) | <0.001 | 0.085 | 47.74 | 0.288 | 0.986 |
CO2, kg/d | 6 (12) | 8.45 (1.95) | 0.022 (−0.087; 0.131) | 0.689 | 0.069 | 43.75 | 0.388 | 0.270 |
Parameter | Covariates | QM | Df | p-Value | R2 (%) |
---|---|---|---|---|---|
DMI, kg/d | 3-nitrooxypropanol dose | 0.023 | 1 | 0.879 | 0.00 |
Supplementation period | 1.228 | 1 | 0.475 | 0.00 | |
Concentrate level | 1.840 | 1 | 0.175 | 0.24 | |
CH4, g/d | 3-nitrooxypropanol dose | 24.00 | 1 | <0.001 | 26.40 |
Supplementation period | 18.17 | 1 | <0.001 | 6.56 | |
Concentrate level | 4.46 | 1 | 0.050 | 5.21 | |
CH4, g/kg DMI | 3-nitrooxypropanol dose | 21.38 | 1 | <0.001 | 36.04 |
Supplementation period | 11.52 | 1 | <0.001 | 9.65 | |
Concentrate level | 0.01 | 1 | 0.917 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Garay-Martínez, J.R.; Granados-Rivera, L.D.; Maldonado-Jáquez, J.A.; Lara-Bueno, A. A Meta-Analysis of 3-Nitrooxypropanol Dietary Supplementation on Growth Performance, Ruminal Fermentation, and Enteric Methane Emissions of Beef Cattle. Fermentation 2024, 10, 273. https://doi.org/10.3390/fermentation10060273
Orzuna-Orzuna JF, Godina-Rodríguez JE, Garay-Martínez JR, Granados-Rivera LD, Maldonado-Jáquez JA, Lara-Bueno A. A Meta-Analysis of 3-Nitrooxypropanol Dietary Supplementation on Growth Performance, Ruminal Fermentation, and Enteric Methane Emissions of Beef Cattle. Fermentation. 2024; 10(6):273. https://doi.org/10.3390/fermentation10060273
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, Juan Eduardo Godina-Rodríguez, Jonathan Raúl Garay-Martínez, Lorenzo Danilo Granados-Rivera, Jorge Alonso Maldonado-Jáquez, and Alejandro Lara-Bueno. 2024. "A Meta-Analysis of 3-Nitrooxypropanol Dietary Supplementation on Growth Performance, Ruminal Fermentation, and Enteric Methane Emissions of Beef Cattle" Fermentation 10, no. 6: 273. https://doi.org/10.3390/fermentation10060273
APA StyleOrzuna-Orzuna, J. F., Godina-Rodríguez, J. E., Garay-Martínez, J. R., Granados-Rivera, L. D., Maldonado-Jáquez, J. A., & Lara-Bueno, A. (2024). A Meta-Analysis of 3-Nitrooxypropanol Dietary Supplementation on Growth Performance, Ruminal Fermentation, and Enteric Methane Emissions of Beef Cattle. Fermentation, 10(6), 273. https://doi.org/10.3390/fermentation10060273