Demonstrating Pilot-Scale Gas Fermentation for Acetate Production from Biomass-Derived Syngas Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gasification and Syngas Cleaning
2.1.1. Biomass Gasification
2.1.2. Syngas Final Cleaning Unit
2.1.3. Analytical Methods
2.2. Coupling of Gasification Facility and Mobile Gas Fermentation Pilot Plant
2.3. Syngas Fermentation
2.3.1. Bacterial Strain
2.3.2. Media and Inoculum Preparation
2.3.3. Consecutive Batch Fermentations
2.3.4. Analytical Methods
3. Results and Discussion
3.1. Syngas Purification
3.2. Coupling of Gasification and Syngas Fermentation
3.3. Effect of Partially Purified Syngas Streams on Prolonged Acetate Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liew, F.M.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Front. Microbiol. 2016, 7, 694. [Google Scholar] [CrossRef]
- Redl, S.; Diender, M.; Jensen, T.Ø.; Sousa, D.Z.; Nielsen, A.T. Exploiting the Potential of Gas Fermentation. Ind. Crops Prod. 2017, 106, 21–30. [Google Scholar] [CrossRef]
- Marcellin, E.; Behrendorff, J.B.; Nagaraju, S.; Detissera, S.; Segovia, S.; Palfreyman, R.W.; Daniell, J.; Licona-Cassani, C.; Quek, L.E.; Speight, R.; et al. Low Carbon Fuels and Commodity Chemicals from Waste Gases-Systematic Approach to Understand Energy Metabolism in a Model Acetogen. Green Chem. 2016, 18, 3020–3028. [Google Scholar] [CrossRef]
- Calvo, D.C.; Luna, H.J.; Arango, J.A.; Torres, C.I.; Rittmann, B.E. Determining Global Trends in Syngas Fermentation Research through a Bibliometric Analysis. J. Environ. Manag. 2022, 307, 114522. [Google Scholar] [CrossRef] [PubMed]
- Latif, H.; Zeidan, A.A.; Nielsen, A.T.; Zengler, K. Trash to Treasure: Production of Biofuels and Commodity Chemicals via Syngas Fermenting Microorganisms. Curr. Opin. Biotechnol. 2014, 27, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Nakashimada, Y.; Inokuma, K.; Kita, M.; Okada, H.; Nishio, N. Acetate and Ethanol Production from H2 and CO2 by Moorella sp. Using a Repeated Batch Culture. J. Biosci. Bioeng. 2005, 99, 252–258. [Google Scholar] [CrossRef]
- Harahap, B.M.; Ahring, B.K. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023, 11, 995. [Google Scholar] [CrossRef]
- Jia, D.; Deng, W.; Hu, P.; Jiang, W.; Gu, Y. Thermophilic Moorella thermoacetica as a Platform Microorganism for C1 Gas Utilization: Physiology, Engineering, and Applications. Bioresour. Bioprocess. 2023, 10, 61. [Google Scholar] [CrossRef]
- Hu, P.; Chakraborty, S.; Kumar, A.; Woolston, B.; Liu, H.; Emerson, D.; Stephanopoulos, G. Integrated Bioprocess for Conversion of Gaseous Substrates to Liquids. Proc. Natl. Acad. Sci. USA 2016, 113, 3773–3778. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Lai, N.; Huang, B.; Fei, P.; Ding, D.; Hu, P.; Gu, Y.; Wu, H. Efficient Isopropanol Biosynthesis by Engineered Escherichia Coli Using Biologically Produced Acetate from Syngas Fermentation. Bioresour. Technol. 2020, 296, 122337. [Google Scholar] [CrossRef]
- Lai, N.; Luo, Y.; Fei, P.; Hu, P.; Wu, H. One Stone Two Birds: Biosynthesis of 3-Hydroxypropionic Acid from CO2 and Syngas-Derived Acetic Acid in Escherichia Coli. Synth. Syst. Biotechnol. 2021, 6, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Mutyala, S.; Kim, J.R. Recent Advances and Challenges in the Bioconversion of Acetate to Value-Added Chemicals. Bioresour. Technol. 2022, 364, 128064. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, R.; Chang, J.; Chen, L.; Nabi, M.; Zhang, H.; Zhang, G.; Zhang, P. Rumen Microbes, Enzymes, Metabolisms, and Application in Lignocellulosic Waste Conversion—A Comprehensive Review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef] [PubMed]
- Ellacuriaga, M.; Gil, M.V.; Gómez, X. Syngas Fermentation: Cleaning of Syngas as a Critical Stage in Fermentation Performance. Fermentation 2023, 9, 898. [Google Scholar] [CrossRef]
- Xu, D.; Tree, D.R.; Lewis, R.S. The Effects of Syngas Impurities on Syngas Fermentation to Liquid Fuels. Biomass Bioenergy 2011, 35, 2690–2696. [Google Scholar] [CrossRef]
- Benevenuti, C.; Amaral, P.; Ferreira, T.; Seidl, P. Impacts of Syngas Composition on Anaerobic Fermentation. Reactions 2021, 2, 391–407. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Faaij, A.P.C. Future Prospects for Production of Methanol and Hydrogen from Biomass. J. Power Sources 2002, 111, 1–22. [Google Scholar] [CrossRef]
- Chiche, D.; Diverchy, C.; Lucquin, A.C.; Porcheron, F.; Defoort, F. Synthesis Gas Purification. Oil Gas Sci. Technol. 2013, 68, 707–723. [Google Scholar] [CrossRef]
- Khandelwal, K.; Boahene, P.; Nanda, S.; Dalai, A.K. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel. Molecules 2023, 28, 5137. [Google Scholar] [CrossRef]
- Haro, P.; Ollero, P.; Villanueva Perales, Á.L.; Vidal-Barrero, F. Potential Routes for Thermochemical Biorefineries. Biofuels Bioprod. Biorefining 2013, 7, 551–572. [Google Scholar] [CrossRef]
- Forzatti, P.; Lietti, L. Catalyst Deactivation. Catal. Today 1999, 52, 165–181. [Google Scholar] [CrossRef]
- Abubackar, H.N.; Veiga, M.C.; Kennes, C. Biological Conversion of Carbon Monoxide: Rich Syngas or Waste Gases to Bioethanol. Biofuels Bioprod. Biorefining 2011, 5, 93–114. [Google Scholar] [CrossRef]
- Rückel, A.; Hannemann, J.; Maierhofer, C.; Fuchs, A.; Weuster-Botz, D. Studies on Syngas Fermentation with Clostridium Carboxidivorans in Stirred-Tank Reactors with Defined Gas Impurities. Front. Microbiol. 2021, 12, 655390. [Google Scholar] [CrossRef] [PubMed]
- Daniell, J.; Köpke, M.; Simpson, S.D. Commercial Biomass Syngas Fermentation. Energies 2012, 5, 5372–5417. [Google Scholar] [CrossRef]
- Liakakou, E.T.; Infantes, A.; Neumann, A.; Vreugdenhil, B.J. Connecting Gasification with Syngas Fermentation: Comparison of the Performance of Lignin and Beech Wood. Fuel 2021, 290, 120054. [Google Scholar] [CrossRef]
- Rückel, A.; Oppelt, A.; Leuter, P.; Johne, P.; Fendt, S.; Weuster-Botz, D. Conversion of Syngas from Entrained Flow Gasification of Biogenic Residues with Clostridium Carboxidivorans and Clostridium Autoethanogenum. Fermentation 2022, 8, 465. [Google Scholar] [CrossRef]
- Kundiyana, D.K.; Huhnke, R.L.; Wilkins, M.R. Syngas Fermentation in a 100-L Pilot Scale Fermentor: Design and Process Considerations. J. Biosci. Bioeng. 2010, 109, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Infantes, A.; Kugel, M.; Raffelt, K.; Neumann, A. Side-by-side Comparison of Clean and Biomass-Derived, Impurity-containing Syngas as Substrate for Acetogenic Fermentation with Clostridium Ljungdahlii. Fermentation 2020, 6, 84. [Google Scholar] [CrossRef]
- Monir, M.U.; Aziz, A.A.; Khatun, F.; Yousuf, A. Bioethanol Production through Syngas Fermentation in a Tar Free Bioreactor Using Clostridium Butyricum. Renew. Energy 2020, 157, 1116–1123. [Google Scholar] [CrossRef]
- Kurkela, E.; Kurkela, M.; Hiltunen, I. Steam-Oxygen Gasification of Forest Residues and Bark Followed by Hot Gas Filtration and Catalytic Reforming of Tars: Results of an Extended Time Test. Fuel Process. Technol. 2016, 141, 148–158. [Google Scholar] [CrossRef]
- Demler, M.; Weuster-Botz, D. Reaction Engineering Analysis of Hydrogenotrophic Production of Acetic Acid by Acetobacterium Woodii. Biotechnol. Bioeng. 2011, 108, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Frilund, C.; Tuomi, S.; Kurkela, E.; Simell, P. Small- to Medium-Scale Deep Syngas Purification: Biomass-to-Liquids Multi-Contaminant Removal Demonstration. Biomass Bioenergy 2021, 148, 106031. [Google Scholar] [CrossRef]
- Frilund, C.; Kurkela, E.; Hiltunen, I. Development of a Simplified Gas Ultracleaning Process: Experiments in Biomass Residue-Based Fixed-Bed Gasification Syngas. Biomass Convers. Biorefinery 2023, 13, 15673–15684. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Alencar, A.C. Biomass-Derived Syngas Production via Gasification Process and Its Catalytic Conversion into Fuels by Fischer Tropsch Synthesis: A Review. Int. J. Hydrogen Energy 2020, 45, 18114–18132. [Google Scholar] [CrossRef]
- Bengelsdorf, F.R.; Straub, M.; Dürre, P. Bacterial Synthesis Gas (Syngas) Fermentation. Environ. Technol. 2013, 34, 1639–1651. [Google Scholar] [CrossRef]
- Oliveira, L.; Rückel, A.; Nordgauer, L.; Schlumprecht, P.; Hutter, E.; Weuster-Botz, D. Comparison of Syngas-Fermenting Clostridia in Stirred-Tank Bioreactors and the Effects of Varying Syngas Impurities. Microorganisms 2022, 10, 681. [Google Scholar] [CrossRef] [PubMed]
- Ramachandriya, K.D.; Kundiyana, D.K.; Sharma, A.M.; Kumar, A.; Atiyeh, H.K.; Huhnke, R.L.; Wilkins, M.R. Critical Factors Affecting the Integration of Biomass Gasification and Syngas Fermentation Technology. AIMS Bioeng. 2016, 3, 188–210. [Google Scholar] [CrossRef]
- Oswald, F.; Zwick, M.; Omar, O.; Hotz, E.N.; Neumann, A. Growth and Product Formation of Clostridium Ljungdahlii in Presence of Cyanide. Front. Microbiol. 2018, 9, 1213. [Google Scholar] [CrossRef] [PubMed]
- Hyman, M.R.; Ensign, S.A.; Arp, D.J.; Ludden, P.W. Carbonyl Sulfide Inhibition of CO Dehydrogenase from Rhodospirillum Rubrum. Biochemistry 1989, 28, 6821–6826. [Google Scholar] [CrossRef]
- Xu, D.; Lewis, R.S. Syngas Fermentation to Biofuels: Effects of Ammonia Impurity in Raw Syngas on Hydrogenase Activity. Biomass Bioenergy 2012, 45, 303–310. [Google Scholar] [CrossRef]
- Griffin, D.W.; Schultz, M.A. Fuel and Chemical Products from Biomass Syngas: A Comparison of Gas Fermentation to Thermochemical Conversion Routes. Environ. Prog. Sustain. Energy 2012, 31, 219–224. [Google Scholar] [CrossRef]
Gasification Conditions | |
---|---|
Gasification temperature, °C | 800 |
Fluidizing velocity, m/s | 0.6 |
Steam-to-fuel, kg/kg daf | 0.9 |
O2 feed, % of stoichiometric combustion | 8.0 |
Hot gas cleaning conditions | |
Filtering temperature, °C | 560 |
Reforming temperature, °C | 930 |
Gas after the reformer | |
Gas composition, vol % dry | |
CO | 19.2 |
CO2 | 17.7 |
H2 | 38.9 |
N2 | 23.4 |
CH4 | 0.8 |
H2O in wet gas, vol % | 32.6 |
Gas contaminants, dry | |
H2S, ppmv | 70 |
COS, ppmv 1 | 4 |
NH3, ppmv 1 | 100 |
HCN, ppmv | 2 |
Benzene, mg/nm3 | 6 |
Sum of tars, mg/nm3 | 21 |
Configuration | Ultra-Cleaning | Acid-Scrubbing | Caustic-Scrubbing |
---|---|---|---|
Flow rate, nm3/h | 8.1 | 8.1 | 8.6 |
Pressure, bar | 1.055 | 1.045 | 1.073 |
Scrubber water pH | 2.3 | 3.0 | 9.7 |
Scrubber liquid/gas ratio, kg H2O/nm3 syngas | 32 | 35 | 31 |
Adsorbent bed temperature, °C | 29 | - | - |
Warm guard bed temperature, °C | 202 | - | - |
Cold guard bed temperature, °C | 24 | - | - |
Configuration | Ultra-Cleaning | Acid Scrubbing | Caustic Scrubbing |
---|---|---|---|
H2S, ppmv | 0/LoD | 65 | 17.5 |
COS, ppmv | 0/LoD 1 | 5 | 4 1,2 |
NH3, ppmv | n.a. | n.a. | n.a. |
HCN, ppmv | 0/LoD | 1 | 0–0.5/LoD |
Benzene and tars, g/nm3 | n.a. | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña López, P.; Rebecchi, S.; Vlaeminck, E.; Quataert, K.; Frilund, C.; Laatikainen-Luntama, J.; Hiltunen, I.; De Winter, K.; Soetaert, W.K. Demonstrating Pilot-Scale Gas Fermentation for Acetate Production from Biomass-Derived Syngas Streams. Fermentation 2024, 10, 285. https://doi.org/10.3390/fermentation10060285
Acuña López P, Rebecchi S, Vlaeminck E, Quataert K, Frilund C, Laatikainen-Luntama J, Hiltunen I, De Winter K, Soetaert WK. Demonstrating Pilot-Scale Gas Fermentation for Acetate Production from Biomass-Derived Syngas Streams. Fermentation. 2024; 10(6):285. https://doi.org/10.3390/fermentation10060285
Chicago/Turabian StyleAcuña López, Pedro, Stefano Rebecchi, Elodie Vlaeminck, Koen Quataert, Christian Frilund, Jaana Laatikainen-Luntama, Ilkka Hiltunen, Karel De Winter, and Wim K. Soetaert. 2024. "Demonstrating Pilot-Scale Gas Fermentation for Acetate Production from Biomass-Derived Syngas Streams" Fermentation 10, no. 6: 285. https://doi.org/10.3390/fermentation10060285
APA StyleAcuña López, P., Rebecchi, S., Vlaeminck, E., Quataert, K., Frilund, C., Laatikainen-Luntama, J., Hiltunen, I., De Winter, K., & Soetaert, W. K. (2024). Demonstrating Pilot-Scale Gas Fermentation for Acetate Production from Biomass-Derived Syngas Streams. Fermentation, 10(6), 285. https://doi.org/10.3390/fermentation10060285