Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Operation of Biomethane Reactors
2.2. Analytical Methods and Calculations
3. Results
3.1. Overview of Bubble Reactor Performance
3.2. Effect of Packing Material on TBR Efficiency
4. Discussion
Packing Material | Feeding H2:CO2:CH4 *1 H2:CO2: | Inoculum | Nutrients | Methanogens Identified (Genus Level) | V (L) | T (°) | RR (L LR−1 d−1) | GRT (h) | VFAs (g L−1) | CH4 (%) | Net MPR (LCH4 LR−1 d−1) | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PUF—560–580 m2 m−3 | 3.7:1:1 3.7:1 | Enriched | Pasteurized cow manure | Methanobacterium Methanoculleus | 0.29 | 52 | 50 *2 | 0.57 | n | 90% | 8.54 *3 | [20] |
PUF—12 layers | 62:15:23 4.12:1 | Enriched from [40] | Cow manure digestate | Methanobacterium | 0.8 | 54 | 5.4 5.4 0.84 *4 | 4 2 2 | n 2.17 n | 97 52 95 | 0.83 0.62 1.73 | [21] |
MBBR PE08 >3200 m2 m−3 76% void ratio | 61.4:16.2:22.4 3.8–3.9:1 | Digestate | Synthetic (commercial solutions) | nr | 2 × 1000 | 52–57 | 16.8 | 2.1 | 2 | 97.4 | 10.6 | [29] |
HX09 11.2 m2 total | 4:1:0 4:1 | nr | Nr | nr | 14.5 *5 | 40 55 | 60 *6 | 2.79 2.85 | nr | 88 95 | 8.48 8.59 | [41] |
RFK 25 L (313 m2 m−3) and HXF12KLL (859 m2 m−3) | 3.78–4:1:0 3.78–4:1 | Anaerobic sludge from sewage treatment plant | synthetic | nr | 58.1 | 55 | 4.13 | Nr *7 | Nr *8 | 98.5 | 15.4 | [36] |
HXF12KLL | 59.1:15.1:25.8 3.9:1 | Anaerobic sludge from sewage treatment plant | synthetic | nr | 1000 | 53–56 | 180 *10 | 0.7 | 2.12 | 98.2 | 3.96 *9 | [30] |
PUF | Variable *11 4:1 | Enriched | Digested municipal biowaste | Methanobacter Methanothermobacter | 68 | 52 | 1.2 *12 | 5 | 0.4–1.2 | 98.5 | nr | [35] |
Glass rings | 62:15:23 4.13:1 | Enriched | Digestate | Methanothermobacter | 1 | 54 | 2.38 *13 | 2 | 0.3–0.65 | 94.9–95.1 | 1.71–1.74 | [34] |
Hiflo rings 15–7 313 m2 m−3 91% void ratio | 36–42:58–64 *14 3.67–4.15:1 | Anaerobic mixed liquor | Synthetic | nr | 58 | 37 | 6.21 | 2.3 | <0.1 | >97 | 2.52 | [26] |
Bioflow 40 305 m2 m−3 | 4:1:0 4:1 | Anaerobic sludge from sewage treatment plant | Synthetic | nr | 61 | 37 | 6.15 | 4 | nr | 98 | 1.49 | [25] |
Linpor polyurethane 2000 m2 m−3 97% void ratio and Xingfeng PE-10 polyethylene 1200 m2 m−3 | 55:13.7:31.3 4:1 | Anaerobic sludge from sewage treatment plant | Synthetic | Methanobacter Methanobrevibacter | 8 | 38 | 5.4 | 25–5 | <0.4 | >95 | nr | [31] |
Kaldnes K1 800 m2 m−3 | 59.7:16.1:24.2 3.7:1 | Enriched Methano-brevibacter | Synthetic | nr | 1.25 | 39 | 4 | 7.2 | 0 | 90.9 | 0.56 | This study |
Sintered glass 1600 m2 m−3 | 2 | 39 | 4 | 4 | 0 | 93.1 | 0.84 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Substance | Concentration (mg L−1) |
---|---|
NH4Cl | 1000 |
MgCl2·6H2O | 100 |
CaCl2·2H2O | 50 |
K2HPO4·3H2O | 400 |
EDTA | 5 |
FeCl2 4H2O | 1 |
H3BO3 | 0.1 |
ZnCl2 | 1 |
CuCl2 | 0.1 |
MnCl2·4H2O | 5 |
(NH4)6Mo7O24·4H2O | 0.1 |
AlCl3 | 0.1 |
CoCl2·6H2O | 1 |
NiCl2 | 0.2 |
H2SeO3 | 0.01 |
NaHCO3 | 1.56 |
Time (d) | GRT (h) | Comment |
---|---|---|
BR | ||
0–12 | 14.4 | Starting condition |
13–82 | 23 | GRT increase to recover from low performance |
83–317 | 16.4 | GRT decrease |
318–355 | 12.7 | GRT decrease |
356–367 | 7.2 | Final GRT decrease—operation termination |
TBR-P | ||
0–7 | 14.4 | Starting condition |
8–45 | 10.3 | GRT decrease |
46–63 | 7.2 | GRT decrease |
64–103 | 4 | GRT decrease |
104–117 | 18 | GRT increase to recover from low performance |
118–133 | 10.3 | GRT decrease |
134–149 | 7.2 | GRT decrease |
150–169 | 6 | GRT decrease |
170–195 | 24 | GRT increase due to practical difficulties to operate the bioreactor at low GRT |
196–212 | 14.4 | GRT decrease |
213–224 | 10.3 | GRT decrease |
225–236 | 7.2 | GRT decrease |
237–259 | 5.5 | GRT decrease |
260–268 | 4 | Final GRT decrease—operation termination |
TBR-S | ||
0–14 | 16.5 | Starting condition |
15–41 | 11.6 | GRT decrease |
42–67 | 29 | GRT increase due to practical difficulties to operate the bioreactor at low GRT |
68–81 | 14.4 | GRT decrease |
82–94 | 10.5 | GRT decrease |
95–105 | 7.2 | GRT decrease |
106–129 | 5.5 | GRT decrease |
130–140 | 4 | GRT decrease |
141–157 | 2.8 | GRT decrease |
158–166 | 2 | Final GRT decrease—operation termination |
References
- European Comission. Energy Roadmap 2050; European Comission: Brussels, Belgium, 2012. [Google Scholar]
- Lecker, B.; Illi, L.; Lemmer, A.; Oechsner, H. Biological Hydrogen Methanation—A Review. Bioresour. Technol. 2017, 245, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Jønson, B.D. Development of Biogas-Based Power-to-Methane Technology. Ph.D. Thesis, University of Southern Denmark, Odense, Denmark, 2022. [Google Scholar]
- Quintino, F.M.; Nascimento, N.; Fernandes, E.C. Aspects of Hydrogen and Biomethane Introduction in Natural Gas Infrastructure and Equipment. Hydrogen 2021, 2, 301–318. [Google Scholar] [CrossRef]
- Villadsen, S.N.B.; Fosbøl, P.L.; Angelidaki, I.; Woodley, J.M.; Nielsen, L.P.; Møller, P. The Potential of Biogas; the Solution to Energy Storage. ChemSusChem 2019, 12, 2147–2153. [Google Scholar] [CrossRef]
- Venus, T.E.; Strauss, F.; Venus, T.J.; Sauer, J. Understanding Stakeholder Preferences for Future Biogas Development in Germany. Land Use Policy 2021, 109, 105704. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Co-Digestion of Manure and Whey for in Situ Biogas Upgrading by the Addition of H2: Process Performance and Microbial Insights. Appl. Microbiol. Biotechnol. 2013, 97, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Kougias, P.G.; Treu, L.; Benavente, D.P.; Boe, K.; Campanaro, S.; Angelidaki, I. Ex-Situ Biogas Upgrading and Enhancement in Different Reactor Systems. Bioresour. Technol. 2017, 225, 429–437. [Google Scholar] [CrossRef]
- Mahieux, M.; Aemig, Q.; Richard, C.; Delgenès, J.P.; Juge, M.; Trably, E.; Escudié, R. Improved Organic Matter Biodegradation through Pulsed H2 Injections during in Situ Biomethanation. Bioresour. Technol. 2024, 407, 131101. [Google Scholar] [CrossRef]
- Sposob, M.; Wahid, R.; Fischer, K. Ex-Situ Biological CO2 Methanation Using Trickle Bed Reactor: Review and Recent Advances. Rev. Environ. Sci. Biotechnol. 2021, 20, 1087–1102. [Google Scholar] [CrossRef]
- Thapa, A.; Jo, H.; Han, U.; Cho, S.K. Ex-Situ Biomethanation for CO2 Valorization: State of the Art, Recent Advances, Challenges, and Future Prospective. Biotechnol. Adv. 2023, 68, 108218. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Integrated Biogas Upgrading and Hydrogen Utilization in an Anaerobic Reactor Containing Enriched Hydrogenotrophic Methanogenic Culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef]
- Ale Enriquez, F.; Ahring, B.K. Strategies to Overcome Mass Transfer Limitations of Hydrogen during Anaerobic Gaseous Fermentations: A Comprehensive Review. Bioresour. Technol. 2023, 377, 128948. [Google Scholar] [CrossRef]
- Ghofrani-Isfahani, P.; Tsapekos, P.; Peprah, M.; Kougias, P.; Zhu, X.; Kovalovszki, A.; Zervas, A.; Zha, X.; Jacobsen, C.S.; Angelidaki, I. Ex-Situ Biogas Upgrading in Thermophilic up-Flow Reactors: The Effect of Different Gas Diffusers and Gas Retention Times. Bioresour. Technol. 2021, 340, 125694. [Google Scholar] [CrossRef]
- Wahid, R.; Horn, S.J. The Effect of Mixing Rate and Gas Recirculation on Biological CO2 Methanation in Two-Stage CSTR Systems. Biomass Bioenergy 2021, 144, 105918. [Google Scholar] [CrossRef]
- Bassani, I.; Kougias, P.G.; Treu, L.; Porté, H.; Campanaro, S.; Angelidaki, I. Optimization of Hydrogen Dispersion in Thermophilic Up-Flow Reactors for Ex Situ Biogas Upgrading. Bioresour. Technol. 2017, 234, 310–319. [Google Scholar] [CrossRef]
- Kougias, P.G.; Tsapekos, P.; Treu, L.; Kostoula, M.; Campanaro, S.; Lyberatos, G.; Angelidaki, I. Biological CO2 Fixation in Up-Flow Reactors via Exogenous H2 Addition. J. Biotechnol. 2020, 319, 1–7. [Google Scholar] [CrossRef]
- Ebrahimian, F.; De Bernardini, N.; Tsapekos, P.; Treu, L.; Zhu, X.; Campanaro, S.; Karimi, K.; Angelidaki, I. Effect of Pressure on Biomethanation Process and Spatial Stratification of Microbial Communities in Trickle Bed Reactors under Decreasing Gas Retention Time. Bioresour. Technol. 2022, 361, 127701. [Google Scholar] [CrossRef]
- Giuliano, A.; Cellamare, C.M.; Chiarini, L.; Tabacchioni, S.; Petta, L. Evaluation of the Controlled Hydrodynamic Cavitation as Gas Mass Transfer System for Ex-Situ Biological Hydrogen Methanation. Chem. Eng. J. 2023, 471, 144475. [Google Scholar] [CrossRef]
- Ashraf, M.T.; Sieborg, M.U.; Yde, L.; Rhee, C.; Shin, S.G.; Triolo, J.M. Biomethanation in a Thermophilic Biotrickling Filter—PH Control and Lessons from Long-Term Operation. Bioresour. Technol. Rep. 2020, 11, 100525. [Google Scholar] [CrossRef]
- Ghofrani-Isfahani, P.; Tsapekos, P.; Peprah, M.; Kougias, P.; Zervas, A.; Zhu, X.; Yang, Z.; Jacobsen, C.S.; Angelidaki, I. Ex-Situ Biogas Upgrading in Thermophilic Trickle Bed Reactors Packed with Micro-Porous Packing Materials. Chemosphere 2022, 296, 133987. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.T.; Yde, L.; Triolo, J.M.; Wenzel, H. Optimizing the Dosing and Trickling of Nutrient Media for Thermophilic Biomethanation in a Biotrickling Filter. Biochem. Eng. J. 2021, 176, 108220. [Google Scholar] [CrossRef]
- Jønson, B.D.; Mortensen, L.O.L.; Schmidt, J.E.; Jeppesen, M.; Bastidas-Oyanedel, J.R. Flexibility as the Key to Stability: Optimization of Temperature and Gas Feed during Downtime towards Effective Integration of Biomethanation in an Intermittent Energy System. Energies 2022, 15, 5827. [Google Scholar] [CrossRef]
- Dahl Jønson, B.; Ujarak Sieborg, M.; Tahir Ashraf, M.; Yde, L.; Shin, J.; Shin, S.G.; Mi Triolo, J. Direct Inoculation of a Biotrickling Filter for Hydrogenotrophic Methanogenesis. Bioresour. Technol. 2020, 318, 124098. [Google Scholar] [CrossRef]
- Burkhardt, M.; Koschack, T.; Busch, G. Biocatalytic Methanation of Hydrogen and Carbon Dioxide in an Anaerobic Three-Phase System. Bioresour. Technol. 2015, 178, 330–333. [Google Scholar] [CrossRef]
- Rachbauer, L.; Voitl, G.; Bochmann, G.; Fuchs, W. Biological Biogas Upgrading Capacity of a Hydrogenotrophic Community in a Trickle-Bed Reactor. Appl. Energy 2016, 180, 483–490. [Google Scholar] [CrossRef]
- Spyridonidis, A.; Vasiliadou, I.A.; Stathopoulou, P.; Tsiamis, A.; Tsiamis, G.; Stamatelatou, K. Enrichment of Microbial Consortium with Hydrogenotrophic Methanogens for Biological Biogas Upgrade to Biomethane in a Bubble Reactor under Mesophilic Conditions. Sustainability 2023, 15, 15247. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 24th ed.; Lipps, W., Braun-Howland, E., Baxter, T., Eds.; APHA Press: Washington DC, USA, 2023. [Google Scholar]
- Jønson, B.D.; Tsapekos, P.; Tahir Ashraf, M.; Jeppesen, M.; Ejbye Schmidt, J.; Bastidas-Oyanedel, J.R. Pilot-Scale Study of Biomethanation in Biological Trickle Bed Reactors Converting Impure CO2 from a Full-Scale Biogas Plant. Bioresour. Technol. 2022, 365, 128160. [Google Scholar] [CrossRef]
- Feickert Fenske, C.; Kirzeder, F.; Strübing, D.; Koch, K. Biogas Upgrading in a Pilot-Scale Trickle Bed Reactor—Long-Term Biological Methanation under Real Application Conditions. Bioresour. Technol. 2023, 376, 128868. [Google Scholar] [CrossRef]
- Tauber, J.; Möstl, D.; Vierheilig, J.; Saracevic, E.; Svardal, K.; Krampe, J. Biological Methanation in an Anaerobic Biofilm Reactor—Trace Element and Mineral Requirements for Stable Operation. Processes 2023, 11, 1013. [Google Scholar] [CrossRef]
- Savvas, S.; Donnelly, J.; Patterson, T.; Chong, Z.S.; Esteves, S.R. Biological Methanation of CO2 in a Novel Biofilm Plug-Flow Reactor: A High Rate and Low Parasitic Energy Process. Appl. Energy 2017, 202, 238–247. [Google Scholar] [CrossRef]
- Khesali Aghtaei, H.; Heyer, R.; Reichl, U.; Benndorf, D. Improved Biological Methanation Using Tubular Foam-Bed Reactor. Biotechnol. Biofuels Bioprod. 2024, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Porté, H.; Kougias, P.G.; Alfaro, N.; Treu, L.; Campanaro, S.; Angelidaki, I. Process Performance and Microbial Community Structure in Thermophilic Trickling Biofilter Reactors for Biogas Upgrading. Sci. Total Environ. 2019, 655, 529–538. [Google Scholar] [CrossRef]
- Tsapekos, P.; Treu, L.; Campanaro, S.; Centurion, V.B.; Zhu, X.; Peprah, M.; Zhang, Z.; Kougias, P.G.; Angelidaki, I. Pilot-Scale Biomethanation in a Trickle Bed Reactor: Process Performance and Microbiome Functional Reconstruction. Energy Convers. Manag. 2021, 244, 114491. [Google Scholar] [CrossRef]
- Strübing, D.; Huber, B.; Lebuhn, M.; Drewes, J.E.; Koch, K. High Performance Biological Methanation in a Thermophilic Anaerobic Trickle Bed Reactor. Bioresour. Technol. 2017, 245, 1176–1183. [Google Scholar] [CrossRef]
- Rafrafi, Y.; Laguillaumie, L.; Dumas, C. Biological Methanation of H2 and CO2 with Mixed Cultures: Current Advances, Hurdles and Challenges. Waste Biomass Valoriz. 2021, 12, 5259–5282. [Google Scholar] [CrossRef]
- Morii, H.; Koga, Y.; Nagai, S. Energetic Analysis of the Growth of Methanobrevibacter Arboriphilus A2 in Hydrogen-limited Continuous Cultures. Biotechnol. Bioeng. 1987, 29, 310–315. [Google Scholar] [CrossRef]
- Sposób, M.; Technologies, R. Optimization of Ex-Situ Biomethanation Process in Trickle Bed Reactor: The Impact of Slight H2/CO2 Ratio Adjustments and Different Packing Materials. Renew. Energy 2024, 222, 119971. [Google Scholar] [CrossRef]
- Bassani, I.; Kougias, P.G.; Treu, L.; Angelidaki, I. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 2015, 49, 12585–12593. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, A.; Ullrich, T. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors. Energies 2018, 11, 1344. [Google Scholar] [CrossRef]
Value | |||
---|---|---|---|
Parameters | BR | TBR-P | TBR-S |
pH | 7.82 | 8.01 | 8.21 |
Conductivity (mS cm−1 @25 °C) | 3.8 | 5.62 | 3.92 |
VSS (g L−1) | 0.27 | 0.289 | 0.238 |
Phase | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GRT | 23 | 18 | 16.4 | 14.4 | 12.7 | 11.6–10.3 | 7.2 | 6 | 5.5 | 4 | 2.8 | 2 |
HLR | 0.62 | 0.79 | 0.88 | 1 | 1.13 | 1.24–1.4 | 1.99 | 2.36 | 2.62 | 3.61 | 5.11 | 7.1 |
BR | ||||||||||||
CH4 | 92.24 (0.36) | - | 94.63 (0.15) | - | 91.15 (1.01) | - | 65.01 (7.05) | - | - | - | - | - |
H2 | 4.92 (0.34) | 2.38 (0.16) | 4.93 (1.08) | 27.1 (5.61) | ||||||||
CO2 | 2.84 (0.08) | 2.99 (0.06) | 3.92 (0.31) | 7.88 (1.46) | ||||||||
ηH2 | 94.81 (1.9) | 98.53 (0.2) | 96.53 (0.88) | 77.57 (5.96) | ||||||||
ηCO2 | 92.49 (1.04) | 93.11 (1.37) | 89.83 (0.7) | 75.88 (5.9) | ||||||||
MPR | 0.37 (0) | 0.57 (0.03) | 0.73 (0.02) | 1.07 (0.06) | ||||||||
Net MPR | 0.08 (0.04) | 0.21 (0.03) | 0.27 (0.02) | 0.27 (0.06) | ||||||||
TBR-P | ||||||||||||
CH4 | - | 94.2 (0.42) | - | 94.4 (0.11) | - | 94.29 (1.17) | 93.03 (1.98) | 90.92 (2.15) | 83.68 (0.51) | 70.89 (6.4) | - | - |
H2 | 0.5 (0.09) | 0.32 (0.04) | 0.66 (0.41) | 2.68 (1.29) | 4.6 (2.4) | 10.24 (0.52) | 21.51 (4.9) | |||||
CO2 | 5.31 (0.48) | 5.28 (0.11) | 5.05 (0.91) | 4.3 (0.75) | 4.48 (0.44) | 6.08 (0.03) | 7.59 (1.52) | |||||
ηH2 | 99.65 (0.05) | 99.78 (0.02) | 99.54 (0.29) | 98.18 (0.9) | 96.77 (1.73) | 92.53 (0.5) | 82.03 (5.08) | |||||
ηCO2 | 86.05 (1.87) | 86.73 (0.46) | 87.14 (2.6) | 89.19 (2) | 88.47 (1.2) | 83.57 (0.34) | 76.55 (6.03) | |||||
MPR | 0.54 (0.02) | 0.66 (0.01) | 0.93 (0.02) | 1.29 (0.02) | 1.53 (0.06) | 1.61 (0.02) | 2.11 (0.04) | |||||
Net MPR | 0.22 (0.02) | 0.26 (0.01) | 0.37 (0.02) | 0.48 (0.02) | 0.56 (0.06) | 0.56 (0.02) | 0.63 (0.04) | |||||
TBR-S | ||||||||||||
CH4 | - | - | 95.24 (0.47) | 92.99 (1.64) | - | 95.18 (1.19) | 95.55 (0.44) | - | 94.28 (1.47) | 93.08 (0.39) | 88.86 (0.43) | 71.93 (0.36) |
H2 | 0.02 (0.04) | 0.04 (0.02) | 0.15 (0.17) | 0.33 (0.05) | 1.87 (0.82) | 3.1 (0.09) | 7.26 (0.34) | 20.7 (0.24) | ||||
CO2 | 4.74 (0.5) | 6.97 (1.62) | 4.68 (1.08) | 4.12 (0.39) | 3.85 (0.65) | 3.82 (0.47) | 3.88 (0.09) | 7.37 (0.18) | ||||
ηH2 | 99.99 (0.03) | 74.98 (0.01) | 99.96 (0.01) | 99.78 (0.04) | 98.75 (0.58) | 97.91 (0.02) | 94.91 (0.29) | 83.06 (0.25) | ||||
ηCO2 | 88 (1.95) | 82.52 (4.24) | 90.49 (1.12) | 89.77 (1.1) | 90.49 (1.86) | 90.46 (1.37) | 89.9 (0.36) | 77.68 (0.56) | ||||
MPR | 0.58 (0.04) | 0.64 (0.01) | 0.89 (0.01) | 1.31 (0.01) | 1.69 (0.03) | 2.31 (0.04) | 3.25 (0.07) | 4.29 (0.01) | ||||
Net MPR | 0.23 (0.04) | 0.24 (0.01) | 0.34 (0.01) | 0.5 (0.01) | 0.63 (0.03) | 0.84 (0.04) | 1.18 (0.07) | 1.41 (0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyridonidis, A.; Stamatelatou, K. Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors. Fermentation 2024, 10, 554. https://doi.org/10.3390/fermentation10110554
Spyridonidis A, Stamatelatou K. Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors. Fermentation. 2024; 10(11):554. https://doi.org/10.3390/fermentation10110554
Chicago/Turabian StyleSpyridonidis, Apostolos, and Katerina Stamatelatou. 2024. "Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors" Fermentation 10, no. 11: 554. https://doi.org/10.3390/fermentation10110554
APA StyleSpyridonidis, A., & Stamatelatou, K. (2024). Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors. Fermentation, 10(11), 554. https://doi.org/10.3390/fermentation10110554