Regulation of Cultivation Temperature on Biomass and Activity of Bifidobacterium breve B2798
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Set the Incubation Temperature
2.3. Rate of Acid Production, Cell Density, and Viable Cell Count
2.4. Biomass Measurement
2.5. Key Enzyme Activity Measurement
2.6. Lactic Acid Measurement
2.7. Acidity
2.8. Data Analysis
3. Results
3.1. Static Cultivation
3.1.1. Construction of Growth Curves
3.1.2. Acid Production Rate
3.1.3. Biomass
3.1.4. Key Enzyme Activity
3.1.5. Simulation Test of Cell Activity
3.2. High-Density Dynamic Cell Cultivation
3.2.1. Cell Growth Curves Constructed Based on Cell Densities and Viable Cell Counts
3.2.2. Biomass Measurement
3.2.3. Activities of Key Enzymes During Different Cell Growth Phases
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todorova, I.; Savov, E.J.A.; Care, I. Probiotics—Properties, mechanisms of action and application. Anaesthesiol. Intensive Care 2012, 41, 26–29. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Z. Activity Effect of Temperature on Alcohol Dehydrogenase in the Process of Ferment; Shanxi Science and Technology: Xi’an, China, 2008. [Google Scholar]
- Liang, J.; Zhao, J.; Wang, Z.; Yong, H. Temperature gradient-based high-cell density fed-batch fermentation for the production of pyruvate oxidase by recombinant E. coli. Prep. Biochem. Biotechnol. 2018, 48, 188–193. [Google Scholar] [CrossRef]
- Soto-García, E.; Rutiaga-QuiOnes, M.; López-Miranda, J.; Montoya-Ayón, L.; Soto-Cruz, O. Effect of fermentation temperature and must processing on process productivity and product quality in mescal fermentation. Food Control 2008, 20, 307–309. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, W.; Guo, S.; Sun, Y.; Yao, K.; Liu, Z.; Sun, Z.; Kwok, L.; Peng, C. Different growth behaviors and metabolomic profiles in yogurts induced by multistrain probiotics of Lactobacillus casei Zhang and Bifidobacterium lactis V9 under different fermentation temperatures. J. Dairy Sci. 2021, 104, 10528–10539. [Google Scholar] [CrossRef]
- Sari, A. The Effect of High Temperature on α-Amylase Enzyme Activity in the Germination of Several Rice Varieties (Oryza sativa L.). JERAMI Indones. J. Crop Sci. 2021, 3, 50–54. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Identification and Functional Validation of Autolysis—Associated Genes in Lactobacillus bulgaricus ATCC BAA-365. Front. Microbiol. 2017, 8, 1367. [Google Scholar] [CrossRef]
- Liu, X.F.; Chi, J.X.; Lei, W.P.; Liu, C.G. Screening of lactic acid bacteria with high bile saline hydrolase activity and its influencing factors. Food Ferment. Ind. 2020, 46, 63–68. [Google Scholar] [CrossRef]
- Adu, K.T.; Wilson, R.; Nichols, D.S.; Baker, A.L.; Bowman, J.P.; Britz, M.L. Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress. Public Libr. Sci. One 2018, 13, e0206317. [Google Scholar] [CrossRef]
- Sui, X.Y.; Wang, Y.; Zhang, W.B.; Liang, Q.; Yang, M.; Wen, P.C. Research and application status of cryogenic lactic acid bacteria. Food Ferment. Technol. 2017, 53, 83–87. [Google Scholar]
- Abbasiliasi, S.; Tan, J.S.; Ibrahim, T.A.T.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. R. Soc. Chem. Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Farewell, A.; Neidhardt, F.C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 1998, 180, 4704–4710. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, K.; Kwok, L.Y.; Guo, S.; Bai, L.; Yang, X.; Chen, Y. Development of a non-target metabolomics-based screening method for elucidating metabolic and probiotic potential of bifidobacteria. Innov. Food Sci. Emerg. Technol. 2022, 77, 102971. [Google Scholar] [CrossRef]
- Xiong, T.; Huang, Q.F.; Du, M. Screening of excellent Bifidobacterium strains and their resistance to adverse environment of digestive tract. Food Sci. 2014, 35, 161–165. [Google Scholar]
- Saduakhasova, S.A.; Kushugulova, A.R.; Rakhimova, S.E.; Oralbaeva, S.S.; Bisenova, N.M.; Almagambetov, K. Characterization of antagonistic and acid formation properties of Lactobacillus casei. Zh Mikrobiol. Epidemiol. Immunobiol. 2007, 2, 84–87. [Google Scholar]
- Chen, Q.; Cao, D.; Zan, J.Q.; Li, X.Y.; Qin, P.; Huang, X.M.; Zhang, Y.J. Optimization of fermentation medium of chicken interferon-α engineering bacteria by response surface method. China Feed 2019, 11, 28–31. [Google Scholar] [CrossRef]
- Qiu, L.Y.; Wang, M.D.; Song, A.D.; Zhang, S.M.; Liu, X.Y.; Gao, Y.Q.; Qi, Y.C. It is necessary to strengthen the understanding and teaching of the deceleration phase in the growth curve of single-cell organisms in batch culture. Microbiol. Bull. 2008, 35, 432–435. [Google Scholar]
- Traisaeng, S.; Herr, D.R.; Kao, H.J.; Chuang, T.H.; Huang, C.M. A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins 2019, 11, 311. [Google Scholar] [CrossRef]
- Madrid, R.E.; Felice, C.J. Microbial Biomass Estimation. Crit. Rev. Biotechnol. 2005, 25, 97–112. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, Y.; Du, Y.; Miao, S.; Liu, J.; Li, Y.; Cai, Y.; Qing, G.; Qiao, J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J. Dairy Sci. 2018, 101, 6872–6884. [Google Scholar] [CrossRef]
- Guo, X.H. Basic and Application of Probiotics; Beijing Science and Technology Press: Beijing, China, 2002; pp. 27–29. [Google Scholar]
- Salas-Navarrete, P.C.; de Oca Miranda, A.I.M.; Martínez, A.; Caspeta, L. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature. Appl. Microbiol. Biotechnol. 2022, 106, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hu, X.; Chen, H.; Zhou, Y.; Zhou, Y.; Wang, D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ. 2019, 694, 133741. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Lugli, G.A.; Napoli, S.; Anzalone, R.; Milani, C.; Mancabelli, L.; Ventura, M. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.C. Study on Physiological Function and Application of Bifidobacterium; Northeast Agricultural University: Harbin, China, 2002. [Google Scholar]
- Hwang, S.W.; Kwolek, W.F.; Haynes, W.C. Mycological society of america investigation of ultralow temperature for fungal cultures iii. viability and growth rate of mycelial cultures following cryogenic storage. Mycologia 2018, 68, 377–387. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Guo, G.X.; Zhang, X.Q.; Miao, C.; Hou, G.Z.; Xu, L.J. Product evaluation and unqualified factor analysis of ELISA kit. Feed. Rev. 2018, 10, 53–55. [Google Scholar]
- Chen, H.G.; Li, Y.H.; Yang, G.Y. Optimization of assay conditions for the characteristic enzyme F6PPK of Bifidobacterium sp. J. Microbiol. 2008, 5, 25–28. [Google Scholar]
Cultivation Temperature (°C) | Late Logarithmic Growth Phase | Late Stable Growth Phase |
---|---|---|
30 °C | 0.79 ± 0.02 Fb | 1.56 ± 0.03 Ga |
31 °C | 0.00 ± 0.00 Ha | 0.00 ± 0.00 Ka |
32 °C | 0.01 ± 0.00 Hb | 1.81 ± 0.01 Fa |
33 °C | 0.02 ± 0.01 Hb | 0.40 ± 0.01 Ia |
34 °C | 4.39 ± 0.04 Ba | 0.28 ± 0.01 Jb |
35 °C | 4.18 ± 0.03 Ca | 2.32 ± 0.02 Eb |
36 °C | 4.61 ± 0.01 Aa | 4.20 ± 0.03 Ab |
37 °C | 4.36 ± 0.06 Ba | 3.10 ± 0.04 Cb |
38 °C | 4.10 ± 0.01 Db | 3.90 ± 0.02 Ba |
39 °C | 1.19 ± 0.01 Eb | 2.59 ± 0.01 Da |
40 °C | 0.01 ± 0.00 Ha | 0.00 ± 0.00 Ka |
41 °C | 0.66 ± 0.00 Gb | 0.90 ± 0.01 Ha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, Y.; Yang, Z.; Yu, J.; Yao, G. Regulation of Cultivation Temperature on Biomass and Activity of Bifidobacterium breve B2798. Fermentation 2024, 10, 553. https://doi.org/10.3390/fermentation10110553
Liu K, Liu Y, Yang Z, Yu J, Yao G. Regulation of Cultivation Temperature on Biomass and Activity of Bifidobacterium breve B2798. Fermentation. 2024; 10(11):553. https://doi.org/10.3390/fermentation10110553
Chicago/Turabian StyleLiu, Kailong, Yiting Liu, Zhan Yang, Jie Yu, and Guoqiang Yao. 2024. "Regulation of Cultivation Temperature on Biomass and Activity of Bifidobacterium breve B2798" Fermentation 10, no. 11: 553. https://doi.org/10.3390/fermentation10110553
APA StyleLiu, K., Liu, Y., Yang, Z., Yu, J., & Yao, G. (2024). Regulation of Cultivation Temperature on Biomass and Activity of Bifidobacterium breve B2798. Fermentation, 10(11), 553. https://doi.org/10.3390/fermentation10110553