Predicting the Microbiome and Metabolome Dynamics of Natural Apple Fermentation Towards the Development of Enhanced Functional Vinegar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation and Sampling
2.2. DNA Extraction and Metataxonomic Analysis
2.3. Bioinformatic Analyses
2.4. Co-Occurrence/Co-Exclusion Analysis
2.5. Consumption and Production of Substrates
2.6. Secondary Metabolites Formation
3. Results and Discussion
3.1. Microbial Dynamics Profile During Spontaneous Vinegar Fermentation
3.2. Substrates and Metabolites
3.3. Volatile Compound Formation
3.4. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, Production, Composition and Health Benefits of Vinegars: A Review; Elsevier: Amsterdam, The Netherlands, 2017; Volume 221, ISBN 6038921427. [Google Scholar]
- Pazuch, C.M.; Kalschne, D.L.; Siepmann, F.B.; Marx, I.M.G.; de Oliveira, T.C.G.; Spinosa, W.A.; Canan, C.; Colla, E. Optimization and Characterization of Vinegar Produced from Rice Bran. Food Sci. Technol. 2020, 40, 608–613. [Google Scholar] [CrossRef]
- Hata, N.N.Y.; Surek, M.; Sartori, D.; Serrato, R.V.; Spinosa, W.A. Role of Acetic Acid Bacteria in Food and Beverages. Food Technol. Biotechnol. 2023, 61, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; An, F.; Lin, H.; Li, M.; Wu, J.; Wu, R. Advances in Fermented Foods Revealed by Multi-Omics: A New Direction toward Precisely Clarifying the Roles of Microorganisms. Front. Microbiol. 2022, 13, 1044820. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M. An Overview of Fermentation in the Food Industry—Looking Back from a New Perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef]
- Kong, H.; Kim, S.H.; Jeong, W.S.; Kim, S.Y.; Yeo, S.H. Microbiome Analysis of Traditional Grain Vinegar Produced under Different Fermentation Conditions in Various Regions in Korea. Foods 2022, 11, 3573. [Google Scholar] [CrossRef]
- Li, N.; Fu, J.; Zhang, G.; Liu, J.; Li, Z.; Luo, R.; Li, L. Investigating the Mechanism of the Flavor Formation in Sichuan Sun Vinegar Based on Flavor-Orientation and Metagenomics. Curr. Res. Food Sci. 2023, 6, 100460. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Liu, S.; Zhu, S.; Li, G.; Zhong, F.; Mao, J. Dynamic Changes in Physico-Chemical Attributes and Volatile Compounds during Fermentation of Zhenjiang Vinegars Made with Glutinous and Non-Glutinous Japonica Rice. J. Cereal Sci. 2021, 100, 103246. [Google Scholar] [CrossRef]
- Jin, Y.; Qi, T.; Ge, Y.; Chen, J.; Liang, L.; Ju, J.; Zhao, J. Ultrasensitive Electrochemical Determination of Phosphate in Water by Using Hydrophilic TiO2 Modified Glassy Carbon Electrodes. Anal. Methods 2021, 13, 996–1002. [Google Scholar] [CrossRef]
- Wang, Z.M.; Lu, Z.M.; Shi, J.S.; Xu, Z.H. Exploring Flavour-Producing Core Microbiota in Multispecies Solid-State Fermentation of Traditional Chinese Vinegar. Sci. Rep. 2016, 6, 26818. [Google Scholar] [CrossRef]
- Li, Y.N.; Luo, Y.; Lu, Z.M.; Dong, Y.L.; Chai, L.J.; Shi, J.S.; Zhang, X.J.; Xu, Z.H. Metabolomic Analysis of the Effects of a Mixed Culture of Saccharomyces Cerevisiae and Lactiplantibacillus Plantarum on the Physicochemical and Quality Characteristics of Apple Cider Vinegar. Front. Nutr. 2023, 10, 1142517. [Google Scholar] [CrossRef]
- Thierry, A.; Pogačić, T.; Weber, M.; Lortal, S. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods. In Biotechnology of Lactic Acid Bacteria: Novel Applications, 2nd ed.; Fernanda, M., Raúl, R., Raya, G.M.V., Eds.; Wiley-Blackwell: Singapore, 2015; Chapter 19. [Google Scholar]
- Haruta, S.; Ueno, S.; Egawa, I.; Hashiguchi, K.; Fujii, A.; Nagano, M.; Ishii, M.; Igarashi, Y. Succession of Bacterial and Fungal Communities during a Traditional Pot Fermentation of Rice Vinegar Assessed by PCR-Mediated Denaturing Gradient Gel Electrophoresis. Int. J. Food Microbiol. 2006, 109, 79–87. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First Description of Bacterial and Fungal Communities in Colombian Coffee Beans Fermentation Analysed Using Illumina-Based Amplicon Sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.Y.; Da’na, D.A.; Al-Ghouti, M.A. Application of MALDI-TOF MS for Identification of Environmental Bacteria: A Review. J. Environ. Manag. 2022, 305, 114359. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca Cechin, C.; Carvalho, G.G.; Bastos, C.P.; Kabuki, D.Y. Cronobacter Spp. in Foods of Plant Origin: Occurrence, Contamination Routes, and Pathogenic Potential. Crit. Rev. Food Sci. Nutr. 2023, 63, 12398–12412. [Google Scholar] [CrossRef]
- Iguchi, A.; Takemura, T.; Ogura, Y.; Nguyen, T.T.H.; Kikuchi, T.; Okuno, M.; Tokizawa, A.; Iwashita, H.; Pham, H.Q.A.; Doan, T.H.; et al. Genomic Characterization of Endemic Diarrheagenic Escherichia Coli and Escherichia Albertii from Infants with Diarrhea in Vietnam. PLoS Negl. Trop. Dis. 2023, 17, e0011259. [Google Scholar] [CrossRef]
- Wassermann, B.; Müller, H.; Berg, G. An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples? Front. Microbiol. 2019, 10, e01629. [Google Scholar] [CrossRef]
- Zeng, Q.; Puławska, J.; Schachterle, J. Early Events in Fire Blight Infection and Pathogenesis of Erwinia Amylovora. J. Plant Pathol. 2021, 103, 13–24. [Google Scholar] [CrossRef]
- Roșca, M.F.; Păucean, A.; Man, S.M.; Chiș, M.S.; Pop, C.R.; Pop, A.; Fărcaș, A.C. Leuconostoc Citreum: A Promising Sourdough Fermenting Starter for Low-Sugar-Content Baked Goods. Foods 2024, 13, 96. [Google Scholar] [CrossRef]
- Gan, X.; Tang, H.; Ye, D.; Li, P.; Luo, L.; Lin, W. Diversity and Dynamics Stability of Bacterial Community in Traditional Solid-State Fermentation of Qishan Vinegar. Ann. Microbiol. 2017, 67, 703–713. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Kilic, G.; Charoenyingcharoen, P.; Yukphan, P.; Yamada, Y. Investigation of the Microbiota Associated with Traditionally Produced Fruit Vinegars with Focus on Acetic Acid Bacteria and Lactic Acid Bacteria. Food Biosci. 2022, 47, 101636. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and Potential Use as Antimicrobials. J. Clin. Lab. Anal. 2022, 36, 24093. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.A.R.; de Sousa Oliveira, S.S.; Lima, S.F.; do Nascimento, R.P.; de Souza Baptista, A.R.; Fiaux, S.B. The Industrial Versatility of Gluconobacter Oxydans: Current Applications and Future Perspectives. World J. Microbiol. Biotechnol. 2022, 38, 134. [Google Scholar] [CrossRef] [PubMed]
- Hommel, R.K. Gluconobacter. Encycl. Food Microbiol. Second Ed. 2014, 2, 99–105. [Google Scholar] [CrossRef]
- Leitão, M.; Ferreira, B.; Guedes, B.; Moreira, D.; García, P.A.; Barreiros, L.; Correia, P. Screening of Antioxidant Effect of Spontaneous and Bioinoculated with Gluconobacter Oxydans Fermented Papaya: A Comparative Study. Fermentation 2023, 9, 124. [Google Scholar] [CrossRef]
- Noman, A.E.; Al-Barha, N.S.; Sharaf, A.A.M.; Al-Maqtari, Q.A.; Mohedein, A.; Mohammed, H.H.H.; Chen, F. A Novel Strain of Acetic Acid Bacteria Gluconobacter Oxydans FBFS97 Involved in Riboflavin Production. Sci. Rep. 2020, 10, 13527. [Google Scholar] [CrossRef]
- Nosratabadi, L.; Kavousi, H.R.; Hajimohammadi-Farimani, R.; Balvardi, M.; Yousefian, S. Estamaran Date Vinegar: Chemical and Microbial Dynamics during Fermentation. Brazilian J. Microbiol. 2024, 55, 1265–1277. [Google Scholar] [CrossRef]
- Gomes, R.J.; de Fatima Borges, M.; de Freitas Rosa, M.; Castro-Gómez, R.J.H.; Spinosa, W.A. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol. 2018, 56, 139–151. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial Cellulose in Food Industry: Current Research and Future Prospects. Int. J. Biol. Macromol. 2020, 158, 1007–1019. [Google Scholar] [CrossRef]
- Seo, H.; Lee, S.; Park, H.; Jo, S.; Kim, S.; Rahim, M.A.; Ul-Haq, A.; Barman, I.; Lee, Y.; Seo, A.; et al. Characteristics and Microbiome Profiling of Korean Gochang Bokbunja Vinegar by the Fermentation Process. Foods 2022, 11, 3308. [Google Scholar] [CrossRef]
- Trček, J.; Mahnič, A.; Rupnik, M. Diversity of the Microbiota Involved in Wine and Organic Apple Cider Submerged Vinegar Production as Revealed by DHPLC Analysis and Next-Generation Sequencing. Int. J. Food Microbiol. 2016, 223, 57–62. [Google Scholar] [CrossRef]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.S.; Hatziloukas, E. Saccharomyces Cerevisiae and Its Industrial Applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Cho, K.M.; Kwon, S.J.; Seo, S.H.; Park, S.E.; Son, H.S. Factors Affecting Vinegar Metabolites during Two-Stage Fermentation through Metabolomics Study. LWT 2021, 135, 110081. [Google Scholar] [CrossRef]
- Tubia, I.; Prasad, K.; Pérez-Lorenzo, E.; Abadín, C.; Zumárraga, M.; Oyanguren, I.; Barbero, F.; Paredes, J.; Arana, S. Beverage Spoilage Yeast Detection Methods and Control Technologies: A Review of Brettanomyces. Int. J. Food Microbiol. 2018, 283, 65–76. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, P.; Zhou, X.; Zheng, J.; Ma, Y.; Liu, C.; Wu, T.; Li, H.; Wang, X.; Wang, H.; et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia Kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation 2023, 9, 540. [Google Scholar] [CrossRef]
- Avirasdya, R.A.; Nursiwi, A.; Sari, A.M.; Zaman, M.Z.; Sanjaya, A.P. Kinetics Study of Bacterial Cellulose Production by Acetobacter Xylinum FNCC 0001 with Variation of Carbon Sources. E3S Web Conf. 2022, 344, 03002. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Cao, L.; Wang, X.; Sun, J.; Yuan, J.; Gu, S. Changes and Correlation of Microorganism and Flavor Substances during Persimmon Vinegar Fermentation. Food Biosci. 2022, 46, 101565. [Google Scholar] [CrossRef]
- Nie, Z.; Zheng, Y.; Xie, S.; Zhang, X.; Song, J.; Xia, M.; Wang, M. Unraveling the Correlation between Microbiota Succession and Metabolite Changes in Traditional Shanxi Aged Vinegar. Sci. Rep. 2017, 7, 9240. [Google Scholar] [CrossRef]
- Averesch, N.J.H.; Krömer, J.O. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies. Front. Bioeng. Biotechnol. 2018, 6, 32. [Google Scholar] [CrossRef]
- Tang, R.; Yu, H.; Qi, M.; Yuan, X.; Ruan, Z.; Hu, C.; Xiao, M.; Xue, Y.; Yao, Y.; Liu, Q. Biotransformation of Citrus Fruits Phenolic Profiles by Mixed Probiotics in Vitro Anaerobic Fermentation. LWT 2022, 160, 113087. [Google Scholar] [CrossRef]
- Shende, V.V.; Bauman, K.D.; Moore, B.S. The Shikimate Pathway: Gateway to Metabolic Diversity. Nat. Prod. Rep. 2024, 41, 604–648. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, J.H.; Kang, S.J.; Zhang, H.Y.; Yuan, J.; Zeng, C.Z.; Zhang, F.; Huang, Y.L. Analysis of Microbial Diversity in Apple Vinegar Fermentation Process through 16s RDNA Sequencing. Food Sci. Nutr. 2019, 7, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- del Fresno, J.M.; Escott, C.; Carrau, F.; Herbert-Pucheta, J.E.; Vaquero, C.; González, C.; Morata, A. Improving Aroma Complexity with Hanseniaspora Spp.: Terpenes, Acetate Esters, and Safranal. Fermentation 2022, 8, 654. [Google Scholar] [CrossRef]
- Ji, X. Solid-Phase Microextraction as a Promising Tool for the Determination of Volatile Organic Components in Vinegar. J. Anal. Chem. 2022, 77, 1497–1502. [Google Scholar] [CrossRef]
- Shu, C.; Cai, J.; Huang, L.; Zhu, X.; Xu, Z. Biocatalytic Production of Ethyl Butyrate from Butyric Acid with Immobilized Candida Rugosa Lipase on Cotton Cloth. J. Mol. Catal. B Enzym. 2011, 72, 139–144. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; González-Fernández, C.; Greses, S.; Kennes, C.; Otero-Logilde, N.; Veiga, M.C.; Bolzonella, D.; Müller, B.; Passoth, V. Production of Short-Chain Fatty Acids (SCFAs) as Chemicals or Substrates for Microbes to Obtain Biochemicals. Biotechnol. Biofuels Bioprod. 2023, 16, 96. [Google Scholar] [CrossRef]
- Wätjen, A.P.; De Vero, L.; Carmona, E.N.; Sberveglieri, V.; Huang, W.; Turner, M.S.; Bang-Berthelsen, C.H. Leuconostoc Performance in Soy-Based Fermentations—Survival, Acidification, Sugar Metabolism, and Flavor Comparisons. Food Microbiol. 2023, 115, 104337. [Google Scholar] [CrossRef]
- Mett, J.; Müller, U. The Medium-Chain Fatty Acid Decanoic Acid Reduces Oxidative Stress Levels in Neuroblastoma Cells. Sci. Rep. 2021, 11, 6135. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef]
- Jeong, D.W.; Lee, B.; Her, J.Y.; Lee, K.G.; Lee, J.H. Safety and Technological Characterization of Coagulase-Negative Staphylococci Isolates from Traditional Korean Fermented Soybean Foods for Starter Development. Int. J. Food Microbiol. 2016, 236, 9–16. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Lavilla, M.; Amárita, F. Wine Aroma Profile Modification by Oenococcus Oeni Strains from Rioja Alavesa Region: Selection of Potential Malolactic Starters. Int. J. Food Microbiol. 2021, 356, 109324. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, B.; Liang, X.B.; Robert, F.; Soontorngun, N. Transcriptional Regulation of Nonfermentable Carbon Utilization in Budding Yeast. FEMS Yeast Res. 2010, 10, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Pietrafesa, A.; Capece, A.; Pietrafesa, R.; Bely, M.; Romano, P. Saccharomyces Cerevisiae and Hanseniaspora Uvarum Mixed Starter Cultures: Influence of Microbial/Physical Interactions on Wine Characteristics. Yeast 2020, 37, 609–621. [Google Scholar] [CrossRef] [PubMed]
Compound | Odor | Taste | Beginning (Week 1) | Middle (Week 5) | End (Week 9) |
---|---|---|---|---|---|
Carboxylic acids | |||||
Octanoic acid | Faint/Fruity-acid | Slightly sour | 26,177 | 24,157 | 41,033 |
4-Terpineol | Pine | Herbal pepper | 18,017 | 13,141 | 0 |
Nonanoic acid | Fatty | Coconut | 0 | 3586 | 13,084 |
Butyric acid | Rancid | Butter-fat | 0 | 0 | 66,785 |
Isovaleric acid | Rancid-cheesy | Acid | 0 | 0 | 57,223 |
Caproic acid | Characteristic goat-like | ND | 0 | 0 | 14,583 |
Aldehydes | |||||
2,4-dimethyl Benzaldehyde | Bitter almond | ND | 115,062 | 129,278 | 53,130 |
Decanal | Floral-fatty/citrus | Sharp orange | 5552 | 6717 | 4844 |
Nonanal | Orange-rose | ND | 4406 | 7.5 | 5698 |
Benzaldehyde | Almond oil | Burning aromatic/Bitter almond | 0 | 0 | 27,199 |
Ketones | |||||
Acetoin | Buttery | Fatty creamy | 0 | 10,032 | 48,329 |
Alcohols | |||||
Phenylethyl alcohol | Rose-like | Initially bitter then sweet/Reminiscent of peach | 703,008 | 652,024 | 76,180 |
Isoamyl alcohol | Disagreeable | Pungent/Repulsive | 361,700 | 338,652 | 3310 |
1-Butanol | Harsh fusel with banana | Banana/Fusel | 51,492 | 39,933 | 0 |
1-Hexanol | Sweet alcohol | Fatty/Fruity | 34,249 | 32,602 | 0 |
Isoamyl acetate | Pear-like | Bittersweet reminiscent of pear/Slight apple | 24,254 | 24,714 | 0 |
Benzyl alcohol | Faint aromatic | Sharp burning | 23,079 | 19,076 | 0 |
2,3-Butanediol | Odorless | Sweet | 136,944 | 0 | 0 |
2-Ethyl-1-hexanol | Mild/Oily/Sweet/Floral/Reminiscent of rose | Sweet/Fatty-floral/Fruital note | 4458 | 5116 | 40,784 |
Ether | |||||
Estragole | Reminiscent of anise | Sweet | 13,933 | 0 | 0 |
Benzene | Aromatic | ND | 8537 | 0 | 0 |
Ester | |||||
Phenethyl acetate | Fruity | Flower/Honey/Rose | 165,065 | 171,126 | 52,570 |
Ethyl palmitate | Waxy | ND | 115,960 | 116,372 | 37,692 |
Ethyl decanoate | Oily brandy-like | Brandy/Grape/Pear | 70,352 | 109,201 | 0 |
Ethyl octanoate | Wine/Brandy/Fruity/Floral | Apricot/Brandy/Fat/Floral/Pineapple | 32,700 | 74,141 | 0 |
Ethyl hexanoate | Wine-like | Apple Peel/Brandy/Fruit Gum/Overripe Fruit/Pineapple | 7287 | 12.9 | 0 |
Ethyl dodecanoate | Fruity/Floral | Floral/Fruit/Leaf | 0 | 50,400 | 0 |
Ethyl tetradecanoate | Waxy/Reminiscent of orris | Wax | 0 | 17,668 | 8526 |
Ethyl butyrate | Banana/Pineapple | Sweet/Pineapple | 0 | 0 | 16,697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maske, B.L.; Ruiz, I.; Vale, A.d.S.; Sampaio, V.d.M.; El Kadri, N.K.; Soccol, C.R.; Pereira, G.V. Predicting the Microbiome and Metabolome Dynamics of Natural Apple Fermentation Towards the Development of Enhanced Functional Vinegar. Fermentation 2024, 10, 552. https://doi.org/10.3390/fermentation10110552
Maske BL, Ruiz I, Vale AdS, Sampaio VdM, El Kadri NK, Soccol CR, Pereira GV. Predicting the Microbiome and Metabolome Dynamics of Natural Apple Fermentation Towards the Development of Enhanced Functional Vinegar. Fermentation. 2024; 10(11):552. https://doi.org/10.3390/fermentation10110552
Chicago/Turabian StyleMaske, Bruna Leal, Ignácio Ruiz, Alexander da Silva Vale, Vitória de Mello Sampaio, Najua Kêmil El Kadri, Carlos Ricardo Soccol, and Gilberto Vinícius Pereira. 2024. "Predicting the Microbiome and Metabolome Dynamics of Natural Apple Fermentation Towards the Development of Enhanced Functional Vinegar" Fermentation 10, no. 11: 552. https://doi.org/10.3390/fermentation10110552
APA StyleMaske, B. L., Ruiz, I., Vale, A. d. S., Sampaio, V. d. M., El Kadri, N. K., Soccol, C. R., & Pereira, G. V. (2024). Predicting the Microbiome and Metabolome Dynamics of Natural Apple Fermentation Towards the Development of Enhanced Functional Vinegar. Fermentation, 10(11), 552. https://doi.org/10.3390/fermentation10110552