Prefeasibility Analysis of Different Anaerobic Digestion Upgrading Pathways Using Organic Kitchen Food Waste as Raw Material
Abstract
:1. Introduction
2. Overview of Anaerobic Digestion System
2.1. Biochemical Reactions and Steps
Stage | Reactions | Process Conditions | Involved Bacteria | Conversion |
---|---|---|---|---|
Hydrolysis | T:25–30 °C; pH 5.2–6.8; C/N ratio: 10–45; Required C:N:P:S ratio: 500:15:5:3; facultative microorganisms | Clostridium, Proteus vulgaris, Vibrio, Bacillus, Peptococcus, Bacteriodes, | Carbohydrates-soluble sugars. Proteins-soluble peptides and amino acids. Lipids-fatty acids or alcohols | |
Acidogenesis | T: 25–30 °C; pH: 5.2–6.5; C/N ratio: 10–45; Generation time: 24–36 h; facultative microorganisms | Actobacillus, Escherichia, Bacillus, Staphylococcus, Pseudomonas, Sarcina, Desulfovibrio, Streptococcus, Veollonell, Desulforomonas | Amino acids-fatty acids, acetate, and others. Sugars-intermediary fermentation products | |
Acetogenesis | Generation time: 80–90 h | Clostridium, Syntrophomonas wolfeii, Syntrophomonas wolfei | Higher fatty acids or alcohols- hydrogen and acetate. Volatile fatty acids and alcohols- acetate or hydrogen | |
Methanogenesis | Mesophilic: 32–42 °C; Thermophilic: 50–58 °C; pH: 6.0–8; C/N ratio: 20–30, Generation time: 5–16 d; Strict anaerobes microorganisms | Methanosaeta, Methanosarcina, Methanobacterium formicicum, Methanobrevibacterium | Acetate-methane and carbon dioxide. Hydrogen and carbon dioxide- methane |
2.2. Microorganisms Involved in Anaerobic Digestion
2.3. Parameters in Anaerobic Digestion
2.3.1. Feedstock
2.3.2. Inoculum
2.3.3. Operational Parameters
2.4. Products Derived from Anaerobic Digestion
2.4.1. Biogas
2.4.2. Hydrogen
2.4.3. Bio-Hythane
2.4.4. Bio-Based Products
2.4.5. Byproducts: Volatile Fatty Acids (VFAs)
3. Volatile Fatty Acids Production
3.1. Acetic Acid
3.2. Propionic Acid
3.3. Butyric Acid
4. Mixed Volatile Fatty Acids by Anaerobic Digestion
4.1. Upstream Process of Mixed Volatile Fatty Acids Production
4.2. Downstream Process of Mixed Volatile Fatty Acids Production
4.3. Mixed Volatile Fatty Acids Applications
4.3.1. Polyhydroxyalkanoates (PHA)
4.3.2. Biodiesel
4.3.3. Nutrient Removal
5. Mixed Volatile Fatty Acids and Anaerobic Digestion Potential in Biorefineries
6. Case Study: Organic Kitchen Food Waste Valorization through Biorefinery Concept from Anaerobic Digestion
6.1. Experimental Procedure
6.2. Simulation Procedure and Process Description
6.3. Techno-Economic Assessment
7. Results and Analysis
7.1. Raw Material Characterization
7.2. Biogas and Mixed-VFAs Production
7.3. Techno-Economic Assessment
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Caposciutti, G.; Baccioli, A.; Ferrari, L.; Desideri, U. Biogas from Anaerobic Digestion: Power Generation or Biomethane Production? Energies 2020, 13, 743. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Hodson de Jaramillo, E. Bioeconomy and circular economy: The sustainable future. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2018, 42, 188. [Google Scholar] [CrossRef]
- Verma, S. Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes. Master’s Thesis, Columbia University, New York, NY, USA, 2002. [Google Scholar]
- Zabaniotou, A.; Kamaterou, P. Food waste valorization advocating Circular Bioeconomy—A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process. Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Buyukkamaci, N.; Filibeli, A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process. Biochem. 2004, 39, 1491–1494. [Google Scholar] [CrossRef]
- Rocha, M.A.; Raeissi, S.; Hage, P.; Weggemans, W.M.; van Spronsen, J.; Peters, C.J.; Kroon, M.C. Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent. Chem. Eng. Sci. 2017, 165, 74–80. [Google Scholar] [CrossRef]
- Albuquerque, M.; Martino, V.; Pollet, E.; Avérous, L.; Reis, M. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol. 2011, 151, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.C.; Kim, Y.H. Eco-efficient recovery of bio-based volatile C2–6 fatty acids. Biotechnol. Biofuels 2019, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of biogas digestate as solid fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- Liedl, B.; Bombardiere, J.; Chatfield, J. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste. Water Sci. Technol. 2006, 53, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Wiatrowski, M.; Klein, B.C.; Quiroz-Arita, C.; Tan, E.C.D.; Hunt, R.W.; Davis, R.E. Techno-economic assessment for the production of algal fuels and value-added products: Opportunities for high-protein microalgae conversion. Biotechnol. Biofuels Bioprod. 2022, 15, 8. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Lehtomäki, A.; Huttunen, S.; Rintala, J.A. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resour. Conserv. Recycl. 2007, 51, 591–609. [Google Scholar] [CrossRef]
- Meng, Y.; Luan, F.; Yuan, H.; Chen, X.; Li, X. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. Bioresour. Technol. 2017, 224, 48–55. [Google Scholar] [CrossRef]
- Lin, C.-Y. Effect of heavy metals on acidogenesis in anaerobic digestion. Water Res. 1993, 27, 147–152. [Google Scholar] [CrossRef]
- Isa, Z.; Grusenmeyer, S.; Verstraete, W. Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Technical Aspects. Appl. Environ. Microbiol. 1986, 51, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Korres, N.E.; O’Kiely, P.; Benzie, J.A.H.; West, J.S. Bioenergy Production by Anaerobic Digestion: Using Agricultural Biomass and Organic Wastes; Routledge: London, UK, 2013; Volume 9780203137, pp. 1–442. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, M.; Miao, H.; Huang, Z.; Gao, S.; Ruan, W. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour. Technol. 2014, 163, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wang, J. An overview on biogas generation from anaerobic digestion of food waste. Int. J. Green Energy 2016, 13, 119–131. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Hasniah, N.; Taherzadeh, M.J. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresour. Technol. Rep. 2023, 21, 101315. [Google Scholar] [CrossRef]
- De Vries, J.; Vinken, T.; Hamelin, L.; De Boer, I. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy—A life cycle perspective. Bioresour. Technol. 2012, 125, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Schievano, A.; Tenca, A.; Lonati, S.; Manzini, E.; Adani, F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass. Appl. Energy 2014, 124, 335–342. [Google Scholar] [CrossRef]
- Conrad, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999, 28, 193–202. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Bio/Technol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- McMahon, K.D.; Zheng, D.; Stams, A.J.; Mackie, R.I.; Raskin, L. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol. Bioeng. 2004, 87, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Shi, J.; Lv, W.; Yu, Z.; Li, Y. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Manag. 2013, 33, 26–32. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Raport, L.; Willems, B.; Verbrugge, S.; Volcke, E.; Meers, E.; Angenent, L.T.; Boon, N. Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb. Biotechnol. 2015, 8, 776–786. [Google Scholar] [CrossRef] [PubMed]
- MacLellan, J.; Chen, R.; Kraemer, R.; Zhong, Y.; Liu, Y.; Liao, W. Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining. Bioresour. Technol. 2013, 130, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; Bellomi, D.; Cazzoli, A.; De Carolis, G.; D’odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 2016, 6, 22521. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Suarez, M.; Zhang, Y.; Outram, V. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev. Environ. Sci. Bio/Technol. 2021, 20, 439–478. [Google Scholar] [CrossRef]
- Czekała, W.; Nowak, M.; Bojarski, W. Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation 2023, 9, 449. [Google Scholar] [CrossRef]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Abouelenien, F.; Namba, Y.; Nishio, N.; Nakashimada, Y. Dry Co-Digestion of Poultry Manure with Agriculture Wastes. Appl. Biochem. Biotechnol. 2016, 178, 932–946. [Google Scholar] [CrossRef]
- Getahun, T.; Gebrehiwot, M.; Ambelu, A.; Van Gerven, T.; Van der Bruggen, B. The potential of biogas production from municipal solid waste in a tropical climate. Environ. Monit. Assess. 2014, 186, 4637–4646. [Google Scholar] [CrossRef]
- López, Y.; Franco, B. Gestión de residuos sólidos urbanos: Un enfoque en Colombia y el departamento de Antioquia. Cuad. Act. 2020, 11, 133–154. [Google Scholar]
- Marañón, E.; Castrillón, L.; Quiroga, G.; Fernández-Nava, Y.; Gómez, L.; García, M. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012, 32, 1821–1825. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zheng, D.; Liu, G.; Deng, L.; Long, Y.; Fan, Z. Continuous dry fermentation of swine manure for biogas production. Waste Manag. 2015, 38, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Abouelenien, F.; Namba, Y.; Kosseva, M.R.; Nishio, N.; Nakashimada, Y. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour. Technol. 2014, 159, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Abouelenien, F.; Fujiwara, W.; Namba, Y.; Kosseva, M.; Nishio, N.; Nakashimada, Y. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour. Technol. 2010, 101, 6368–6373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, L.; Song, Z.; Ren, G.; Feng, Y.; Han, X.; Yang, G. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues. PLoS ONE 2013, 8, e66845. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Lidén, G. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenergy 2009, 33, 527–533. [Google Scholar] [CrossRef]
- González-Fernández, C.; León-Cofreces, C.; García-Encina, P.A. Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour. Technol. 2008, 99, 8710–8714. [Google Scholar] [CrossRef] [PubMed]
- Parra-Orobio, B.A.; Donoso-Bravo, A.; Ruiz-Sánchez, J.C.; Valencia-Molina, K.J.; Torres-Lozada, P. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag. 2018, 71, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016, 4, 115–122. [Google Scholar] [CrossRef]
- Forster-Carneiro, T.; Pérez, M.; Romero, L.; Sales, D. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresour. Technol. 2007, 98, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Pu, Y.; Zeng, T.; Hu, Y.; Huang, J.; Pan, S.; Wang, X.C.; Li, Y.; Abomohra, A.E.-F. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. Bioresour. Technol. 2022, 345, 126470. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Anupoju, G.R.; Sridhar, S.; Bhargava, S.K.; Jegatheesan, V.; Eshtiaghi, N. Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour. Technol. 2018, 251, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Hierholtzer, A. Investigating Factors Affecting the Anaerobic Digestion of Seaweed: Modelling and Experimental Approaches. 2013, pp. 1–251. Available online: https://rke.abertay.ac.uk/ws/portalfiles/portal/8473805 (accessed on 3 August 2022).
- Jankowska, E.; Chwiałkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour. Technol. 2015, 190, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, X.; Xiao, K.; Shen, N.; Zeng, R.J.; Zhou, Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017, 112, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Lohani, S.P.; Havukainen, J. Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Waste Bioremediation, Energy, Environment and Sustainability; Varjani, S.J., Gnansounou, E., Baskar, G., Pant, D., Zakaria, Z.A., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 343–359. [Google Scholar] [CrossRef]
- Bhurat, K.S.; Banerjee, T.; Pandey, J.K.; Bhurat, S.S. A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: Effect of pH, temperature, and substrate pre-treatment. J. Mater. Cycles Waste Manag. 2021, 23, 1617–1625. [Google Scholar] [CrossRef]
- Zainal, B.S.; Gunasegaran, K.; Tan, G.Y.A.; Danaee, M.; Mohd, N.S.; Ibrahim, S.; Chyuan, O.H.; Nghiem, L.D.; Mahlia, T.I. Effect of temperature and hydraulic retention time on hydrogen production from palm oil mill effluent (POME) in an integrated up-flow anaerobic sludge fixed-film (UASFF) bioreactor. Environ. Technol. Innov. 2022, 28, 102903. [Google Scholar] [CrossRef]
- Cysneiros, D.; Banks, C.J.; Heaven, S.; Karatzas, K.-A.G. The effect of pH control and ‘hydraulic flush’ on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour. Technol. 2012, 123, 263–271. [Google Scholar] [CrossRef]
- Stürmer, B.; Leiers, D.; Anspach, V.; Brügging, E.; Scharfy, D.; Wissel, T. Agricultural biogas production: A regional comparison of technical parameters. Renew. Energy 2021, 164, 171–182. [Google Scholar] [CrossRef]
- Shi, X.-S.; Dong, J.-J.; Yu, J.-H.; Yin, H.; Hu, S.-M.; Huang, S.-X.; Yuan, X.-Z. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors. BioMed Res. Int. 2017, 2017, 2457805. [Google Scholar] [CrossRef]
- Voicu, G.; Dincă, M.; Paraschiv, G.; Moiceanu, G. A Review Regarding the Biogas Production through Anaerobic Digestion of Organic Waste. Adv. Eng. Forum 2015, 13, 185–193. [Google Scholar] [CrossRef]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in biogas production: Pretreatment and codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Thompson, R.S. Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System. Master’s Thesis, Utah State University, Logan, UT, USA, 2008; p. 76. [Google Scholar]
- Chen, J.L.; Ortiz, R.; Steele, T.W.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Al Seadi, R.J.T.; Rutz, D.; Prassl, H.; Kottner, M.; Finsterwalder, T.; Volk, S. Biogas Handbook; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Somehsaraei, H.N.; Majoumerd, M.M.; Breuhaus, P.; Assadi, M. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 2014, 66, 181–190. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Kheirrouz, M.; Asl, H.F.; Yousefi, H.; Hajinezhad, A. Biogas production potential from livestock manure in Iran. Renew. Sustain. Energy Rev. 2015, 50, 748–754. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Zhao, Q.; Leonhardt, E.; MacConnell, C.; Frear, C.; Chen, S. Purification Technologies for Biogas Generated by Anaerobic Digestion. In Climate Friendly Farming Improving Carbon Footprint Agriculture in the Pacific Northwest; CSANR Research Report; IEA Bioenergy: Paris, France, 2010; p. 24. [Google Scholar]
- Mu, H.; Zhao, C.; Zhao, Y.; Li, Y.; Hua, D.; Zhang, X.; Xu, H. Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste: Performance and microbial characteristics analysis. Bioresour. Technol. 2017, 236, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Zhai, N.; Zhang, T.; Yin, D.; Yang, G.; Wang, X.; Ren, G.; Feng, Y. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag. 2015, 38, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Guo, X.; Zuo, J.; Wang, Y.; Zhang, M. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts. Waste Manag. 2018, 75, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Wang, G.; Wang, X. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency. Bioresour. Technol. 2017, 237, 231–239. [Google Scholar] [CrossRef]
- Morken, J.; Gjetmundsen, M.; Fjørtoft, K. Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates. Renew. Energy 2018, 117, 46–51. [Google Scholar] [CrossRef]
- Alvarez, R.; Lidén, G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energy 2008, 33, 726–734. [Google Scholar] [CrossRef]
- Redaktion, T. The Future of Biogas in Europe. Probiogas 1997, 6, 78–79. [Google Scholar] [CrossRef]
- Mariana, O.-S.; Camilo, S.-T.J.; Ariel, C.-A.C. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour. Technol. 2021, 325, 124682. [Google Scholar] [CrossRef]
- Vrbová, V.; Ciahotný, K. Upgrading Biogas to Biomethane Using Membrane Separation. Energy Fuels 2017, 31, 9393–9401. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Tippayawong, N.; Thanompongchart, P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 2010, 35, 4531–4535. [Google Scholar] [CrossRef]
- Anneli, P.; Arthur, W. Biogas Upgrading Technologies—Developements and Innovations; IEA Bioenergy: Paris, France, 2014; Volume 6, Available online: https://www.ieabioenergy.com/wp-content/uploads/2009/10/upgrading_rz_low_final.pdf (accessed on 4 August 2022).
- Kothari, R.; Pandey, A.; Kumar, S.; Tyagi, V.; Tyagi, S. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Khan, I. Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world—A case of Bangladesh. Int. J. Hydrogen Energy 2020, 45, 15951–15962. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Martín, F.C. Estado del Arte de la Producción de Hidrogeno Renovable Offshore. Bachelor’s Thesis, Escuela Técnica Superior de Ingeniería Universidad de Sevilla, Sevilla, Spain, 2020. [Google Scholar]
- Houf, W.; Evans, G.; Ekoto, I.; Merilo, E.; Groethe, M. Hydrogen fuel-cell forklift vehicle releases in enclosed spaces. Int. J. Hydrogen Energy 2013, 38, 8179–8189. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Senior, B.T.F.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef]
- Paudel, S.; Kang, Y.; Yoo, Y.-S.; Seo, G.T. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Manag. 2017, 61, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Intanoo, P.; Chaimongkol, P.; Chavadej, S. Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int. J. Hydrogen Energy 2016, 41, 6107–6114. [Google Scholar] [CrossRef]
- De Menezes, C.A.; Silva, E.L. Hydrogen production from sugarcane juice in expanded granular sludge bed reactors under mesophilic conditions: The role of homoacetogenesis and lactic acid production. Ind. Crop. Prod. 2019, 138, 111586. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Horváth, I.S.; Taherzadeh, M.J. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renew. Energy 2020, 152, 1140–1148. [Google Scholar] [CrossRef]
- Mishra, P.; Balachandar, G.; Das, D. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manag. 2017, 66, 70–78. [Google Scholar] [CrossRef]
- Abreu, A.A.; Tavares, F.; Alves, M.M.; Pereira, M.A. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Bioresour. Technol. 2016, 219, 132–138. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2019, 44, 17363–17380. [Google Scholar] [CrossRef]
- Krishnan, S.; Din, M.F.M.; Taib, S.M.; Ling, Y.E.; Puteh, H.; Mishra, P.; Nasrullah, M.; Sakinah, M.; Wahid, Z.A.; Rana, S.; et al. Process constraints in sustainable bio-hythane production from wastewater: Technical note. Bioresour. Technol. Rep. 2019, 5, 359–363. [Google Scholar] [CrossRef]
- Rawoof, S.A.A.; Kumar, P.S.; Vo, D.-V.N.; Devaraj, T.; Subramanian, S. Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review. Renew. Sustain. Energy Rev. 2021, 152, 111700. [Google Scholar] [CrossRef]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate Composition Affecting N Fertiliser Value and C Mineralisation. Waste Biomass Valorization 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Gao, T.; Li, X. Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production. Bioresour. Technol. 2011, 102, 2126–2129. [Google Scholar] [CrossRef]
- Walsh, J.J.; Jones, D.L.; Edwards-Jones, G.; Williams, A.P. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J. Plant Nutr. Soil Sci. 2012, 175, 840–845. [Google Scholar] [CrossRef]
- Baral, K.R.; Jégo, G.; Amon, B.; Bol, R.; Chantigny, M.H.; Olesen, J.E.; Petersen, S.O. Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agric. Syst. 2018, 166, 26–35. [Google Scholar] [CrossRef]
- Dragicevic, I.; Eich-Greatorex, S.; Sogn, T.A.; Horn, S.J.; Krogstad, T. Use of high metal-containing biogas digestates in cereal production—Mobility of chromium and aluminium. J. Environ. Manag. 2018, 217, 12–22. [Google Scholar] [CrossRef]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Teglia, C.; Tremier, A.; Martel, J.-L. Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use. Waste Biomass Valorization 2011, 2, 43–58. [Google Scholar] [CrossRef]
- Amuzu-Sefordzi, B.; Huang, J.Y.; Gong, M. Hydrogen production by supercritical water gasification of food waste using nickel and alkali catalystsno. WIT Trans. Ecol. Environ. 2014, 190, 262–273. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Niu, D.; Zhao, Y. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst. Eng. 2015, 38, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Liu, X.; Fu, B.; Chen, J.; Yu, H.-Q. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 2012, 46, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Kuruti, K.; Nakkasunchi, S.; Begum, S.; Juntupally, S.; Arelli, V.; Anupoju, G.R. Rapid generation of volatile fatty acids (VFA) through anaerobic acidification of livestock organic waste at low hydraulic residence time (HRT). Bioresour. Technol. 2017, 238, 188–193. [Google Scholar] [CrossRef] [PubMed]
- .Garcia-Aguirre, J.; Aymerich, E.; de Goñi, J.G.-M.; Esteban-Gutiérrez, M. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresour. Technol. 2017, 244, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yu, X.; Zhang, Y.; Shen, D.; Wang, M.; Long, Y.; Chen, T. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Bioresour. Technol. 2016, 216, 996–1003. [Google Scholar] [CrossRef]
- Zahedi, S.; Sales, D.; Romero, L.; Solera, R. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of organic loading rate and microbial content of the solid waste. Bioresour. Technol. 2013, 129, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Grootscholten, T.I.M.; dal Borgo, F.K.; Hamelers, H.V.M.; Buisman, C.J.N. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. Biomass Bioenergy 2013, 48, 10–16. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G.; Smith, M.O. Effect of a Starch-Rich Industrial Wastewater on the Acid-Phase Anaerobic Digestion Process. Water Environ. Res. 2005, 77, 366–371. [Google Scholar] [CrossRef]
- Sydney, E.B.; Larroche, C.; Novak, A.C.; Nouaille, R.; Sarma, S.J.; Brar, S.K.; Letti, L.A.J.; Soccol, V.T.; Soccol, C.R. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour. Technol. 2014, 159, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Yin, D.-M.; Mahboubi, A.; Sapmaz, T.; Varjani, S.; Qiao, W.; Koseoglu-Imer, D.Y.; Taherzadeh, M.J. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022, 13, 1249–1275. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Swan, J.E.; Nair, G.R.; Langdon, A.G. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose. Biotechnol. Appl. Biochem. 2015, 62, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-L.; Guo, W.-Q.; Zheng, H.-S.; Luo, H.-C.; Feng, X.-C.; Yin, R.-L.; Ren, N.-Q. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresour. Technol. 2016, 216, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Martín-Espejo, J.L.; Gandara-Loe, J.; Odriozola, J.A.; Reina, T.; Pastor-Pérez, L. Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy. Sci. Total. Environ. 2022, 840, 156663. [Google Scholar] [CrossRef] [PubMed]
- Zion Market Research. Acetic Acid Market By Application (Vinyl Acetate Monomer, Purified Terephthalic Acid, Acetate Esters, Acetate Anhydride): Global Industry Perspective, Comprehensive Analysis and Forecast, 2020–2028. Available online: https://www.zionmarketresearch.com/report/acetic-acid-market (accessed on 3 August 2022).
- Yoneda, N.; Kusano, S.; Yasui, M.; Pujado, P.; Wilcher, S. Recent advances in processes and catalysts for the production of acetic acid Noriyuki. Appl. Catal. A Gen. 2001, 221, 253–265. [Google Scholar] [CrossRef]
- Rebecchi, S.; Pinelli, D.; Bertin, L.; Zama, F.; Fava, F.; Frascari, D. Volatile fatty acids recovery from the effluent of an acidogenic digestion process fed with grape pomace by adsorption on ion exchange resins. Chem. Eng. J. 2016, 306, 629–639. [Google Scholar] [CrossRef]
- Research and Markets. Propionic Acid Market by Application and End-User Industry: Global Opportunity Analysis and Industry Forecast, 2019–2026. Available online: https://www.researchandmarkets.com/reports/5031436/propionic-acid-market-by-application-and-end-user (accessed on 4 August 2022).
- Goldberg, I.; Rokem, J.S. Organic and Fatty Acid Production. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009; pp. 421–442. [Google Scholar]
- Coral, J.; Karp, S.G.; Vandenberghe, L.P.d.S.; Parada, J.L.; Pandey, A.; Soccol, C.R. Batch Fermentation Model of Propionic Acid Production by Propionibacterium acidipropionici in Different Carbon Sources. Appl. Biochem. Biotechnol. 2008, 151, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Dwidar, M.; Park, J.Y.; Mitchell, R.J.; Sang, B.I. The future of buritic acid in industry. Sci. World J. 2012, 1, 539–547. [Google Scholar]
- Acumen Research and Consulting. Butyric Acid Derivatives Market Surpass US$ 170 Mn by 2026. Available online: https://www.globenewswire.com/news-release/2019/05/10/1821543/0/en/Butyric-Acid-Derivatives-Market-Surpass-US-170-Mn-by-2026.html (accessed on 4 August 2022).
- Zigová, J.; Šturdík, E. Advances in biotechnological production of butyric acid. J. Ind. Microbiol. Biotechnol. 2000, 24, 153–160. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Hu, Y.; Zavala, V.M.; Karthikeyan, K. Techno-economic analysis of pretreatments to dairy manure biomass for enhanced biogas production. Bioresour. Technol. Rep. 2022, 20, 101275. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Cerutti, A.; Zanetti, M.; Lorenzi, E.; Scibilia, G.; Genon, G. Preliminary Technical and Economic Analysis of Alkali and Low Temperature Thermo-alkali Pretreatments for the Anaerobic Digestion of Waste Activated Sludge. Waste Biomass Valorization 2016, 7, 667–675. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Hu, H.; Liu, J.; Duan, T.; Luo, J.; Qian, G. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment. Bioresour. Technol. 2017, 240, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, J.; Wang, D.; Yang, Q.; Xu, Q.; Deng, Y.; Yang, W.; Zeng, G. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere 2016, 144, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, R.-H.; Li, X.-Y. Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation. J. Clean. Prod. 2018, 172, 3334–3341. [Google Scholar] [CrossRef]
- Dong, B.; Gao, P.; Zhang, D.; Chen, Y.; Dai, L.; Dai, X. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge. J. Environ. Sci. 2016, 43, 159–168. [Google Scholar] [CrossRef]
- Ozkan, L.; Erguder, T.H.; Demirer, G.N. Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int. J. Hydrogen Energy 2011, 36, 382–389. [Google Scholar] [CrossRef]
- Blasig, J.D.; Holtzapple, M.T.; Dale, B.E.; Engler, C.R.; Byers, F.M. Volatile fatty acid fermentation of AFEX-treated bagasse and newspaper by rumen microorganisms. Resour. Conserv. Recycl. 1992, 7, 95–114. [Google Scholar] [CrossRef]
- Tugtas, A.E. Recovery of volatile fatty acids via membrane contactor using flat membranes: Experimental and theoretical analysis. Waste Manag. 2014, 34, 1171–1178. [Google Scholar] [CrossRef]
- Straathof, A.J.J. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem. Rev. 2014, 114, 1871–1908. [Google Scholar] [CrossRef] [PubMed]
- Bonk, F.; Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—Economic and energy assessment. Waste Manag. 2015, 40, 82–91. [Google Scholar] [CrossRef]
- Fasahati, P.; Liu, J. Techno-Economic Analysis of Production and Recovery of Volatile Fatty Acids from Brown Algae Using Membrane Distillation; Elsevier: Amsterdam, The Netherlands, 2014; Volume 34. [Google Scholar]
- Yousuf, A.; Bonk, F.; Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour. Technol. 2016, 217, 137–140. [Google Scholar] [CrossRef]
- Mumtaz, T.; Abd-Aziz, S.; Rahman, N.A.; Phang, L.Y.; Shirai, Y.; Hassan, M.A. Pilot-scale recovery of low molecular weight organic acids from anaerobically treated palm oil mill effluent (POME) with energy integrated system. Afr. J. Biotechnol. 2008, 7, 3900–3905. [Google Scholar]
- Jones, R.J.; Massanet-Nicolau, J.; Mulder, M.J.; Premier, G.; Dinsdale, R.; Guwy, A. Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter. Bioresour. Technol. 2017, 229, 46–52. [Google Scholar] [CrossRef]
- Reyhanitash, E.; Zaalberg, B.; Kersten, S.R.; Schuur, B. Extraction of volatile fatty acids from fermented wastewater. Sep. Purif. Technol. 2016, 161, 61–68. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Yustinah; Hidayat, N.; Alamsyah, R.; Roslan, A.M.; Hermansyah, H.; Gozan, M. Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. Biocatal. Agric. Biotechnol. 2019, 18, 101019. [Google Scholar] [CrossRef]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Reis, M.A.M.; Serafim, L.S.; Lemos, P.C.; Ramos, A.M.; Aguiar, F.R.; Van Loosdrecht, M.C.M. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 2013, 25, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Kookos, I. Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resour. Conserv. Recycl. 2018, 134, 156–164. [Google Scholar] [CrossRef]
- Monlau, F.; Suarez-Alvarez, S.; Lallement, A.; Vaca-Medina, G.; Giacinti, G.; Munarriz, M.; Urreta, I.; Raynaud, C.; Ferrer, C.; Castañón, S. A cascade biorefinery for the valorization of microalgal biomass: Biodiesel, biogas, fertilizers and high valuable compounds. Algal Res. 2021, 59, 102433. [Google Scholar] [CrossRef]
- Fei, Q.; Chang, H.N.; Shang, L.; Choi, J.-D.; Kim, N.; Kang, J. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 2011, 102, 2695–2701. [Google Scholar] [CrossRef]
- Park, G.W.; Chang, H.N.; Jung, K.; Seo, C.; Kim, Y.-C.; Choi, J.H.; Woo, H.C.; Hwang, I.-J. Production of microbial lipid by Cryptococcus curvatus on rice straw hydrolysates. Process. Biochem. 2017, 56, 147–153. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef]
- Shen, N.; Zhou, Y. Enhanced biological phosphorus removal with different carbon sources. Appl. Microbiol. Biotechnol. 2016, 100, 4735–4745. [Google Scholar] [CrossRef] [PubMed]
- Gidstedt, S. Production of Volatile Fatty Acids by Hydrolysing Sludge from Sjölunda WWTP Simon Gidstedt. 2017. Available online: http://lup.lub.lu.se/student-papers/record/8921197 (accessed on 4 August 2022).
- Sawatdeenarunat, C.; Nguyen, D.; Surendra, K.C.; Shrestha, S.; Rajendran, K.; Oechsner, H.; Xie, L.; Khanal, S.K. Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresour. Technol. 2016, 215, 304–313. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Alzate, C.A.C. Food waste valorization applying the biorefinery concept in the Colombian context: Pre-feasibility analysis of the organic kitchen food waste processing. Biochem. Eng. J. 2023, 194, 108864. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; National Renewable Energy Laboratory: Washington, DC, USA, 2016; Volume 33, pp. 838–852. [Google Scholar]
- Machrafi, H. Zero-Carbon Energy Kyoto 2011; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of structural carbohydrates and lignin in Biomass–NREL/TP-510-42618. Lab. Anal. Proced. 2012; p. 17. Available online: http://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 4 August 2022).
- ASTM D7582-15; Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM E1756-08; Standard Test Method for Determination of Total Solids in Biomass. ASTM: West Conshohocken, PA, USA, 2015. [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef]
- Energien, F.R. VDI 4630 Standard Method; Verein Deutscher Ingenieure: Harzgerode, Germany, 2006. [Google Scholar]
- Iglesias, R.I. Sustainable Bioproduction of Volatile Fatty Acids through Fermentation of Organic Wastes. Ph.D. Thesis, Universidade Da Coruña, Departamento de Química. Facultad de Ciencias, Coruña, Spain, 2021. [Google Scholar]
- Fdez.-Güelfo, L.; Álvarez-Gallego, C.; Sales, D.; Romero, L. The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW). Chem. Eng. J. 2011, 168, 249–254. [Google Scholar] [CrossRef]
- Montgomery, H.A.C.; Dymock, J.F.; Thom, N.S. The rapid colorimetric determination of organic acids and their salts in sewage-sludge liquor. Analyst 1962, 87, 949–955. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Chacon-Perez, Y.; Cardona-Alzate, C.A. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 2018, 33, 52–62. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, J.; Li, H.; Yu, Z.; Nie, Y. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 2017, 118, 377–386. [Google Scholar] [CrossRef]
- Piedrahita-Rodríguez, S.; Solarte-Toro, J.C.; Piñeres, P.P.; Ortiz-Sánchez, M.; Pérez-Cordero, A.; Cardona-Alzate, C.A. Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: Plantain and avocado integration in the Montes de María region. Biomass Convers. Biorefinery 2022, 12, 4531–4548. [Google Scholar] [CrossRef]
- García-Velásquez, C.A.; Cardona, C.A. Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment. Energy 2019, 172, 232–242. [Google Scholar] [CrossRef]
- Albarelli, J.Q.; Santos, D.T.; Cocero, M.J.; Meireles, M.A.A. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step. Materials 2016, 9, 494. [Google Scholar] [CrossRef] [PubMed]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.-C.; Gonzalez-Aguirre, J.-A.; Peltonen, K.E.; Richard, P.; Alzate, C.A.C. Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochem. Eng. J. 2020, 161, 107680. [Google Scholar] [CrossRef]
- Khan, M.A.; Hameed, B.H.; Siddiqui, M.R.; Alothman, Z.A.; Alsohaimi, I.H. Hydrothermal Conversion of Food Waste to Carbonaceous Solid Fuel—A Review of Recent Developments. Foods 2022, 11, 4036. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.S.; Chu, L.M. Characterization of food waste from different sources in Hong Kong. J. Air Waste Manag. Assoc. 2019, 69, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellos, G.; Lyberatos, G.; Antonopoulou, G. Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production? Sustainability 2020, 12, 8935. [Google Scholar] [CrossRef]
- Gandhi, P.; Paritosh, K.; Pareek, N.; Mathur, S.; Lizasoain, J.; Gronauer, A.; Bauer, A.; Vivekanand, V. Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Res. Int. 2018, 2018, 9416249. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.-P.; Lovitt, R.W. Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes. Water Sci. Technol. 2014, 69, 495–503. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, J.; Yan, F.; Gao, Y.; Meng, Y.; Aihemaiti, A.; Ju, T. Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment. J. Environ. Manag. 2018, 217, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Budzinski, K.; Blewis, M.; Dahlin, P.; D'Aquila, D.; Esparza, J.; Gavin, J.; Ho, S.V.; Hutchens, C.; Kahn, D.; Koenig, S.G.; et al. Introduction of a process mass intensity metric for biologics. New Biotechnol. 2018, 49, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, 20, 10928–10946. [Google Scholar] [CrossRef] [PubMed]
- Aktij, S.A.; Zirehpour, A.; Mollahosseini, A.; Taherzadeh, M.J.; Tiraferri, A.; Rahimpour, A. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 24–40. [Google Scholar] [CrossRef]
Biogas Production | ||||
---|---|---|---|---|
Feed Stock | Operation Condition | Yield (m3/kg VS) | Comments | Ref |
Potato waste | pH: 7.64, TR: 35 days, T: 37 °C, Scale: CSTR reactor | 435.7 | Gradually increasing the organic loading rate from 1.0 to 5.0 kg VS/m3-day improved methane yield. | [74] |
Kitchen waste | pH: 7.5, TR: 45 days, T: 35 °C, Scale: Laboratory | 179.8 | The effect of different initial pH (6.0, 7.0, 7.5, and 8.0) on laboratory-scale AD of kitchen waste was investigated. | [75] |
Food waste | pH: 7.1–7.5, TR: N.R, T: 35 °C, Scale: CSRT reactor | 344 | The effects (temperature and substrate characteristics) on process stability and microbial community structure were studied. | [76] |
Food waste | pH: 6.8, TR: 302 days, T: 35 °C, Scale: Batch reactor | 388 | The effects of organic loading rate (OLR) and temperature on the co-digestion of food waste and residual activated sludge were evaluated. | [77] |
Municipal food waste | pH: 7.64, TR: 17.5 days, T: 37 °C, Scale: CSRT | 444.7 | The yield and kinetic constants of mesophilic anaerobic reactors operated at increasing organic loading rates were evaluated. | [78] |
Fruits and vegetables waste | pH: 7.4, TR: 30 days, T: 35 °C, Scale: CSRT, co-digestion: slaughterhouse waste + manure: 11-8-7 | 320 | The co-digestion process (slaughterhouse waste + manure) was evaluated to reduce the volatile solids content of fruit and vegetable waste. | [79] |
Cow manure | pH: 7.5, TR: 38 days, T: 35 °C, Scale: CSRT, co-digestion of grass silage, sugar beet tops and oat straw | 188 | A 1:4 ratio of manure to crop residues promotes biogas production. | [19] |
Character | Unit | AD Biogas | Natural Gas | Biogas Utilization Impact |
---|---|---|---|---|
CH4 | %vol | 53–70 | 81–89 | |
CO2 | %vol | 30–50 | 0.67–1 | Decreasing calorific value, antiknock properties of engines and corrosion |
N2 | %vol | 2–6 | 0.28–14 | Decreasing calorific value, antiknock properties of engines and corrosion |
O2 | %vol | 0–5 | 0 | Corrosion, fooling in cavern storage, risk of explosion |
H2 | %vol | N.R | N.R | |
Higher hydrocarbons | %vol | N.R | 3.5–9.4 | |
H2S | ppm | 0–2000 | 0–2.29 | Corrosion, catalytic converter poison, emission, and health hazards. |
NH3 | ppm | <100 | N.R | Emission, anti-knock properties of engines and corrosion when dissolved |
LHV | MJ/Nm3 | 23 | 40 | |
Density | kg/Nm3 | 1.1 | 0.84 |
Hydrogen Production | ||||
---|---|---|---|---|
Feed Stock | Operation Condition | Yield | Comments | Ref |
Food waste and brown water | pH: 5–5.5, TR: 133 days, T: 37 °C, Scale: two-phase CSTR | 99.8 mL H2/g VS added | The optimum hydraulic retention time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production was determined. | [92] |
Cassava wastewater | pH: 5.5, TR: 40 days, T: 37 °C, Scale: two-phase continuous UASB | 39.83 L H2/kg VS removed | Hydrogen production from wastewater cassava starch production was maximized using two stages of anaerobic up-flow anaerobic sludge blanket sludge (UASB) reactors. | [93] |
Sugarcane juice | pH: 4–5, TR: 213 days, T: 30 °C, Scale: Continuous EGBS | 0.73 mol H2/mol hexose | The influence of hydraulic retention time (HRT) on hydrogen production in three expanded granular sludge bed reactors (GSLRs) was evaluated. | [94] |
Food waste | pH: 5.5, TR: 18 days, T: 37 °C, Scale: Semi-continuous | 14.66 mL/VS added | The production and recovery performance of mixed VFAs and hydrogen using food waste through a submerged membrane was investigated. | [95] |
Parameter | Unit | Grass | Organic Waste | Food Waste | Poultry Manure |
---|---|---|---|---|---|
Ms | % | 8.12 | 14.05 | 3.83 | 7.8 |
pH | - | 7.8 | 7.8 | 7.9 | 7.9 |
N total | kg/mg | 5.56 | 6.64 | 6.29 | 6.7 |
C total | %wt | 36.2 | 29.1 | 36.2 | 35.1 |
C/N | - | 5.29 | 6.15 | 2.18 | 4.09 |
P | %wt | 0.906 | 0.604 | 1.5 | 1.83 |
K | %wt | 5.59 | 2.48 | 4.1 | 4.9 |
S | g/kg rm | 0.906 | 0.604 | 1.5 | 1.83 |
Mg | g/kg rm | 1.86 | 3.87 | 3.62 | 2.76 |
Ca | g/kg rm | 0.541 | 0.71 | 0.286 | 0.879 |
Na | g/kg rm | 0.592 | 8.26 | 50.3 | 3.83 |
Mixed-VFAs Production | |||||||
---|---|---|---|---|---|---|---|
Feed Stock | Operation Condition | Yield (g VFAs/g VS) | VFAs %vol | Remarks | Ref | ||
Acetic | Propionic | Butyric | |||||
Organic solid waste | pH: 10, TR: 10 days, T: 30 °C, Scale: Laboratory | 0.83 | 70 | 7 | 13 | Seven organic waste streams were treated. Slaughterhouse wastewater produced the highest mixed VFAs yield. | [113] |
Food waste | pH: 6, TR: 20 days, T: 30 °C, Scale: Laboratory | 0.91 | 70 | 5 | 17 | Mixed VFAs were significantly improved using anaerobic activated sludge to inoculate food waste. | [114] |
Food waste | pH: 6, TR: 17 days, T: 30 °C, Scale: Laboratory | 0.79 | 30 | 2 | 60 | The effects of redox potential (ORP) and inoculum on the production of mixed VFAs were evaluated. | [115] |
Livestock and poultry waste | pH: 5.5, TR: 4 days, T: 35 °C, Scale: Batch reactor | 0.67 | - | - | - | The effect of pretreatment and feed-to-microorganism ratios on the rapid generation of mixed VFAs was investigated. | [112] |
Waste activated sludge | pH: 9, TR: 6 days, T: 55 °C, Scale: Semi-continuous reactor | 0.42 | - | - | - | The sludge was subjected to a gradual increase in pH from 7 to 10. Maximum acidification was obtained at pH 8.9. | [58] |
Municipal organic waste | pH = 4.8–5.7, TR: 10 days, T: 55 °C, Scale: CSTR reactor | 0.28 | 31–41 | 2–7 | 18–65 | Hydrogen production was evaluated under thermophilic acidogenic conditions. In addition, the best operating conditions for the process were evaluated. | [116] |
Food waste | pH: 6, TR: 5 days, T: 35 °C, Scale: CSTR reactor | 0.31 | 31 | 7 | 42 | Different operating conditions (pH, temperature, and OLR) were evaluated in producing mixed VFAs from food waste to achieve maximum yields. | [117] |
Food waste | pH: 6, TR: 17 days, T: 30 °C, Scale: Batch reactor | 0.79 | 15 | 26 | 50 | Mixed VFAs were produced from three different substrates (glucose, peptone, and glycerol). | [118] |
Starch industrial Wastewater | pH: 6, TR: 10 days, T: 25 °C, Scale: Batch reactor | 0.78 | 40 | - | 25 | The effect of varying the ratio of starch-rich wastewater to municipal wastewater on the production of mixed VFAs was studied. | [119] |
Vinasses | pH: 5.5, TR: 10 days, T: 25 °C, Scale: Batch reactor | 0.62 | 25 | - | 54 | The potential of vinasse as a substrate for producing biohydrogen and mixed VFAs was evaluated. | [120] |
Pretreatment | Feedstock | Results | Remarks | Ref. | |
---|---|---|---|---|---|
Chemical | Alkaline | Activated sludge | 12.5-fold increase in VFAs recovery | NaOH was used to adjust the pH to 10 | [137] |
Acid | 15.3-fold increase in VFAs recovery | HCl was used to adjust the pH to 3 | |||
Nitrous acid | Activated sludge | 3.7-fold increase in VFAs recovery | Reduced fermentation times were achieved by improving hydrolysis. | [138] | |
Alkali | Primary sludge | 4-fold increase in VFAs recovery | Pretreatments with three alkalis (NaHCO3, Na2CO3 and NaOH) were applied. | [139] | |
Physical | Heat treatment | Activated sludge | VFAs recovery was increased 6.8-fold. | It was determined that sludge pretreated at 100 °C for 60 min can achieve maximum hydrolyzation. | [140] |
Heat treatment | Food waste | 30.53% increase in VFAs production was achieved. | The heat treatment was performed in an autoclave at a temperature of 121 °C for 30 min. | [141] | |
Microwave | A 4.74% increase in VFAs production was achieved. | For microwave pretreatment 700 W; 170 C; 30 min were chosen | |||
Physico-chemical | Thermal- alkaline | Food waste | VFAs production increased by more than 60%. | The raw material was exposed to alkaline treatment at pH 12 for 30 min using NaOH. | [141] |
Expansion/explosion of ammonia fiber | Lignocellulosic waste (bagasse) | Achieved 21% increase in VFAs production | An ammonia/raw material ratio of 1.5, a temperature of 93 °C, and a time of 15 min were used. | [142] |
Separation Technique | Feedstock | Characteristics of the Separating Agent | Mixed VFAs Selectivity | Ref |
---|---|---|---|---|
Absorption and ion exchange | Food waste | Amberlite IRA-67 and activated carbon were used as sorbents. | Predominant to recovery of butyric acid followed by acetic acid | [147] |
Distillation | Liquid effluent from palm oil production | Pilot scale distillation unit | Predominant to butyric acid recovery followed by acetic acid | [148] |
Electrodialysis | Sucrose solution | Anionic and cation exchange membrane stack | Predominant to acetic acid recovery followed by butyric acid | [149] |
Liquid-liquid extraction | Sugar solution | - | Predominant to butyric acid recovery followed by acetic acid | [11] |
Sewage sludge | trioctilamina in n-octanol | Predominant to butyric acid recovery followed by acetic acid | [150] | |
Membrane extraction | Synthetic VFAs solution | Commercial membrane | Predominant in the recovery of acetic acid | [143] |
Item | Units | Value | Ref |
---|---|---|---|
Utilities cost | |||
Low-pressure steam | USD/ton | 1.57 | [175] |
Electricity | USD/kWh | 0.022 | [175] |
Labor cost | |||
Operators wage * | USD/month | 232.15 | [178] |
Supervisor wage ** | USD/month | 464.29 | [178] |
Chemical reagents cost | |||
Water | USD/m3 | 0.32 | [175] |
MTBE | USD/kg | 1.10 | [146] |
Product price | |||
Acetic acid | USD/kg | 0.45 | [179] |
Butyric acid | USD/kg | 1.30 | [179] |
Solid digestate | USD/ton | 7.36 | [180] |
Liquid digestate | USD/ton | 4.16 | [180] |
Biogas | USD/m3 | 0.79 | [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudelo-Patiño, T.; Ortiz-Sánchez, M.; Alzate, C.A.C. Prefeasibility Analysis of Different Anaerobic Digestion Upgrading Pathways Using Organic Kitchen Food Waste as Raw Material. Fermentation 2024, 10, 300. https://doi.org/10.3390/fermentation10060300
Agudelo-Patiño T, Ortiz-Sánchez M, Alzate CAC. Prefeasibility Analysis of Different Anaerobic Digestion Upgrading Pathways Using Organic Kitchen Food Waste as Raw Material. Fermentation. 2024; 10(6):300. https://doi.org/10.3390/fermentation10060300
Chicago/Turabian StyleAgudelo-Patiño, Tatiana, Mariana Ortiz-Sánchez, and Carlos Ariel Cardona Alzate. 2024. "Prefeasibility Analysis of Different Anaerobic Digestion Upgrading Pathways Using Organic Kitchen Food Waste as Raw Material" Fermentation 10, no. 6: 300. https://doi.org/10.3390/fermentation10060300
APA StyleAgudelo-Patiño, T., Ortiz-Sánchez, M., & Alzate, C. A. C. (2024). Prefeasibility Analysis of Different Anaerobic Digestion Upgrading Pathways Using Organic Kitchen Food Waste as Raw Material. Fermentation, 10(6), 300. https://doi.org/10.3390/fermentation10060300