Potential of Cation Exchange Resin as a Carrier for Anaerobic Consortia in Biohydrogen Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Characteristics of Sludge and CER
2.2. Sludge Fermentation Experiments
2.3. Characterisation of CER before and after Fermentation
2.4. Electrochemical Measurements
2.5. Fermentation Experiments of the Mixture of S-CERs and Model Substrates
2.6. Microbial Community Analysis
3. Results and Discussion
3.1. Characterisation of CER before and after Fermentation
3.2. Fermentation Potential of the Anaerobic Consortia Attached to S-CERs
3.3. Microbial Community Structure of the Anaerobic Consortia on the Surface of CERs
3.3.1. Microbial Richness and Diversity
3.3.2. Microbial Community Structure
3.4. Implications and Future Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; Song, X.; Wu, Y.; Jie, J.; Zhang, Z. Synergistic effects of peracetic acid and free ammonia pretreatment on anaerobic fermentation of waste activated sludge to promote short-chain fatty acid production for polyhydroxyalkanoate biosynthesis: Mechanisms and optimization. J. Environ. Manag. 2024, 359, 121078. [Google Scholar] [CrossRef]
- Li, P.; Zhao, H.; Cheng, C.; Hou, T.; Shen, D.; Jiao, Y. A review on anaerobic co-digestion of sewage sludge with other organic wastes for methane production: Mechanism, process, improvement and industrial application. Biomass Bioenergy 2024, 185, 107241. [Google Scholar] [CrossRef]
- Zamparas, M.G.; Kyriakopoulos, G.L. Sewage sludge as a source of organic to be used as soil improvement. In Water Management and Circular Economy; Elsevier: New York, NY, USA, 2023; pp. 303–316. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Liu, H.; Zhou, T.; Qin, Z.; Mou, J.; Sun, J.; Huang, S.; Chaves, A.V.; Gao, L.; et al. Bioproduction and applications of short-chain fatty acids from secondary sludge anaerobic fermentation: A critical review. Renew. Sustain. Energy Rev. 2023, 183, 113502. [Google Scholar] [CrossRef]
- Xiang, T.; Shi, C.; Guo, Y.; Zhang, J.; Min, W.; Sun, J.; Liu, J.; Yan, X.; Liu, Y.; Yao, L.; et al. Effect-directed analysis of androgenic compounds from sewage sludges in China. Water Res. 2024, 256, 121652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, D.; Zhang, C.; Ping, Q.; Wang, L.; Li, Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. Sci. Total Environ. 2024, 921, 171175. [Google Scholar] [CrossRef]
- Du, W.; Wang, F.; Fang, S.; Huang, W.; Cheng, X.; Cao, J.; Fang, F.; Wu, Y.; Luo, J. Antimicrobial PCMX facilitates the volatile fatty acids production during sludge anaerobic fermentation: Insights of the interactive principles, microbial metabolic profiles and adaptation mechanisms. Chem. Eng. J. 2022, 446, 137339. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Liu, R.; Yang, D.; Dai, X. Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane. Water Res. 2024, 248, 120897. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Liu, H.; Dai, X. Cation exchange resin pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Res. 2022, 212, 118130. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Li, L.; He, J.; Yan, Z.; Ma, Y.; Nan, J.; Liu, Y. New insight into enhanced production of short-chain fatty acids from waste activated sludge by cation exchange resin-induced hydrolysis. Chem. Eng. J. 2020, 388, 124235. [Google Scholar] [CrossRef]
- D’Abzac, P.; Bordas, F.; van Hullebusch, E.; Lens, P.N.L.; Guibaud, G. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloids Surf. B. 2010, 80, 161–168. [Google Scholar] [CrossRef]
- Gopi Kumar, S.; Merrylin, J.; Kaliappan, S.; Adish Kumar, S.; Tae Yeom, I.; Rajesh Banu, J. Effect of cation binding agents on sludge solubilization potential of bacteria. Biotechnol. Bioprocess Eng. 2012, 17, 346–352. [Google Scholar] [CrossRef]
- Pang, H.; He, J.; Ma, Y.; Pan, X.; Zheng, Y.; Yu, H.; Yan, Z.; Nan, J. Enhancing volatile fatty acids production from waste activated sludge by a novel cation-exchange resin assistant strategy. J. Clean. Prod. 2021, 278, 123236. [Google Scholar] [CrossRef]
- Xu, S.; Yan, Y.; Shuang, C.; Zhou, Q.; Ji, R.; Li, A. Biological magnetic ion exchange resin on advanced treatment of synthetic wastewater. Bioresour. Technol. 2023, 372, 128613. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Barone, M.; Negroni, A.; Brigidi, P.; Fava, F.; Xu, P.; Candela, M.; Zanaroli, G. Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Sci. Total Environ. 2020, 705, 135790. [Google Scholar] [CrossRef]
- Flemming, H. Microbial growth on ion exchangers. Water Res. 1987, 21, 745–756. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Jia, H.; Yong, X.; Zhang, L.; Zhou, J.; Cao, Z.; Kruse, A.; Wei, P. Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour. Technol. 2017, 244, 445–451. [Google Scholar] [CrossRef]
- Yuan, Y.; Tao, Y.; Zhou, S.; Yuan, T.; Lu, Q.; He, J. Electron transfer capacity as a rapid and simple maturity index for compost. Bioresour. Technol. 2012, 116, 428–434. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, H.L.; Chen, R.; Liu, R.; Dai, X. Enhancing methanogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from interfacial thermodynamics, electron transfer and microbial community. Water Res. 2021, 197, 117072. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, D.; Huang, W.; Yang, Y.; Ji, M.; Nghiem, L.D.; Trinh, Q.T.; Tran, N.H. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresour. Technol. 2019, 288, 121619. [Google Scholar] [CrossRef] [PubMed]
- Renner, L.D.; Weibel, D.B. Physicochemical regulation of biofilm formation. MRS Bull. 2011, 36, 347–355. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.; Lu, C.; Xu, H.; Wu, J.; Zhou, Z.; Song, Y.; Guo, J. Insight into the enhancing mechanism of silica nanoparticles on denitrification: Effect on electron transfer and microbial metabolism. Chemosphere 2022, 300, 134510. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, T.; Gao, C.; Xie, Y.; Zhang, A. Effect of extracellular polymeric substances removal and re-addition on the denitrification performance of activated sludge: Carbon source metabolism, electron transfer and enzyme activity. J. Environ. Chem. Eng. 2022, 10, 108069. [Google Scholar] [CrossRef]
- Pei, L.; Song, Y.; Chen, G.; Mu, L.; Yan, B.; Zhou, T. Enhancement of methane production from anaerobic digestion of Erigeron canadensis via O2-nanobubble water supplementation. Chemosphere 2024, 354, 141732. [Google Scholar] [CrossRef] [PubMed]
- Ferraz Júnior, A.D.N.; Etchebehere, C.; Zaiat, M. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour. Technol. 2015, 186, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Couto, P.T.; Eng, F.; Bovio-Winkler, P.; Cavalcante, W.A.; Etchebehere, C.; Fuentes, L.; Nopens, I.; Zaiat, M.; Ribeiro, R. Modeling of hydrogen and organic acid production using different concentrations of sugarcane vinasse under thermophilic conditions and a link with microbial community 16S rRNA gene sequencing data. J. Clean. Prod. 2022, 370, 133437. [Google Scholar] [CrossRef]
- Xiang, Z.; Huang, X.; Chen, H.; Liu, B.; Liu, Z.; Dong, W.; Wang, H. Insights into thermal hydrolysis pretreatment temperature for enhancing volatile fatty acids production from sludge fermentation: Performance and mechanism. Bioresour. Technol. 2023, 379, 129032. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Ma, W.; He, J.; Pan, X.; Ma, Y.; Guo, D.; Yan, Z.; Nan, J. Hydrolase activity and microbial community dynamic shift related to the lack in multivalent cations during cation exchange resin-enhanced anaerobic fermentation of waste activated sludge. J. Hazard Mater. 2020, 398, 122930. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Yang, H.; Lee, J.; Cho, K. Comparative analysis of hydrogen production and bacterial communities in mesophilic and thermophilic consortia using multiple inoculum sources. Chemosphere 2024, 350, 141144. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Song, W.; Zhou, J.; Cen, K. Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation. Energy 2014, 68, 982–988. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, H.; Yang, Z. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetum gianteum. J. Environ. Manag. 2024, 353, 120165. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xu, J.; Lin, R.; He, Y.; Yu, Y.; Zhang, Y.; Xie, L. Internal driving mechanism of microbial community and metabolic pathway for psychrophilic anaerobic digestion by microbial electrolysis cell. Bioresour. Technol. 2023, 374, 128764. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, C.; Lv, N.; Pan, X.; Cai, G.; Ning, J.; Zhu, G. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion. Bioresour. Technol. 2021, 324, 124671. [Google Scholar] [CrossRef] [PubMed]
- Cerrillo, M.; Oliveras, J.; Viñas, M.; Bonmatí, A. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems. Bioelectrochemistry 2016, 110, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, W.; Mu, H.; Ren, S.; Zhu, H.; Zeng, K.; Wang, B.; Liang, J.; Zhang, Q.; Yang, L.; et al. In-situ anaerobic treatment removes the passivation layer of sponge iron to restore the nitrogen and phosphorus removal performance of SBR. Process Saf. Environ. Prot. 2023, 174, 79–94. [Google Scholar] [CrossRef]
- Che, L.; Yang, B.; Tian, Q.; Xu, H. Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production. Bioresour. Technol. 2022, 345, 126465. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, C.; Wei, B.; Song, C.; Cai, F.; Liu, G.; Chen, C. Effects of different microbial pretreatments on the anaerobic digestion of giant grass under anaerobic and microaerobic conditions. Bioresour. Technol. 2021, 337, 125456. [Google Scholar] [CrossRef] [PubMed]
- Lü, F.; Luo, C.; Shao, L.; He, P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Ao, T.; Ran, Y.; Chen, Y.; Li, R.; Luo, Y.; Liu, X.; Li, D. Effect of viscosity on process stability and microbial community composition during anaerobic mesophilic digestion of Maotai-flavored distiller’s grains. Bioresour. Technol. 2020, 297, 122460. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Liu, R.; Yang, D.; Dai, X. Magnetic porous microspheres enhancing the anaerobic digestion of sewage sludge: Synergistic free and attached methanogenic consortia. Water Res. 2024, 254, 121393. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
CER type | Gel-type | Wet apparent density | 0.77~0.87 g/mol |
Cation form | Na+ | Wet true density | 1.250~1.290 g/mol |
Basic polymer | Styrene-Divinylbenzene copolymer | Particle size range | (0.315~1.250 mm) ≥ 95% |
Functional group | -SO3H | Effective particle size | 0.400~0.700 mm |
Moisture content | 45.00~50.00 | Exchange capacity (mass) | ≥4.5 mmol/g |
pH range | 1–14 | Exchange capacity (volume) | ≥1.90 mmol/mL |
Parameter | Value | Parameter | Value |
---|---|---|---|
CER type | Macroporous-type | Wet apparent density | 0.72~0.80 g/mol |
Cation form | H+ | Wet true density | 1.140~1.200 g/mol |
Basic polymer | Acrylic copolymer | Particle size range | (0.315~1.250 mm) ≥ 95% |
Functional group | -COOH | Effective particle size | 0.400~0.700 mm |
Moisture content | 45.00~52.00 | Exchange capacity | ≥10.80 mmol/g |
pH range | 4–14 | Exchange capacity | ≥4.40 mmol/mL |
ACE | Chao1 | Shannon | Simpson | |
---|---|---|---|---|
SS-CER-1 | 861.00 ± 38.11 | 861.00 ± 41.36 | 5.47 ± 0.13 | 0.014 ± 0.0028 |
LS-CER-1 | 1015.77 ± 43.12 | 1014.09 ± 52.86 | 5.41 ± 0.37 | 0.015 ± 0.0042 |
S-EG-1 | 1464.00 ± 46.39 | 1464.00 ± 58.77 | 5.36 ± 0.22 | 0.019 ± 0.0042 |
L-EG-1 | 1690.44 ± 44.45 | 1662.88 ± 44.26 | 5.16 ± 0.14 | 0.037 ± 0.0099 |
SS-CER-2 | 1513.00 ± 51.48 | 1492.88 ± 38.48 | 5.75 ± 0.45 | 0.010 ± 0.0028 |
LS-CER-2 | 538.56 ± 35.90 | 534.96 ± 31.80 | 3.67 ± 0.09 | 0.090 ± 0.042 |
S-EG-2 | 1672.04 ± 65.74 | 1636.21 ± 46.50 | 5.24 ± 0.42 | 0.022 ± 0.0056 |
L-EG-2 | 1664.15 ± 56.08 | 1646.19 ± 49.16 | 5.62 ± 0.51 | 0.014 ± 0.0057 |
ACE | Chao1 | Shannon | Simpson | |
---|---|---|---|---|
LS-CER-1 | 102.31 ± 17.41 | 102.00 ± 14.14 | 2.33 ± 0.47 | 0.20 ± 0.028 |
LS-CER-2 | 173.05 ± 18.46 | 171.65 ± 7.99 | 2.48 ± 0.49 | 0.27 ± 0.042 |
L-EG-1 | 205.00 ± 35.35 | 205.00 ± 26.7 | 2.62 ± 0.31 | 0.21 ± 0.057 |
L-EG-2 | 224.06 ± 34.03 | 222.50 ± 27.58 | 3.09 ± 0.41 | 0.11 ± 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, H.; Xu, Y.; Liu, R.; Yang, D.; Dai, X. Potential of Cation Exchange Resin as a Carrier for Anaerobic Consortia in Biohydrogen Fermentation. Fermentation 2024, 10, 391. https://doi.org/10.3390/fermentation10080391
Geng H, Xu Y, Liu R, Yang D, Dai X. Potential of Cation Exchange Resin as a Carrier for Anaerobic Consortia in Biohydrogen Fermentation. Fermentation. 2024; 10(8):391. https://doi.org/10.3390/fermentation10080391
Chicago/Turabian StyleGeng, Hui, Ying Xu, Rui Liu, Dianhai Yang, and Xiaohu Dai. 2024. "Potential of Cation Exchange Resin as a Carrier for Anaerobic Consortia in Biohydrogen Fermentation" Fermentation 10, no. 8: 391. https://doi.org/10.3390/fermentation10080391
APA StyleGeng, H., Xu, Y., Liu, R., Yang, D., & Dai, X. (2024). Potential of Cation Exchange Resin as a Carrier for Anaerobic Consortia in Biohydrogen Fermentation. Fermentation, 10(8), 391. https://doi.org/10.3390/fermentation10080391