Coffee-Flavoured Kombucha: Development, Physicochemical Characterisation, and Sensory Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Elaborating Process
2.2.1. First Step: Preparation of the Coffee Infusion
2.2.2. Second Step: Obtaining the SCOBY Cultures and Preparing the Materials
2.2.3. Third Step: Experimental Design
2.2.4. Preparation of Kombucha Beverage Formulations with Different Coffee Proportions
2.3. Sensory Analysis
2.4. Physicochemical Analyses
2.5. Colorimetric Analysis
2.6. Microbiological Analyses
2.7. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Song, Q.; Li, X.; Chen, Y.; Liu, C.; Zhu, X.; Liu, J.; Granato, D.; Wang, Y.; Huang, J. Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chem. 2021, 361, 130071. [Google Scholar] [CrossRef]
- Magalhaes-Guedes, K.T.; Barreto, I.; Tavares, P.P.L.G.; Bezerra, P.; Silva, M.; Nunes, I.L.; Mamede, M.E.O.; Miguel, M.G.; Schwan, R.F. Effect of kefir biomass on nutritional, microbiological and sensory properties of mango-based popsicles. Int. Food Res. J. 2020, 27, 536–545. [Google Scholar]
- Tavares, P.P.L.G.; Santos, E.A.; Nascimento, R.Q.; Cruz, L.F.S.; Lemos, P.V.F.; Druzian, J.I.; Oliveira, T.T.B.; Andrade, R.B.; Souza, A.L.C.; Magalhaes-Guedes, K.T.; et al. Chemical, Microbiological and Sensory Viability of Low-Calorie, Dairy-Free Kefir Beverages from Tropical Mixed Fruit Juices. CYTA—J. Food 2021, 19, 457–464. [Google Scholar] [CrossRef]
- Kitwetcharoen, H.; Phung, L.T.; Klanrit, P.; Thanonkeo, S.; Tippayawat, P.; Yamada, M.; Thanonkeo, P. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Fermentation 2023, 9, 48. [Google Scholar] [CrossRef]
- Fu, C.; Yan, F.; Cao, Z.; Xie, F.; Lin, J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci. Technol. 2014, 34, 123–126. [Google Scholar] [CrossRef]
- Xia, X.; Dai, Y.; Wu, H.; Liu, X.; Wang, Y.; Yin, L.; Wang, Z.; Li, X.; Zhou, J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Func. Food. 2019, 62, 103549. [Google Scholar] [CrossRef]
- Osiripun, V.; Apisittiwong, T. Polyphenol and antioxidant activities of Kombucha fermented from different teas and fruit juices. J. Curr. Sci. Technol. 2021, 11, 188–196. [Google Scholar] [CrossRef]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef]
- Khaleil, M.M.; Ellatif, S.A.; Soliman, M.H.; Abd Elrazik, E.S.; Fadel, M.S. A bioprocess development study of polyphenol profile, antioxidant and antimicrobial activities of Kombucha enriched with Psidium guajava L. J. Microbiol. Biotech. Food Sci. 2020, 9, 1204–1210. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Azevedo, R.O.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; Barros, F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Aloulou, A.; Hamden, K.; Elloumi, D.; Ali, M.B.; Hargafi4, K.; Bassem Jaouadi, B.; Ayadi, F.; Elfeki, A.; Ammar, E. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC Complement Altern Med. 2012, 12, 63. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, I.; Mannaa, M.; Kim, J.; Wang, S.; Park, I.; Kim, J.; Seo, Y.S. Effect of kombucha on gut-microbiota in mouse having nonalcoholic fatty liver disease. Food Sci. Biotechnol. 2019, 28, 261–267. [Google Scholar] [CrossRef]
- Hardoko, S.B.B.; Harisman, E.K.; Puspitasari, Y.E. The kombucha from Rhizophora mucronata Lam. herbal tea: Characteristics and the potential as an antidiabetic beverage. J. Pharm. Pharmacogn. Res. 2020, 8, 410–442. [Google Scholar]
- Cardoso, R.R.; Moreira, L.D.P.D.; Costa, M.A.C.; Toledo, R.C.L.; Grancieri, M.; Nascimento, T.P.; Ferreira, M.S.L.; Matta, S.L.P.; Eller, M.R.; Martino, H.S.D.; et al. Kombuchas from green and black teas reduce oxidative stress, liver steatosis and inflammation, and improve glucose metabolism in Wistar rats fed a high-fat high-fructose diet. Food Funct. 2021, 12, 10813–10827. [Google Scholar] [CrossRef]
- Silva, K.A.; Uekane, T.M.; Miranda, J.F.; Motta, R.J.C.B.; Silva, C.B.; Pitangui, N.S.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial Properties. Biocatal. Agric. Biotechnol. 2021, 34, 102032. [Google Scholar] [CrossRef]
- Silva-Júnior, J.C.; Magnani, M.; Costa, W.K.A.; Madruga, M.S.; Olegário, L.S.; Borges, G.S.C.; Dantas, A.M.; Lima, M.S.; Lima, L.C.; Brito, I.L.; et al. Traditional and flavored kombuchas with pitanga and umbu-cajá pulps: Chemical properties, antioxidants, and bioactive compounds. Food Biosci. 2021, 44, 101380. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Gao, J.; Li, T.; Li, H.; Mastroyannis, A.; He, S.; Rahaman, A.; Chang, K. Effect of fermentation time on physiochemical properties of kombucha produced from different teas and fruits: Comparative study. J. Food Qual. 2022, 2022, 2342954. [Google Scholar] [CrossRef]
- Ariff, R.M.; Chai, X.Y.; Chang, L.S.; Fazry, S.; Othman, B.A.; Babji, A.S.; Lim, S.J. Recent trends in Kombucha: Conventional and alternative fermentation in development of novel beverage. Food Biosci. 2023, 53, 102714. [Google Scholar] [CrossRef]
- Emiljanowicz, K.E.; Malinowska-Pànczyk, E. Kombucha from alternative raw materials—The review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef]
- Tur, J.A.; Bibiloni, M.D.M. Functional Foods. Encycl. Food Health 2016, 157–161. [Google Scholar] [CrossRef]
- Chu, S.C.; Chen, C. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Malbasa, R.V.; Loncar, E.S.; Vitas, J.S.; Canadanovic-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CYTA—J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Loncar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea–microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Bauer-Petrovska, B.; Petrushevska-Tozi, L. Mineral and water soluble vitamin content in the kombucha drink. Int. J. Food Sci. Technol. 2000, 35, 201–205. [Google Scholar] [CrossRef]
- Vitas, J.S.; Malbasa, R.V.; Grahovac, J.A.; Loncar, E.S. The antioxidant activity of kombucha fermented milk products with stingingnettle and winter savory. Chem. Ind. Chem. Eng. Q. 2013, 19, 129–139. [Google Scholar] [CrossRef]
- Kaya, Z.; Asir, Y. Assessment of instrumental and sensory quality characteristics of the bread products enriched with Kombucha tea. Int. J. Gastron. Food Sci. 2022, 29, 100562. [Google Scholar] [CrossRef]
- Miranda, J.F.; Belo, G.M.P.; Limal, S.; Silva, K.A.; Uekane, T.M.; Gonzales, A.G.M.; Branco, V.N.C.; Pitangui, N.S.; Fernandes, F.F.; Lima, A.R. Arabic coffee infusion based kombucha: Characterization and biological activity during fermentation, and in vivo toxicity. Food Chem. 2023, 412, 135556. [Google Scholar] [CrossRef]
- Yulianaa, N.; Nurainya, F.; Sari, G.W.; Widiastuti, S.E.L. Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Appl. Food Res. 2023, 3, 100297. [Google Scholar] [CrossRef]
- Sales, A.L.; Cunha, S.C.; Ferreira, I.M.P.L.V.O.; Morgado, J.; Melo, L.; Paula, J.; Miguel, M.A.L.; Farah, A. Volatilome, Microbial, and Sensory Profiles of Coffee Leaf and Coffee Leaf-Toasted Maté Kombuchas. Foods 2024, 13, 484. [Google Scholar] [CrossRef]
- Zubaidah, E.; Yurista, S.; Rahmadani, N.R. Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012040. [Google Scholar] [CrossRef]
- Sarkaya, P.; Akan, E.; Kinik, O. Use of kombucha culture in the production of fermented dairy beverages. LWT-Food Sci. Technol. 2021, 137, 110326. [Google Scholar] [CrossRef]
- Dias, R.C.E.; Benassi, M.T. Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages 2015, 1, 127–139. [Google Scholar] [CrossRef]
- Azevedo, R.S.A.; Teixeira, B.S.; Sauthierb, M.C.S.; Santana, M.V.A.; Santos, W.N.L.; Santana, D.A. Multivariate analysis of the composition of bioactive in tea of the species Camellia sinensis. Food Chem. 2019, 273, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.A.; Zanzarin, D.M.; Marco, P.H.; Porto, C.; Prado, R.M.; Carvalhaes, F.; Pilau, E.J. Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches. Heliyon 2024, 10, e28937. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.T. Produção total de café no mundo deverá atingir volume físico equivalente a 174,3 milhões de sacas na safra 2023-2024. Embrapa. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/82856140/producao-total-de-cafe-no-mundo-devera-atingir-volume-fisico-equivalente-a-1743-milhoes-de-sacas-na-safra-2023-2024 (accessed on 10 June 2024).
- Pereira, L.L.; Cardoso, W.S.; Guarçoni, R.C.; Fonseca, A.F.A.; Moreira, T.R.; Caten, C.S. The consistency in the sensory analysis of coffees using Q-graders. Eur. Food Res. Technol. 2017, 243, 1545–1554. [Google Scholar] [CrossRef]
- Villanueva, N.D.M.; Petenate, A.J.; Silva, M.A.A.P. Performance of the hybrid hedonic scale as compared to the traditional hedonic, self-adjusting and ranking scales. Food Qual. Prefer. 2005, 16, 691–703. [Google Scholar] [CrossRef]
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento/Gabinete da Ministra. Instrução Normativa n_ 41, de 17 de Setembro de 2019; Estabelece o Padrão de Identidade e Qualidade da Kombucha em Todo o Território Nacional. Diário Oficial da União, Brasília, 18 de Setembro de 2019. Seção 1. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativan-41-de-17-de-setembro-de-2019-216803534 (accessed on 1 March 2024).
- AOAC—Association of Official Analytical Chemistry. Official Methods of Analysis of the Association of Analytical Chemistry, 12th ed.; Oxford University Press: Washington, DC, USA, 1992; 1115p. [Google Scholar]
- OIV—International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis, 6th ed.; OIV: Paris, France, 2022; 1514p. [Google Scholar]
- BRASIL. Agência Nacional De Vigilância Sanitária. Guia para Comprovação da Segurança de Alimentos e Ingredientes. GUIA nº 23, Versão 1, de 23 de July de 2019. Gerência De Produtos Especiais Gerência Geral De Alimentos. Brasília. Anvisa. Available online: http://antigo.anvisa.gov.br/documents/10181/5355698/Guia+Seguran%C3%A7a+de+Alimentos.pdf/dae93caa-7418-4b9a-97f2-2ec9ebc139e2 (accessed on 11 December 2023).
- Tabela Brasileira de Composição de Alimentos—TACO, 4th ed.; University of Campinas–UNICAMP: Campinas, Brazil, 2011; 161p.
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.L.; Iriondo-DeHond, A.; Paula, J.; Ribeiro, M.; Ferreira, I.M.P.L.V.O.; Miguel, M.A.L.; Castillo, M.D.; Farah, A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023, 12, 1905. [Google Scholar] [CrossRef]
- BRASIL. Agência Nacional De Vigilância Sanitária. Resolução da Diretoria Colegiada—RDC nº 429, de 8 de Outubro de 2020. Brasília. Available online: https://antigo.anvisa.gov.br/documents/10181/3882585/RDC_429_2020_.pdf/9dc15f3a-db4c-4d3f-90d8-ef4b80537380 (accessed on 1 December 2023).
- Osterbauer, R.A.; Matthews, P.M.; Jenkinson, M.; Beckmann, C.F.; Hansen, P.C.; Calvert, G.A. Color of scents: Chromatic stimuli modulate odor responses in the human brain. J. Clin. Neurophysiol. 2005, 93, 3434–3441. [Google Scholar] [CrossRef]
- Rossini, D.; Bogsan, C. Is It Possible to Brew Non-Alcoholic Kombucha? Brazilian Scenario after Restrictive Legislation. Fermentation 2023, 9, 810. [Google Scholar] [CrossRef]
Formulation | Scoby (g) | Water (mL) | Ready-Made Green Tea (mL) | Infused Specialty Coffee (mL) | Starter (mL) | Sugar (g) |
---|---|---|---|---|---|---|
K1 | ±250 | 1500 | 160 | 40 | 150 | 120 |
K2 | ±250 | 1500 | 120 | 80 | 150 | 120 |
K3 | ±250 | 1500 | 80 | 120 | 150 | 120 |
K4 | ±250 | 1500 | 40 | 160 | 150 | 120 |
Parameter | Formulation | |||
---|---|---|---|---|
K1 | K2 | K3 | K4 | |
pH | 2.86 ± 0.13 b | 3.08 ± 0.04 a | 3.11 ± 0.01 a | 3.22 ± 0.01 a |
Volatile acidity, g/L | 3.23 ± 0.06 a | 2.17 ± 0.18 b | 1.73 ± 0.04 c | 1.02 ± 0.01 d |
Alcoholic degree, °G | 0.93 ± 0.06 a | 1.23 ± 0.06 b | 0.67 ± 0.04 c | 0.28 ± 0.03 d |
Total sugar, g/100 mL | 5.85 ± 0.28 a | 5.84 ± 0.43 a | 6.42 ± 1.01 a | 7.00 ± 0.86 a |
Moisture, g/100 mL | 93.64 ± 0.22 a | 93.72 ± 0.12 a | 93.26 ± 0.28 a | 92.53 ± 0.14 b |
Ash, g/100 mL | 0.04 ± 0.00 a | 0.06 ± 0.03 a | 0.05 ± 0.06 a | 0.07 ± 0.01 a |
Lipid, g/100 mL | 0.66 ± 0.26 b | 0.78 ± 0.07 b | 1.45 ± 0.36 a | 1.48 ± 0.13 a |
Protein, g/100 mL | 0.10 ± 0.00 a | 0.09 ± 0.01 a | 0.09 ± 0.01 a | 0.08 ± 0.02 a |
Sodium, mg/100 mL | 0.61 ± 0.01 b | 0.70 ± 0.02 a | 0.70 ± 0.04 a | 0.75 ± 0.04 a |
Caloric value, kcal/100 mL | 35.09 | 37.39 | 38.70 | 38.96 |
Formulation | L | a* | b* | C* | h° |
---|---|---|---|---|---|
K1 (2% coffee) | 97.5 a | −0.8 d | 17.1 d | 17.1 d | 92.7 a |
K2 (4% coffee) | 93.1 b | −0.2 c | 25.3 c | 24.4 c | 90.6 b |
K3 (10% coffee) | 90.3 c | 0.1 b | 28.7 b | 28.7 b | 89.7 c |
K4 (13% coffee) | 86.9 d | 1.9 a | 36.4 a | 36.5 a | 86.8 d |
Formulation | Colour | Aroma | Flavour |
---|---|---|---|
K1 (2% coffee) | 6.1 a | 5.0 a | 5.4 b |
K2 (4% coffee) | 6.0 a | 5.1 a | 5.7 b |
K3 (10% coffee) | 5.8 a | 5.3 a | 6.0 ab |
K4 (13% coffee) | 6.3 a | 5.7 a | 6.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, M.S.; dos Santos, W.A.; Mamede, M.E.d.O. Coffee-Flavoured Kombucha: Development, Physicochemical Characterisation, and Sensory Analysis. Fermentation 2024, 10, 334. https://doi.org/10.3390/fermentation10070334
Saito MS, dos Santos WA, Mamede MEdO. Coffee-Flavoured Kombucha: Development, Physicochemical Characterisation, and Sensory Analysis. Fermentation. 2024; 10(7):334. https://doi.org/10.3390/fermentation10070334
Chicago/Turabian StyleSaito, Morena Senna, Wilton Amaral dos Santos, and Maria Eugênia de Oliveira Mamede. 2024. "Coffee-Flavoured Kombucha: Development, Physicochemical Characterisation, and Sensory Analysis" Fermentation 10, no. 7: 334. https://doi.org/10.3390/fermentation10070334
APA StyleSaito, M. S., dos Santos, W. A., & Mamede, M. E. d. O. (2024). Coffee-Flavoured Kombucha: Development, Physicochemical Characterisation, and Sensory Analysis. Fermentation, 10(7), 334. https://doi.org/10.3390/fermentation10070334