An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Methods
2.3.1. Raw Material Handling
2.3.2. pH
2.3.3. Moisture Content
2.3.4. Fat Content
2.3.5. Color
2.3.6. Free Amino Acids
2.3.7. Electronic Nose
2.3.8. Volatile Flavor
2.3.9. Microbiological Detection
2.4. Data Processing
3. Results
3.1. Physicochemical Comparison of Raw Hams
3.2. Free Amino Acids in Raw Hams
Name of Amino Acid | Thresholds [24] (mg/g) | W | P | Z | |||
---|---|---|---|---|---|---|---|
Amino Acid Content (mg/g) | TAV | Amino Acid Content (mg/g) | TAV | Amino Acid Content (mg/g) | TAV | ||
Asp | 1 | 2.03 ± 0.06 a | 2.02 | 1.89 ± 0.06 b | 1.88 | 0.92 ± 0.03 c | 0.91 |
Glu | 0.3 | 4.43 ± 0.04 b | 14.73 | 4.76 ± 0.06 a | 15.87 | 1.9 ± 0.06 c | 6.33 |
Thr | 2.6 | 1.94 ± 0.05 a | 0.75 | 1.89 ± 0.03 b | 0.73 | 0.76 ± 0.06 c | 0.29 |
Ala | 0.6 | 1.36 ± 0.04 a | 2.25 | 0.98 ± 0.14 c | 1.55 | 1.25 ± 0.22 a b | 2.05 |
Ser | 1.5 | 1.92 ± 0.06 a | 1.29 | 1.98 ± 0.05 a | 1.32 | 0.85 ± 0.04 b | 0.56 |
his | 0.5 | 1.07 ± 0.07 a | 2.08 | 1 ± 0.08 a | 1.98 | 0.44 ± 0.03 b | 0.86 |
Gly | 1.3 | 1.93 ± 0.04 a | 1.48 | 1.76 ± 0.04 b | 1.36 | 0.75 ± 0.03 c | 0.58 |
Val | 0.4 | 2.11 ± 0.04 a | 5.28 | 1.97 ± 0.03 b | 4.93 | 0.99 ± 0.06 c | 2.45 |
Met | 0.3 | 1.1 ± 0.03 a | 3.67 | 1.09 ± 0.04 a | 3.6 | 0.44 ± 0.05 b | 1.4 |
Lys | 0.2 | 3.07 ± 0.05 a | 15.45 | 3.16 ± 0.04 a | 15.8 | 1.28 ± 0.13 b | 6.1 |
Pro | 3 | 1.05 ± 0.04 b | 0.34 | 1.56 ± 0.04 a | 0.52 | 0.7 ± 0.03 c | 0.22 |
Trp | - | 0.25 ± 0.03 a | - | 0.25 ± 0.04 a | - | 0.1 ± 0.02 b | - |
Phe | 90 | 1.62 ± 0.06 a | 0.02 | 1.48 ± 0.02 b | 0.02 | 0.68 ± 0.06 c | 0.01 |
Ile | 90 | 1.84 ± 0.06 a | 0.02 | 1.7 ± 0.02 b | 0.02 | 0.78 ± 0.04 c | 0.01 |
Leu | 190 | 4 ± 0.11 a | 0.02 | 3.13 ± 1.78 a b | 0.02 | 1.66 ± 0.04 c | 0.01 |
Arg | 50 | 2.54 ± 0.06 a | 0.05 | 2.6 ± 0.05 a | 0.05 | 1.06 ± 0.06 b | 0.02 |
Tyr | - | 0.54 ± 0.05 a | - | 0.57 ± 0.05 a | - | 0.37 ± 0.04 b | - |
Gaba | - | 5.79 ± 0.07 a | - | 5.77 ± 0.05 a | - | 2.57 ± 0.06 b | - |
Gln | - | 0.04 ± 0.02 a | - | 0.05 ± 0.02 a | - | 0.04 ± 0.03 a | - |
Asn | - | 0.79 ± 0.03 b | - | 0.9 ± 0.04 a | - | 0.28 ± 0.05 c | - |
Cit | - | 0.1 ± 0.02 a | - | 0.1 ± 0.05 a | - | 0.03 ± 0.02 a | - |
Cys | - | 0.08 ± 0.01 a | - | 0.08 ± 0.02 a | - | 0.03 ± 0.02 b | - |
Nva | - | 0.18 ± 0.03 a | - | 0.11 ± 0.02 b | - | 0.17 ± 0.02 a | - |
Hyp | - | 1.32 ± 0.03 a | - | 1.07 ± 0.5 a | - | 1.07 ± 0.52 a | - |
Sar | - | 0.3 ± 0.03 a | - | 0.24 ± 0.04 ab | - | 0.17 ± 0.03 b | - |
EAA | 16.97 ± 0.05 | 16.62 ± 0.21 | 6.97 ± 0.05 | ||||
NEAA | 15.74 ± 0.04 | 16.04 ± 0.05 | 7.72 ± 0.06 | ||||
TAA | 32.81 ± 0.05 | 31.76 ± 0.15 | 14.93 ± 0.06 |
3.3. Electronic Nose for Raw Hams
3.4. Volatile Flavor Substances of Raw Hams
Form | Sequences | Compound Name | CAS No. | Thresholds [30,32,33] (μg/g) | W | P | Z | |||
---|---|---|---|---|---|---|---|---|---|---|
Content (μg/g) | OAV | Content (μg/g) | OAV | Content (μg/g) | OAV | |||||
Aldehydes | 1 | Butanal, 3-methyl- | 000590-86-3 | 0.0400 | 0.75 ± 0.06 a | 18.67 | 0.56 ± 0.05 b | 14.00 | 0.19 ± 0.05 c | 4.67 |
2 | n-Hexanal | 000066-25-1 | 0.0050 | - | 0.28 ± 0.02 | 55.71 | - | |||
3 | n-Octanal | 000124-13-0 | 0.0034 | - | 0.28 ± 0.04 | 82.35 | - | |||
4 | Nonanal | 000124-19-6 | 0.0011 | 1.36 ± 0.03 a | 1233.33 | 1.36 ± 0.04 a | 1236.36 | 0.71 ± 0.06 b | 642.42 | |
5 | Benzaldehyde | 000100-52-7 | 0.0600 | 1.4 ± 0.1 a | 23.39 | 0.71 ± 0.03 b | 11.83 | 0.38 ± 0.02 c | 6.33 | |
6 | Benzeneacetaldehyde | 000122-78-1 | 0.0040 | 0.43 ± 0.08 | 107.50 | - | - | 0.38 ± 0.04 | 95.83 | |
7 | 2-Decenal, (E)- | 003913-81-3 | - | 1.08 ± 0.08 | - | 1.18 ± 0.19 | - | - | - | |
8 | 2-Undecenal | 002463-77-6 | - | - | - | 1.05 ± 0.15 | - | - | - | |
9 | Myristaldehyde | 000124-25-4 | - | 0.48 ± 0.04 a | - | 0.25 ± 0.02 b | - | 0.22 ± 0.75 b | - | |
10 | Pentadecanal- | 002765-11-9 | - | 0.71 ± 0.03 a | - | 0.28 ± 0.03 b | - | 0.23 ± 0.04 b | - | |
11 | Hexadecanal | 000629-80-1 | - | 25.52 ± 0.52 a | - | 5.35 ± 0.09 b | - | 4.99 ± 0.18 b | - | |
12 | Octadecanal | 000638-66-4 | - | 5.32 ± 0.25 a | - | 0.91 ± 0.1 b | - | 0.37 ± 0.06 c | - | |
13 | 13-Octadecenal, (Z)- | 058594-45-9 | - | 3.84 ± 0.14 a | - | 0.77 ± 0.1 b | - | 0.33 ± 0.04 c | - | |
Esters | 14 | Boric acid, trimethyl ester | 000121-43-7 | - | 2.3 ± 0.04 a | - | 1.86 ± 0.11 b | - | 0.74 ± 0.06 c | - |
15 | Methyl butyrate | 000623-42-7 | - | 0.24 ± 0.05 b | - | 0.15 ± 0.03 c | - | 0.45 ± 0.03 a | - | |
16 | Methyl valerate | 000624-24-8 | - | - | - | - | - | 0.2 ± 0.04 | - | |
17 | Butanoic acid, 2-methyl-, methyl ester | 000868-57-5 | - | 0.61 ± 0.05 | - | - | - | - | - | |
18 | Methyl isovalerate | 000556-24-1 | 0.0110 | 0.82 ± 0.06 | 74.55 | 0.38 ± 0.06 | 34.85 | - | - | |
19 | Methyl caproate | 000106-70-7 | 0.0700 | 1.41 ± 0.03 b | 20.10 | 1.52 ± 0.03 a | 21.67 | 1.36 ± 0.03 b | 19.43 | |
20 | Methyl octanoate | 000111-11-5 | 0.2000 | - | 5.46 ± 0.02 | 27.31 | 1.5 ± 0.05 | 7.49 | ||
21 | Ethyl caprylate | 000106-32-1 | - | 0.16 ± 0.02 | - | |||||
22 | Methyl nonanoate | 001731-84-6 | 0.11 ± 0.02 a b | 0.15 ± 0.03 a | 0.06 ± 0.03 b | |||||
23 | Methyl caprate | 000110-42-9 | 0.4200 | 0.65 ± 0.11 c | 1.55 | 1.87 ± 0.03 a | 4.46 | 0.86 ± 0.06 b | 2.04 | |
24 | Decanoic acid, ethyl ester | 000110-38-3 | - | 0.15 ± 0.03 | - | 0.15 ± 0.03 | - | - | ||
25 | Methyl (4Z)-4-decenoate | 007367-83-1 | - | - | - | 0.82 ± 0.03 | - | 0.3 ± 0.05 | - | |
26 | Dodecanoic acid, methyl ester | 000111-82-0 | - | 0.16 ± 0.03 a | - | 0.15 ± 0.02 a b | - | 0.11 ± 0.03 b | - | |
27 | Methyl myristate | 000124-10-7 | - | 0.83 ± 0.06 a | - | 0.56 ± 0.04 b | - | 0.41 ± 0.02 c | - | |
28 | Methyl palmitate | 000112-39-0 | - | 4.04 ± 0.15 a | - | 1.21 ± 0.1 b | - | 0.85 ± 0.07 c | - | |
29 | 11-Hexadecenoic acid, methyl ester | 055000-42-5 | - | 0.31 ± 0.03 | - | - | - | - | - | |
30 | Hexamethylene diacrylate | 013048-33-4 | - | - | - | 0.35 ± 0.02 | - | - | - | |
31 | Methyl (9Z)-9-hexadecenoate | 001120-25-8 | - | 1.8 ± 0.03 a | - | 0.49 ± 0.03 b | - | 0.32 ± 0.05 c | - | |
32 | Methyl stearate | 000112-61-8 | - | 0.57 ± 0.03 a | - | 0.27 ± 0.04 b | - | 0.18 ± 0.03 c | - | |
33 | Methyl oleate | 000112-62-9 | - | 0.16 ± 0.03 a | - | 13.69 ± 0.29 b | - | 0.53 ± 0.04 | - | |
34 | Methyl linoleate | 000112-63-0 | - | 3.49 ± 0.07 a | - | 0.46 ± 0.07 b | - | 0.27 ± 0.03 c | - | |
Alcohols | 35 | Ethanol | 000064-17-5 | - | 0.16 ± 0.03 | - | 13.69 ± 0.29 | - | - | - |
36 | 1-Octen-3-ol | 003391-86-4 | 0.0015 | 0.24 ± 0.05 a | 161.73 | 0.17 ± 0.03 b | 111.07 | 0.06 ± 0.03 c | 40.71 | |
37 | N-Octanol | 000111-87-5 | - | 0.24 ± 0.03 | - | - | - | 0.14 ± 0.03 | - | |
38 | n-Dodecanol | 000112-53-8 | - | 0.16 ± 0.01 | - | 0.12 ± 0.02 | - | - | - | |
Hydrocarbons | 39 | Hexane | 000110-54-3 | 1.5000 | - | - | 0.24 ± 0.03 | 0.16 | 1.12 ± 0.1 | 0.75 |
40 | Heptane | 000142-82-5 | - | - | - | 0.17 ± 0.03 | - | 0.35 ± 0.03 | - | |
41 | Cyclohexane | 000110-82-7 | - | - | - | 0.23 ± 0.02 | - | 0.86 ± 0.02 | - | |
42 | Pentadecane | 000629-62-9 | - | 0.26 ± 0.03 a | - | 0.24 ± 0.04 a | - | 0.1 ± 0.02 b | - | |
43 | Hexeadecane | 000544-76-3 | - | - | - | 0.25 ± 0.04 | - | 0.23 ± 0.02 | - | |
44 | Heptadecane | 000629-78-7 | - | 0.36 ± 0.03 | - | 0.16 ± 0.06 | - | - | - | |
45 | Valencene | 004630-07-3 | - | 0.15 ± 0.02 | - | - | - | - | - | |
46 | trans-Caryophyllene | 000087-44-5 | - | 0.33 ± 0.02 a | - | 0.13 ± 0.01 b | - | 0.12 ± 0.02 b | - | |
47 | alpha-himachalene | 003853-83-6 | - | 0.37 ± 0.02 a | - | 0.13 ± 0.02 b | - | 0.13 ± 0.02 b | - | |
48 | delta-Cadinene | 000483-76-1 | - | 0.98 ± 0.03 | - | - | - | 0.34 ± 0.03 | - | |
49 | germacrene d | 023986-74-5 | - | 0.25 ± 0.04 a | - | 0.16 ± 0.02 b | - | 0.08 ± 0.01 c | - | |
50 | α-curcumene | 000644-30-4 | - | 0.38 ± 0.07 a | - | 0.18 ± 0.02 b | - | 0.15 ± 0.03 b | - | |
51 | Cuparene | 016982-00-6 | - | 0.25 ± 0.02 a | - | 0.14 ± 0.03 b | - | 0.07 ± 0.02 c | - | |
52 | Calamenene | 000483-77-2 | - | 0.25 ± 0.03 a | - | 0.18 ± 0.03 a | - | 0.07 ± 0.05 b | - | |
Ketones | 53 | 2-Pentadecanone | 002345-28-0 | - | 0.19 ± 0.02 | - | - | - | - | - |
Others | 54 | 2-Pentylfuran | 003777-69-3 | 0.0058 | - | - | 0.09 ± 0.01 | 63.79 | - | - |
55 | 2,6-Dimethylpyrazine | 000108-50-9 | 0.0102 | 0.46 ± 0.05 | 44.71 | - | - | - | - | |
56 | Pyridine, 2,4,6-trimethyl- | 000108-75-8 | - | 1.03 ± 0.14 a | - | 0.99 ± 0.06 a | - | 1.2 ± 0.2 a | - | |
57 | Dimethyl sulfoxide | 000067-68-5 | - | 0.56 ± 0.04 | - | - | - | - | - | |
58 | Butylated hydroxytoluene | 000128-37-0 | - | 0.13 ± 0.02 | - | 0.15 ± 0.01 | - | - | - | |
59 | 2,4-Di-tert-butylphenol | 000096-76-4 | - | - | - | 0.17 ± 0.03 | - | - | - | |
Total content | 66.56 ± 0.07 a | 47.75 ± 0.07 b | 28.20 ± 0.36 c |
3.5. Microorganisms in Ham
3.5.1. Alpha Diversity
3.5.2. Shared Species
3.5.3. Species Composition
Relative Abundance of Phyla and Genera
Heat Map of Species Abundance Clustering
3.6. Correlation between Free Amino Acids, Volatile Flavor Substances, and Microorganisms
3.6.1. Correlations between Free Amino Acids and Microorganisms
3.6.2. Correlations between Volatile Flavor Substances and Microorganisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luchansky, J.; Barlow, K.; Webb, B.; Beczkiewicz, A.; Merrill, B.; Vinyard, B.; Shane, L.; Shoyer, B.; Osoria, M.; Campano, S.; et al. Inactivation of Listeria monocytogenes and Salmonella spp. during Cooking of Country Ham and Fate of L. monocytogenes and Staphylococcus aureus during Storage of Country Ham Slices. J. Food Prot. 2024, 87, 100222. [Google Scholar] [CrossRef]
- Zhou, Y.; Ying, W.; He, J.; Pan, D.; Wang, H.; Cao, J. Evaluating the profile of myofibrillar proteins and its relationship with tenderness among five styles of dry-cured hams. Int. J. Food Sci. Technol. 2020, 56, 259–268. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, S.; Wang, J. Debaryomyces hansenii Strains from Traditional Chinese Dry-Cured Ham as Good Aroma Enhancers in Fermented Sausage. Fermentation 2024, 10, 152. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Campagnol, P. Influence of high-pressure processing at different temperatures on free amino acid and volatile compound profiles of dry-cured ham. Food Res. Int. 2018, 116, 49–56. [Google Scholar] [CrossRef]
- Arnau, J.; Gou, P.; Comaposada, J. Effect of the relative humidity of drying air during the resting period on the composition and appearance of dry-cured ham surface. Meat Sci. 2003, 65, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Peña, C.; Luna, G.; Gonzalez, D.; Aparicio, R. Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. Meat Sci. 2005, 69, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.-Y.; Hong, D.-I.; Chung, K.-Y. Quality Characteristics of Dry-cured Ham Made from Two Different Three-way Crossbred Pigs. Asian-Australas. J. Anim. Sci. 2015, 29, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-S. Xuanwei County Records; Chengwen Publishing House: Taipei, China, 1978. (In Chinese) [Google Scholar]
- Kong, W. Survey Report on Xuanwei Ham Craft and Contemporary Development Overview. Master’s Thesis, Chongqing Normal University, Chongqing, China, 2016. [Google Scholar]
- Xie, R.-H.; Xiao, S.; Chen, X.; Wang, B.; Ding, Y.; Wang, J.-H. Separation, enrichment and cytoprotection of antioxidant peptides from Xuanwei ham using aqueous two-phase extraction. Food Chem. 2024, 446, 138600. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yin, X.; Zhang, L.; Wang, X.; Zhang, J.; Wen, R.; Cao, J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods 2024, 13, 776. [Google Scholar] [CrossRef]
- Ding, X.; Wang, G.; Zou, Y.; Zhao, Y.; Ge, C.; Liao, G. Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl. Meat Sci. 2021, 175, 108465. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Li, Y.; Zheng, S.; Wei, Y.; Shang, Y. Analysis of the bacterial floral structure and diversity of Xuanwei ham by 16S rDNA sequencing. J. Food Saf. 2020, 40, e12800. [Google Scholar] [CrossRef]
- He, J.; Wang, B.; Zhang, S. Selection of pig breeds (lines) for Xuanwei ham. Pig Breed. 2003, 3, 47–49. (In Chinese) [Google Scholar]
- Yang, G.; Zhao, Y.; Gu, P. Screening of Pig Breeds for Xuanwei Ham. J. Livest. Ecol. 2010, 31, 64–67. (In Chinese) [Google Scholar]
- GB 5009.3-2016; National Food Safety Standard—Determination of Moisture in Food. Drying Method. Standardization Administration of China: Beijing, China, 2016.
- GB 5009.6-2016; National Food Safety Standard—Determination of Fat in Foods, Soxhlet Extraction Method. Standardization Administration of China: Beijing, China, 2016.
- Zhu, Y.; Wang, W.; Zhang, Y.; Li, M.; Zhang, J.; Ji, L.; Zhao, Z.; Zhang, R.; Chen, L. Characterization of Quality Properties in Spoiled Mianning Ham. Foods 2022, 11, 1713. [Google Scholar] [CrossRef] [PubMed]
- Poveda-Arteaga, A.; Krell, J.; Gibis, M.; Heinz, V.; Terjung, N.; Tomasevic, I. Intrinsic and Extrinsic Factors Affecting the Color of Fresh Beef Meat—Comprehensive Review. Appl. Sci. 2023, 13, 4382. [Google Scholar] [CrossRef]
- Yang, P.X.; Hu, Y.; Feng, X.H.; Yang, F.; Zhou, X.; Huang, J.; Li, J.; Tang, C.; Qin, Y.; Zhang, J. Correlation Study between Meat Color and Myoglobin in RongchangYorkshire X Rongchang and DurocxLandracexYorkshire Pigs. China Anim. Husb. Vet. Med. 2024, 51, 1958–1968. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Q.; Long, Y.; Zhang, Y.F.; Zhang, Z.Y.; Yang, B.; Chen, C.Y.; Huang, L.S.; Su, Y. Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population. Animal 2021, 15, 100364. [Google Scholar] [CrossRef]
- Zhou, C.; Ying, W.; Cao, J.; Chen, Y.; Liu, Y.; Sun, Y.; Pan, D.; Ou, C. The effect of dry-cured salt contents on accumulation of non-volatile compounds during dry-cured goose processing. Poult. Sci. 2016, 95, pew128. [Google Scholar] [CrossRef] [PubMed]
- Aroua, M.; Haj Koubaier, H.; Rekik, C.; Fatica, A.; Ben Said, S.; Malek, A.; Mahouachi, M.; Salimei, E. Comparative Study of Carcass Characteristics and Meat Quality of Local Mediterranean Donkey Breeds. Foods 2024, 13, 942. [Google Scholar] [CrossRef]
- Jiang, S.; Xia, D.; Wang, X.; Zhu, Y.; Chen, G.; Liu, Y. Analysis of aroma-active compounds in four Chinese dry-cured hams based on GC-O combined with AEDA and frequency detection methods. LWT 2022, 153, 112497. [Google Scholar] [CrossRef]
- Li, P.; Zhou, H.; Wang, Z.; Al-Dalali, S.; Nie, W.; Xu, F.; Li, C.; Li, P.; Cai, K.; Xu, B. Analysis of flavor formation during the production of Jinhua dry-cured ham using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Meat Sci. 2022, 194, 108992. [Google Scholar] [CrossRef] [PubMed]
- Petricevic, S.; Marušić Radovčić, N.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2017, 137, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Cen, J.; Yang, S.; Yang, D. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem. 2020, 323, 126839. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, P.; Birbir, M.; Sánchez-Porro, C.; Ventosa, A.; Birbir, Y. Investigation of Moderately Halophilic Bacteria Causing Deterioration of the Salted Sheep and Goat Skins and Their Extermination via Electric Current Applications. J.-Am. Leather Chem. Assoc. 2018, 113, 41–52. [Google Scholar]
- Li, W.; Chen, Y.P.C.; Blank, I.; Li, F.; Li, C.; Liu, Y. GC×GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ying, W.; Pan, D.; Geng, F.; Zhou, C.; Cao, J. Insight into the relationship between microorganism communities and flavor quality of Chinese dry-cured boneless ham with different quality grades. Food Biosci. 2022, 50, 102174. [Google Scholar] [CrossRef]
- Gong, X.; Chen, X.; Mi, R.; Qi, B.; Xiong, S.; Li, J.; Zhu, Q.; Wang, S. Two Debaryomyces hansenii strains as starter cultures for improving the nutritional and sensory quality of dry-cured pork belly. Food Res. Int. 2024, 183, 114227. [Google Scholar] [CrossRef]
- Cao, W.; Shu, N.; Wen, J.; Yang, Y.; Jin, Y.; Lu, W. Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis. Foods 2022, 11, 2767. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Yuyu, Z.; Zhang, H.; Sun, B.; Ren, F.; Chen, H.; Tang, Y. Characterization of the Key Aroma Compounds in Traditional Hunan Smoke-Cured Pork Leg (Larou, THSL) by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV), and Sensory Evaluation Experiments. Foods 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Bosse, R.; Bückle, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2016, 58, 610–630. [Google Scholar] [CrossRef] [PubMed]
- Sampels, S.; Jonsson, M.; Sandgren, M.; Karlsson, A.; Segerkvist, K.A. Sustainable Delicacy: Variation in Quality and Sensory Aspects in Wild Boar (Sus scrofa) Meat and Comparison to Pork Meat—A Case Study. Foods 2023, 12, 1644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, K.; Li, H.; Li, S.; Xu, W.; Chen, L.; Xie, J.; Tang, H. Physicochemical property, volatile flavor quality, and microbial community composition of Jinhua fatty ham and lean ham: A comparative study. Front. Microbiol. 2023, 14, 1124770. [Google Scholar] [CrossRef] [PubMed]
- Dorn-In, S.; Mang, S.; Cosentino, R.; Schwaiger, K. Changes in the Microbiota from Fresh to Spoiled Meat, Determined by Culture and 16S rRNA Analysis. J. Food Prot. 2023, 87, 100212. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Hu, X.; Zhong, B.; Huang, X.; Wang, H.; Yu, C.-W.; Li, J.; Tu, Z. Regulating effects of low salt dry-curing pre-treatment on microbiota, biochemical changes and flavour precursors of grass carp (Ctenopharyngodon idella) fillets during storage at 4 °C. Food Chem. X 2024, 21, 101188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, Y.; Liu, Q.; Zhao, G.; Wei, L.; Zhang, C.; Huang, F. Comparative flavor precursors and volatile compounds of Wenchang chickens fed with copra meal based on GC–O–MS. Food Res. Int. 2023, 174, 113646. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, W.; Zhang, W.; Zhang, B.; Yao, D.; Zeng, C.; Cao, J.; Li, L.; Huang, R. Characterization the microbial diversity and metabolites of four varieties of Dry-Cured ham in western Yunnan of China. Food Chem. X 2024, 22, 101257. [Google Scholar] [CrossRef] [PubMed]
Time/Min | A% (40 mM Phosphate Buffer) | B% Methanol/Acetonitrile/Water (45:45:10) |
---|---|---|
0 | 100 | 0 |
1 | 100 | 0 |
23 | 43 | 57 |
27 | 0 | 100 |
34 | 0 | 100 |
40 | 100 | 0 |
41 | 100 | 0 |
Transducers | Responsive Substance |
---|---|
S1 | Alkanes, fumes |
S2 | Alcohols, aldehydes, short-chain alkanes |
S3 | Ozone (O3) |
S4 | Sulfide |
S5 | Organic amine |
S6 | Organic gases, benzophenones, alcohols, aldehydes, aromatic compounds |
S7 | Short-chain alkanes |
S8 | Aromatic compounds, alcohols, aldehydes |
S9 | Hydrogen-containing gas |
S10 | Flammable gases |
Norm | Ingredient | ||
---|---|---|---|
W | P | Z | |
pH | 5.89 ± 0.13 a | 5.74 ± 0.02 a | 5.84 ± 0.03 a |
Moisture content (g/100 g) | 49.27 ± 0.46 a | 29.39 ± 1.85 b | 48.97 ± 0.18 a |
Fat content (g/100 g) | 8.80 ± 0.66 a | 3.31 ± 0.54 b | 8.52 ± 0.84 a |
L* | 42.50 ± 1.65 a | 40.53 ± 1.72 a | 37.70 ± 0.35 b |
a* | 7.13 ± 0.29 b | 7.60 ± 0.20 a | 5.70 ± 0.20 c |
b* | 13.60 ± 0.46 a | 12.53 ± 0.50 b | 9.90 ± 0.50 c |
Chao1 | Observed_Features | Shannon_Entropy | Simpson | |
---|---|---|---|---|
W | 550.360 | 475.667 | 5.127 | 0.912 |
P | 208.595 | 176.333 | 3.665 | 0.809 |
Z | 495.174 | 416.333 | 4.769 | 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Wang, P.; Cao, Z.; Li, L.; Liu, Z. An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham. Fermentation 2024, 10, 358. https://doi.org/10.3390/fermentation10070358
Wen Y, Wang P, Cao Z, Li L, Liu Z. An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham. Fermentation. 2024; 10(7):358. https://doi.org/10.3390/fermentation10070358
Chicago/Turabian StyleWen, Yiling, Ping Wang, Zhiwei Cao, Liang Li, and Zhendong Liu. 2024. "An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham" Fermentation 10, no. 7: 358. https://doi.org/10.3390/fermentation10070358
APA StyleWen, Y., Wang, P., Cao, Z., Li, L., & Liu, Z. (2024). An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham. Fermentation, 10(7), 358. https://doi.org/10.3390/fermentation10070358