Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Cultivation of Vibrio Strains
2.3. Screening of Lactic Acid Bacteria against Cadaverine-Producing Vibrio Strains
2.4. Co-Culturing of Vibrio spp. and Lactic Acid Bacteria
2.5. Quantitative Analysis of Cadaverine Using High-Performance Liquid Chromatography (HPLC)
2.6. Quantification of Bacterial Cell Growth by Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
3. Results and Discussion
3.1. Screening of Lactic Acid Bacteria against Cadaverine-Producing Vibrio Strains
3.2. Cadaverine Production and Bacterial Cell Growth in Lysine Decarboxylase Broth
3.3. Cadaverine Production and Bacterial Cell Growth in Shrimp Extract Broth (ShE)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abril, A.G.; Calo-Mata, P.; Villa, T.G.; Böhme, K.; Barros-Velázquez, J.; Sánchez-Pérez, Á.; Pazos, M.; Carrera, M. High-resolution comparative and quantitative proteomics of biogenic-amine-producing bacteria and virulence factors present in seafood. J. Agric. Food Chem. 2024, 72, 4448–4463. [Google Scholar] [CrossRef] [PubMed]
- Baron, K.; Stasolla, C. The role of polyamines during in vivo and in vitro development. In Vitro Cell. Dev. Biol. Plant 2008, 44, 384–395. [Google Scholar] [CrossRef]
- Arulkumar, A.; Paramithiotis, S.; Paramasivam, S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac. Fish. 2023, 8, 431–450. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ma, X.; Zhang, G.; Hou, H. Effects of a novel starter culture on quality improvement and putrescine, cadaverine, and histamine inhibition of fermented shrimp paste. Foods 2023, 12, 2833. [Google Scholar] [CrossRef] [PubMed]
- Altissimi, S.; Mercuri, M.L.; Framboas, M.; Tommasino, M.; Pelli, S.; Benedetti, F.; Bella, S.D.; Haouet, N. Indicators of protein spoilage in fresh and defrosted crustaceans and cephalopods stored in domestic condition. Ital. J. Food Saf. 2017, 6, 6921. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.A.M. Implementation of a Presumptive Detection Method of Enteropathogenic Vibrio spp. Detection of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Method Audit According to ISO 21872-1. 2021. Available online: https://hdl.handle.net/10216/137773 (accessed on 19 May 2024).
- Vaiyapuri, M.; Pailla, S.; Rao Badireddy, M.; Pillai, D.; Chandragiri Nagarajarao, R.; Prasad Mothadaka, M. Antimicrobial resistance in Vibrios of shrimp aquaculture: Incidence, identification schemes, drivers and mitigation measures. Aquac. Res. 2021, 52, 2923–2941. [Google Scholar] [CrossRef]
- Wan Norhana, M.N.W.; Poole, S.E.; Deeth, H.C.; Dykes, G.A. Prevalence, persistence and control of Salmonella and Listeria in shrimp and shrimp products: A review. Food Control. 2010, 21, 343–361. [Google Scholar] [CrossRef]
- Chen, L.; Sun, L.; Zhang, R.; Liao, N.; Qi, X.; Chen, J. Surveillance for foodborne disease outbreaks in Zhejiang Province, China, 2015–2020. BMC Public Health 2022, 22, 135. [Google Scholar] [CrossRef] [PubMed]
- Supono; Harpeni, E.; Khotimah, A.H.; Ningtyas, A. Identification of Vibrio sp. as cause of white feces diseases in white shrimp Penaeus vannamei and handling with herbal ingredients in East Lampung Regency, Indonesia. AACL Bioflux. 2019, 12, 417–425. [Google Scholar]
- Asni, A.; Rahim, R.; Saleh, R.; Landu, A.; Muliadi, M. Correlation between water quality parameters and Vibrio sp. bacteria content in traditional Vannamei shrimp (Lithopenaeus vannamei) culture. J. Agric. 2023, 2, 121–130. [Google Scholar] [CrossRef]
- Cabanillas-Beltrán, H.; LLausás-Magaña, E.; Romero, R.; Espinoza, A.; García-Gasca, A.; Nishibuchi, M.; Ishibashi, M.; Gomez-Gil, B. Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3: K6 in Mexico. FEMS Microbiol. Lett. 2006, 265, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, R.; Jeya Shakila, R.; Jeyasekaran, G. Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiol. 2002, 19, 617–625. [Google Scholar] [CrossRef]
- Han, L.; Yuan, J.; Ao, X.; Lin, S.; Han, X.; Ye, H. Biochemical characterization and phylogenetic analysis of the virulence factor lysine decarboxylase from Vibrio vulnificus. Front. Microbiol. 2018, 9, 3082. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Hamed, I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1660–1670. [Google Scholar] [CrossRef]
- Contente, D.; Díaz-Formoso, L.; Feito, J.; Gómez-Sala, B.; Costas, D.; Hernández, P.E.; Muñoz-Atienza, E.; Borrero, J.; Poeta, P.; Cintas, L.M. Antimicrobial activity, genetic relatedness, and safety assessment of potential probiotic lactic acid bacteria isolated from a rearing tank of rotifers (Brachionus plicatilis) used as live feed in fish larviculture. Animals 2024, 14, 1415. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Girija, V.; Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Gobi, N.; Del Valle Herrera, M.; Chen, J.C.; Santhanam, P. In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2. Microb. Pathog. 2018, 114, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, Y.; Zhang, Y.; Li, X.; Sun, L.; Deng, Q.; Liu, Y.; Gooneratne, R.; Li, J. Modulation of intestinal barrier, inflammatory response, and gut microbiota by Pediococcus pentosaceus zy-B alleviates Vibrio parahaemolyticus infection in C57BL/6J mice. J. Agric. Food Chem. 2022, 70, 1865–1877. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.; Soares, M.; Bolívar Ramírez, N.; Dias Schleder, D.; Silva, B.; Mouriño, J.L.; Andreatta, E.; do Nascimento Vieira, F. Lactic acid bacteria used as preservative in fresh feed for marine shrimp maturation. Pesqui. Agropecu. Bras. 2016, 51, 1799–1805. [Google Scholar] [CrossRef]
- Aydin, F.; Çek, Ş. Effect of probiotics on reproductive performance of fish. Nat. Eng. Sci. 2019, 4, 153–162. [Google Scholar] [CrossRef]
- Dubois-Dauphin, R.; Sabrina, V.; Isabelle, D.; Christopher, M.; André, T.; Philippe, T. Biotechnology, in vitro antagonistic activity evaluation of lactic acid bacteria (LAB) combined with cellulase enzyme against Campylobacter jejuni growth in co-culture. J. Microbiol. Biotechnol. 2011, 21, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, W.; Wang, D.; He, X.; Zhu, X.; Shi, X. Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol. Lett. 2010, 307, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Math, R.K.; Islam, S.M.; Lim, W.J.; Hong, S.Y.; Kim, J.M.; Yun, M.G.; Cho, J.J.; Yun, H.D. Novel multiplex PCR for the detection of lactic acid bacteria during kimchi fermentation. Mol. Cell. Probes 2009, 23, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Lee, S.M.; Mazmanian, S.K. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011, 17, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Sun, B. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China. Food Control 2020, 108, 106861. [Google Scholar] [CrossRef]
- Nguyen Thi Truc, L.; Trinh Ngoc, A.; Tran Thi Hong, T.; Nguyen Thanh, T.; Huynh Kim, H.; Pham Kim, L.; Huynh Truong, G.; Truong Quoc, P.; Nguyen Thi Ngoc, T. Selection of Lactic Acid Bacteria (LAB) Antagonizing Vibrio parahaemolyticus: The Pathogen of Acute Hepatopancreatic Necrosis Disease (AHPND) in Whiteleg Shrimp (Penaeus vannamei). Biology 2019, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xu, W.; Du, L.; Wang, D.; Zhu, Y.; Geng, Z.; Zhang, M.; Xu, W. Heterologous expression and characterization of tyrosine decarboxylase from Enterococcus faecalis R612Z1 and Enterococcus faecium R615Z1. J. Food Prot. 2014, 77, 592–598. [Google Scholar] [CrossRef]
- Castellano, P.; Aristoy, M.C.; Sentandreu, M.A.; Vignolo, G.; Toldrá, F. Lactobacillus sakei CRL1862 improves safety and protein hydrolysis in meat systems. J. Appl. Microbiol. 2012, 113, 1407–1416. [Google Scholar] [CrossRef]
- Jarboe, L.R.; Royce, L.A.; Liu, P. Understanding biocatalyst inhibition by carboxylic acids. Front. Microbiol. 2013, 4, 272. [Google Scholar] [CrossRef]
- Wunderlichová, L.; Buňková, L.; Koutný, M.; Valenta, T.; Buňka, F. Novel touchdown-PCR method for the detection of putrescine producing Gram-negative bacteria in food products. Food Microbiol. 2013, 34, 268–276. [Google Scholar] [CrossRef]
- Sang, X.; Ma, X.; Hao, H.; Bi, J.; Zhang, G.; Hou, H. Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste. LWT 2020, 134, 109979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Species | Target Gene | Primer Name | Oligonucleotide Sequence (5′→3′) | Amplicon (bp) | Melting Temperature (°C) | Reference |
---|---|---|---|---|---|---|
V. cholerae | Lysine decarboxylase | Vc_lys_F | GCTTGACGGAGTTCAAACGC | 180 | 80 | This study |
Vc_lys_R | GATGTACAAAGCGTTCGATG | |||||
V. parahaemolyticus | Iron-regulated virulence protein | irgB_F | CGATACACACCACGATCCAG | 369 | 84 | [23] |
irgB_R | ATACGGCCGGGGTGATGTTTCT | |||||
Lpb. plantarum | Cadmium–manganese transport ATPase | LplF | AAGGCCGTAGTCAGTCGTCTATGG | 313 | 78 | [24] |
LplR | TCAACCACACGAATATCAGCCGG | |||||
Le. mesenteroides | Alcohol-acetaldehyde dehydrogenase | LmeF | GAGCCGTTATTCAAGCACCAATC | 358 | 85 | [24] |
LmeR | CCTGCGCCTTGATAGTTTAACAAG |
Tested Bacteria | V. cholerae NCCP 13589 | V. parahaemolyticus ATCC 27969 | |
---|---|---|---|
Lactic acid bacteria | Lb. brevis ATCC 8287 | + | + |
Lb. curvatus ATCC 25601 | + | + | |
Lpb. plantarum NCIMB 6105 | ++ | +++ | |
Lb. sakei subsp. sakei ATCC 15521 | + | + | |
Lc. lactis subsp. lactis ATCC 19435 | + | - | |
Le. mesenteroides ATCC 10830 | +++ | ++ | |
W. confusa ATCC 10881 | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.H.; Park, S.; Jang, M.; Kim, K.-s. Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture. Fermentation 2024, 10, 356. https://doi.org/10.3390/fermentation10070356
Jeong JH, Park S, Jang M, Kim K-s. Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture. Fermentation. 2024; 10(7):356. https://doi.org/10.3390/fermentation10070356
Chicago/Turabian StyleJeong, Jae Hee, Sunhyun Park, Mi Jang, and Keun-sung Kim. 2024. "Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture" Fermentation 10, no. 7: 356. https://doi.org/10.3390/fermentation10070356
APA StyleJeong, J. H., Park, S., Jang, M., & Kim, K. -s. (2024). Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture. Fermentation, 10(7), 356. https://doi.org/10.3390/fermentation10070356