Exopolysaccharides from Lactiplantibacillus plantarum C7 Exhibited Antibacterial, Antioxidant, Anti-Enzymatic, and Prebiotic Activities
Abstract
:1. Introduction
2. Material and Methods
2.1. Probiotic Bacteria
2.2. Extraction of EPS
2.2.1. Determination of Total Carbohydrate Content of Exopolysaccharide by Phenol Sulfuric Acid Method
2.2.2. Fourier Transform Infrared (FTIR) Analysis of Exopolysaccharides
2.3. Functional Activities of EPS
2.3.1. Assay of Antibacterial Activity of Exopolysaccharides
2.3.2. Antioxidant Activities
2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity of Exopolysaccharides
Determination of 2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulphonic Acid) (ABTS) Radical Scavenging Activity of Exopolysaccharides
Determination of Ferric Reducing Antioxidant Power (FRAP) of Exopolysaccharides
2.3.3. Enzyme Inhibitory Activities
Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Inhibitory Activities
Alpha-Amylase Inhibitory Activity
2.3.4. Prebiotic Activities
2.3.5. Statistical Analysis
3. Results and Discussion
3.1. Production of EPS
3.2. Infrared Spectrum Analysis of EPS by FTIR Spectroscopy
3.3. Functional Activities of EPS
3.3.1. Antibacterial Properties of EPS Extract
3.3.2. Antioxidant Activity of EPS
3.3.3. Enzyme Inhibitory Activities of EPS
3.3.4. Prebiotic Activity of EPS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Custom Market Insights. Global Polysaccharides Products Market 2024–2033; Report Code: CMI34358; Custom Market Insights: Austin, TX, USA, 2023. [Google Scholar]
- Fact, M.R. Polysaccharides and Oligosaccharides Market. 2022. Published Date: March 2022. Available online: https://www.factmr.com/report/427/polysaccharides-oligosaccharides-market (accessed on 20 December 2023).
- Badel, S.; Bernardi, T.; Michaud, P. New perspectives for lactobacilli exopolysaccharides. Biotechnol. Adv. 2011, 29, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Lindström, C.; Patel, A.; Prajapati, J.B.; Holst, O. Probiotic properties of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented foods. Int. J. Fermented Foods 2012, 1, 87–101. [Google Scholar]
- Liu, Z.; Zhang, Z.; Qiu, L.; Zhang, F.; Xu, X.; Wei, H.; Tao, X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J. Dairy Sci. 2017, 100, 6895–6905. [Google Scholar] [CrossRef] [PubMed]
- Korcz, E.; Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Bachtarzi, N.; Speciale, I.; Kharroub, K.; De Castro, C.; Ruiz, L.; Ruas-Madiedo, P. Selection of Exopolysaccharide-Producing Lactobacillus plantarum (Lactiplantibacillus plantarum) Isolated from Algerian Fermented Foods for the Manufacture of Skim-Milk Fermented Products. Microorganisms 2020, 8, 1101. [Google Scholar] [CrossRef] [PubMed]
- Abdelazez, A.; Abdelmotaal, H.; Zhu, Z.T.; Fang-Fang, J.; Sami, R.; Zhang, L.J.; Al-Tawaha, A.R.; Meng, X.C. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 2018, 12, 16–27. [Google Scholar]
- Jurášková, D.; Ribeiro, S.C.; Silva, C.C.G. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods 2022, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, T.; Şimşek, Ö. Potential Health Benefits of Ropy Exopolysaccharides Produced by Lactobacillus plantarum. Molecules 2020, 25, 3293. [Google Scholar] [CrossRef] [PubMed]
- Gangalla, R.; Gattu, S.; Palaniappan, S.; Ahamed, M.; Macha, B.; Thampu, R.K.; Fais, A.; Cincotti, A.; Gatto, G.; Dama, M.; et al. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer’s Disease Mice. Polymers 2021, 13, 2842. [Google Scholar] [CrossRef] [PubMed]
- Sirin, S.; Belma, A. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defned neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Sci. Rep. 2020, 10, 8124. [Google Scholar] [CrossRef]
- Sirin, S.; Aslim, B. Protective effect of exopolysaccharides from lactic acid bacteria against amyloid beta1-42induced oxidative stress in SH-SY5Y cells: Involvement of the AKT, MAPK, and NF-κB signaling pathway. Process Biochem. 2021, 106, 50–59. [Google Scholar] [CrossRef]
- Beltrán-Velasco, A.I.; Reiriz, M.; Uceda, S.; Echeverry-Alzate, V. Lactiplantibacillus (Lactobacillus) plantarum as a Complementary Treatment to Improve Symptomatology in Neurodegenerative Disease. A Systematic Review of Open Access Literature. Int. J. Mol. Sci. 2024, 25, 3010. [Google Scholar] [CrossRef] [PubMed]
- Nimgampalle, M.; Kuna, Y. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats. J. Clin. Diagn. Res. 2017, 11, KC01. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, Z. A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. J. Funct. Foods 2018, 47, 229–240. [Google Scholar] [CrossRef]
- Bouzaiene, T. Microflore Gastro-Intestinale du Poulet: Sélection et Caractérisation de Bactérie Probiotique: Lactobacillus rhamnosus. Ph.D. Thesis. 2006 Microbiology, Faculty of Science of Tunis, 166p. Available online: https://www.pist.tn/record/9665 (accessed on 20 December 2023).
- Chen, T.; Tan, Q.; Wang, M.; Xiong, S.; Jiang, S.; Wu, Q.; Li, S.; Luo, C.; Wei, H. Identification of bacterial strains in viili by molecular taxonomy and their synergistic effects on milk curd and exopolysaccharides production. Afr. J. Biotechnol. 2011, 10, 16969–16975. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chen, T.; Wu, Q.; Li, S.; Xiong, S.; Jiang, S.; Tan, Q.; Zhang, Z.; Zhu, D.; Wei, H. Microbiological quality and characteristics of probiotic products in China. J. Sci. Food Agric. 2014, 94, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.Y.; Nie, S.P.; Zou, C.; Wan, Y.; Xie, M.Y. Chemical Characterististic and antioxydant activities of polysaccharides purified from the seeds of Plantago asiatica L. J. Sci. Food Agric. 2010, 90, 210–217. [Google Scholar] [CrossRef]
- Ben El Hadj Ali, I.; Bahri, R.; Chaouachi, M.; Boussaïd, M.; Harzallah-Skhiri, F. Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. Organs. Ind. Crops Prod. 2014, 62, 188–195. [Google Scholar] [CrossRef]
- Messaoud, C.; Laabidi, A.; Boussaid, M. Myrtus communis L. infusions: The effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities. J. Food Sci. 2012, 77, 941–947. [Google Scholar] [CrossRef]
- Eldeen IM, S.; Elgorashi, E.E.; Van Staden, J. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J. Ethnopharmacol. 2005, 102, 457–464. [Google Scholar] [CrossRef]
- Sekar, V.; Chakraborty, S.; Mani, S.; Sali, V.K.; Vasanth, H.R. Mangiferin from Mangiferaindica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. S. Afr. J. Bot. 2019, 120, 129–134. [Google Scholar] [CrossRef]
- Huebner, J.; Wehling, R.; Hutkins, R. Functional Activity of commercial prebiotics. Int. Dairy J. 2007, 17, 770–775. [Google Scholar] [CrossRef]
- Li, S.; Huang, R.; Shah, N.P.; Tao, X.; Xiong, Y.; Wei, H. Activités antioxydantes et antibactériennes des exopolysaccharides de Bifidobacterium bifidum WBIN03 et Lactobacillus plantarum R315. J. Dairy Sci. 2014, 97, 7334–7343. [Google Scholar] [CrossRef]
- Senturk, D.Z.; Dertli, E.; Erten, H.; Simsek, O. Structural and technological characterization of ropy exopolysaccharides produced by Lactobacillus plantarum strains isolated from Tarhana. Food Sci. Biotechnol. 2020, 29, 121–129. [Google Scholar] [CrossRef]
- Imran, M.Y.M.; Reehana, N.; Jayaraj, K.A.; Ahamed, A.A.P.; Dhanasekaran, D.; Thajuddin, N.; Alharbi, N.S.; Muralitharan, G. Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. Int. J. Biol. Macromol. 2016, 93, 731–745. [Google Scholar] [CrossRef]
- Yu, L.; Xu, S.; Deng, C.; Li, H.; Yang, Q.; Xu, Z.; Chen, J. Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydr. Polym. 2016, 146, 217–223. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Wang, J.; Guo, X.; Zheng, Y.; Zhao, W.; Mei, X.; Guo, T.; Yang, Z. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydr. Polym. 2016, 146, 368–375. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, M.; Yang, H. Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps5. Carbohydr. Polym. 2014, 101, 50–56. [Google Scholar]
- Sasikumar, K.; Vaikkath, D.K.; Devendra, L.; Nampoothiri, K.M. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional food. Bioresour. Technol. 2017, 241, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and 622 associations: A review. Carbohydr. Polym. 2019, 207, 317–332. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Galiwango, E.; Tamiello-Rosa, C.; Abdullah, H.; Esposito, G.O.; Hunashal, Y.; Obaid, R.S.; Hamed, F. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int. J. Biol. Macromol. 2019, 144, 938–946. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Ayyash, M.M.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Shah, N.P.; Holley, R. Exopolysaccharides as antimicrobial agent: Mecanism and spectrum of activity. Front. Microbiol. 2021, 12, 664395. [Google Scholar] [CrossRef]
- Yang, S.; Xu, X.; Peng, Q.; Ma, L.; Qiao, Y.; Shi, B. Exopolysaccharides from lactic acid bacteria, as an alternative to antibiotics, on regulation of intestinal health and the immune system. Anim. Nutr. 2023, 13, 78–89. [Google Scholar] [CrossRef]
- Sivasankar, P.; Seedevi, P.; Poongodi, S.; Sivakumar, M.; Murugan, T.; Sivakumar, L. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr. Polym. 2018, 181, 752–759. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Wu, Y.; Mehwish, H.M.; Bansal, M.; Zhao, L. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci. Technol. 2020, 103, 36–48. [Google Scholar] [CrossRef]
- Nehal, F.; Sahnoun, M.; Smaoui, S.; Jaouadi, B.; Bejar, S.; Mohammed, S. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microb. Pathogen. 2019, 132, 10–19. [Google Scholar] [CrossRef]
- Salachna, P.; Mizieliñska, M.; Soból, M. Exopolysaccharide gellan gum and derived oligo-gellan enhance growth and antimicrobial activity in Eucomis plants. Polymers 2018, 10, 242. [Google Scholar] [CrossRef]
- Dilna, S.V.; Surya, H.; Aswathy, R.G.; Varsha, K.K.; Sakthikumar, D.N.; Pandey, A.; Nampoothiri, K.M. Characterization of an exopolysaccharide with potential health benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci. Technol. 2015, 64, 1179–1186. [Google Scholar] [CrossRef]
- Ayyash, M.; Stathopoulos, C.; Abu-Jdayil, B.; Esposito, G.; Baig, M.; Turner, M.S.; Baba, A.S.; Apostolopoulos, V.; Al-Nabulsi, A.; Osaili, T. Exopolysaccharide produced by potential probiotic Enterococcus faecium MS79: Characterization, bioactivities and rheological properties influenced by salt and pH. LWT Food Sci. Technol. 2020, 131, 109741. [Google Scholar] [CrossRef]
- Min, W.H.; Fang, X.B.; Wu, T.; Fang, L.; Liu, C.L.; Wang, J. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. J. Biosci. Bioeng. 2019, 127, 758–766. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.; Fashogbon, R. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. Bulgaricus. Heliyon 2020, 6, e03268. [Google Scholar]
- Bomfim, V.B.; Neto, J.H.P.L.; Leite, K.S.; de Andrade Vieira, É.; Iacomini, M.; Silva, C.M.; dos Santos, K.M.O.; Cardarelli, H.R. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT Food Sci. Technol. 2020, 127, 109349. [Google Scholar] [CrossRef]
- Wang, K.; Niu, M.M.; Wu, Y.; Zhu, R.F.; Zhao, J.; Lu, B.X.; Niu, G.C. Physicochemical characterization and antioxidant activity of cell-bound exopolysaccharides from Lactobacillus fermentum S1 obtained by two extraction methods. Process Biochem. 2019, 85, 195–205. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Y.; Wang, X.; Yue, F.; Shan, Y.; Liu, B.; Zhou, Y.; Yi, Y.; Lü, X. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 2019, 128, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Dhahri, M.; Alghrably, M.; Mohammed, H.A.; Badshah, S.L.; Noreen, N.; Mouffouk, F.; Rayyan, S.; Qureshi, K.A.; Mahmood, D.; Lachowicz, J.I.; et al. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.S.; Mohamed, S.S.; Asker, M.S.; Ibrahim, A.Y.; El-Newary, S.A.; El Awady, M.E. Characterization and in vitro Alzheimer’s properties of exopolysaccharide from Bacillus maritimus MSM1. Sci. Rep. 2023, 13, 11399. [Google Scholar] [CrossRef]
- Surayot, U.; Wang, J.; Seesuriyachan, P.; Kuntiya, A.; Tabarsa, M.; Lee, Y.; You, S. Exopolysaccharides from lactic acid bacteria: Structural analysis, molecular weight effect on immunomodulation. Int. J. Biol. Macromol. 2014, 68, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-H.; Tsai, C.-L.; Lien, Y.-Y.; Lee, M.-S.; Sheu, S.-C. High molecular weight of polysaccharides from Hericiumerinaceus against amyloid beta-induced neurotoxicity. BMC Complement. Altern. Med. 2016, 16, 170. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Jiang, Y.; Chu, W. Prebiotic, Antioxidant, and Immunomodulatory Properties of Acidic Exopolysaccharide From Marine Rhodotorula RY1801. Front. Nutr. 2021, 8, 710668. [Google Scholar] [CrossRef]
- Silva, L.A.; Lopes Neto, J.H.P.; Cardarelli, H.R. Exopolysaccharides produced by Lactobacillus plantarum: Technological properties, biological activity, and potential application in the food industry. Ann. Microbiol. 2019, 69, 321–328. [Google Scholar] [CrossRef]
Biological Activities | ||
---|---|---|
Antioxidant activities | ||
DPPH | Inhibition (%) | 30.4 |
µg TE/mg EPS | 292.81 ± 3.28 | |
ABTS | Inhibition (%) | 68.16 |
µg TE/mg EPS | 0.689 ± 0.032 | |
FRAP | Inhibition (%) | 25.26 |
mmol Fe2+/g EPS | 0.0313 ± 0.0027 | |
Enzyme inhibitory activities | ||
Acetylcholinesterase (AChE) inhibitoryactivity | Inhibition (%) | 16.38 |
µg DE/mg EPS | 0.11 ± 0.01 | |
Butyrylcholinesterase (BChE) inhibitoryactivity | Inhibition (%) | 70.99 |
µg DE/mg EPS | 0.44 ± 0.03 | |
Alpha-amylase inhibitoryactivity | Inhibition (%) | 21.078 |
µg AE/mg EPS | 0.11 ± 0.008 | |
Prebiotic activity | ||
PAS | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzaiene, T.; Mohamedhen Vall, M.; Ziadi, M.; Ben Rejeb, I.; Yangui, I.; Aydi, A.; Ouzari, I.; Moktar, H. Exopolysaccharides from Lactiplantibacillus plantarum C7 Exhibited Antibacterial, Antioxidant, Anti-Enzymatic, and Prebiotic Activities. Fermentation 2024, 10, 339. https://doi.org/10.3390/fermentation10070339
Bouzaiene T, Mohamedhen Vall M, Ziadi M, Ben Rejeb I, Yangui I, Aydi A, Ouzari I, Moktar H. Exopolysaccharides from Lactiplantibacillus plantarum C7 Exhibited Antibacterial, Antioxidant, Anti-Enzymatic, and Prebiotic Activities. Fermentation. 2024; 10(7):339. https://doi.org/10.3390/fermentation10070339
Chicago/Turabian StyleBouzaiene, Taroub, Mariem Mohamedhen Vall, Manel Ziadi, Ines Ben Rejeb, Islem Yangui, Abdelkarim Aydi, Imene Ouzari, and Hamdi Moktar. 2024. "Exopolysaccharides from Lactiplantibacillus plantarum C7 Exhibited Antibacterial, Antioxidant, Anti-Enzymatic, and Prebiotic Activities" Fermentation 10, no. 7: 339. https://doi.org/10.3390/fermentation10070339
APA StyleBouzaiene, T., Mohamedhen Vall, M., Ziadi, M., Ben Rejeb, I., Yangui, I., Aydi, A., Ouzari, I., & Moktar, H. (2024). Exopolysaccharides from Lactiplantibacillus plantarum C7 Exhibited Antibacterial, Antioxidant, Anti-Enzymatic, and Prebiotic Activities. Fermentation, 10(7), 339. https://doi.org/10.3390/fermentation10070339