Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Design
2.2. Fermentation Quality Analysis
2.3. Chemical Composition Analysis, Energy, and In Vitro Degradability Analysis
2.4. Microbiological Analysis
2.5. Aerobic Stability Analysis
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition and Microbial Counts of Fresh Materials
3.2. Fermentation Quality of Amaranth and Cornmeal Mixed Silage
3.3. Chemical Composition of Amaranth and Cornmeal Mixed Silage
3.4. In Vitro Digestibility of Amaranth and Cornmeal Mixed Silage
3.5. Aerobic Stability of Amaranth and Cornmeal Mixed Silage
4. Discussion
4.1. Effects of Moisture and Additives on the Fermentation Quality of Amaranth and Cornmeal Mixed Silage
4.2. Effects of Moisture and Additives on the Chemical Composition and In Vitro Digestibility of Amaranth and Cornmeal Mixed Silage
4.3. Effects of Moisture Content and Additives on the Aerobic Stability of Amaranth and Cornmeal Mixed Silage
4.4. Discussion of the Effects of Mixing Seed Amaranth and Maize Meal on Actual Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavallini, D.; Mammi, L.M.E.; Biagi, G.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Ital. J. Anim. Sci. 2021, 20, 295–303. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, S.; Zhao, J.; Li, J.; Shao, T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian Australas. J. Anim. Sci. 2020, 33, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.W. High-yield cultivation techniques of Amaranthus hypochondriacus. Mod. Anim. Husb. Technol. 2020, 3, 28–29. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Yu, J.; Song, Y.G.; Li, S.; Chung, J.-W.; Choi, S.H. Evaluation of the Nutrient Composition, In Vitro Fermentation Characteristics, and In Situ Degradability of Amaranthus caudatus, Amaranthus cruentus, and Amaranthus hypochondriacus in Cattle. Animals 2020, 11, 18. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, S.; Zhao, Y.; Yang, J.; Lv, L.; Zheng, Z.; Lu, H.; Ren, Y. Comparative Study of the Nutritional Value and Degradation Characteristics of Amaranth Hay in the Rumen of Goats at Different Growth Stages. Animals. 2022, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Pond, W.G.; Lehmann, J.W. Nutritive value of a vegetable amaranth cultivar for growing lambs. J. Anim. Sci. 1989, 67, 3036–3039. [Google Scholar] [CrossRef]
- Calabro, S.; Oteri, M.; Vastolo, A.; Cutrignelli, M.I.; Todaro, M.; Chiofalo, B.; Gresta, F. Amaranthus grain as a new ingredient in diets for dairy cows: Productive, qualitative, and in vitro fermentation traits. J. Sci. Food Agric. 2022, 102, 4121–4130. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H.; Zahedifar, M. Carcass characteristics, non-carcass components and blood parameters of fattening lambs fed on diets containing amaranth silage substituted for corn silage. Small Ruminant Res. 2013, 114, 225–232. [Google Scholar] [CrossRef]
- Shadi, H.; Rouzbehan, Y.; Rezaei, J.; Fazaeli, H. Yield, chemical composition, fermentation characteristics, in vitro ruminal variables, and degradability of ensiled amaranth (Amaranthus hypochondriacus) cultivars compared with corn (Zea mays) silage. Transl. Anim. Sci. 2020, 4, txaa180. [Google Scholar] [CrossRef]
- Cajarville, C.; Britos, A.; Garciarena, D.; Luis Repetto, J. Temperate forages ensiled with molasses or fresh cheese whey: Effects on conservation quality, effluent losses and ruminal degradation. Anim. Feed Sci. Technol. 2012, 171, 14–19. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, X.; Elsabagh, M.; Lin, B.; Wang, H.-r. Effects of formic acid and corn flour supplementation of banana pseudostem silages on nutritional quality of silage, growth, digestion, rumen fermentation and cellulolytic bacterial community of Nubian black goats. J. Integr. Agric. 2021, 20, 2214–2226. [Google Scholar] [CrossRef]
- de Assis Pires, F.P.A.; Tomich, T.R.; Pereira, L.G.R.; Machado, F.S.; Campos, M.M.; de Oliveira, A.F.; Menezes, G.L.; de Menezes, R.A.; de Sousa, P.G.; Jayme, D.G.; et al. Effect of the Lactiplantibacillus plantarum and Lentilactobacillus buchneri on corn and sorghum silage quality and sheep energy partition under tropical conditions. Grass Forage Sci. 2023, 78, 224–235. [Google Scholar] [CrossRef]
- Yi, Q.; Wang, P.; Yu, M.; Zhao, T.; Li, X.; Tang, H. Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage. Fermentation 2023, 9, 711. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can. J. Plant Sci. 1999, 79, 209–222. [Google Scholar] [CrossRef]
- Robinson, D. Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations in growth. Ann. Botany 1986, 58, 841–848. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Wylam, C.B. Analytical studies on the carbohydrates of grasses and clovers. IV.-further developments in the methods of estimation of mono-, di- and oligo-saccharides and fructosan. J. Sci. Food Agric. 1954, 5, 167–172. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Cherdthong, A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture 2020, 10, 262. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- Bordin, C.; Raspa, F.; Greppi, M.; Harris, P.; Ellis, A.D.; Roggero, A.; Palestrini, C.; Cavallini, D.; Bergero, D.; Valle, E. Pony feeding management: The role of morphology and hay feeding methods on intake rate, ingestive behaviors and mouth shaping. Front. Vet. Sci. 2024, 11, 1332207. [Google Scholar] [CrossRef] [PubMed]
- Coblentz, W.K.; Fritz, J.O.; Bolsen, K.K.; King, C.W.; Cochran, R.C. The effects of moisture concentration and type on quality characteristics of alfalfa hay baled under two density regimes in a model system. Anim. Feed Sci. Technol. 1998, 72, 53–69. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Dry matter level effects on alfalfa silage quality. II. Fermentation products and starch hydrolysis. Trans. ASAE. 1990, 33, 373–381. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Kawai, M.; Takahashi, J.; Matsuoka, S. The Effects of different moisture content and ensiling time on silo degradation of structural carbohydrate of orchardgrass. Asian Australas. J. Anim. Sci. 2002, 15, 213–217. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Zi, X.; Cai, Y. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase. Anim. Sci. J. 2017, 88, 1531–1537. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2015, 42, 31–93. [Google Scholar]
- Yang, W.; Yang, F.; Feng, C.; Zhao, S.; Zhang, X.; Wang, Y. Fermentation Properties and Bacterial Community Composition of Mixed Silage of Mulberry Leaves and Smooth Bromegrass with and without Lactobacillus plantarum Inoculation. Fermentation 2023, 9, 279. [Google Scholar] [CrossRef]
- Zanine, A.d.M.; Bonelli, E.A.; Souza, A.L.d.; Ferreira, D.d.J.; Santos, E.M.; Ribeiro, M.D.; Geron, L.J.V.; Pinho, R.M.A. Effects of Streptococcus bovis Isolated from Bovine Rumen on the Fermentation Characteristics and Nutritive Value of Tanzania Grass Silage. Sci. World J. 2016, 2016, 8517698. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Gou, W.; Cheng, Q.; Bai, S.; Cai, Y. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mixtures prepared with microbial inoculant and chemical additive. Anim. Feed. Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy. Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, M.S.; Kawai, M.; Takahashi, J.; Matsuoka, S. The effect of different moisture contents at ensiling on silo degradation and digestibility of structural carbohydrates of orchardgrass. Anim. Feed. Sci. Technol. 2002, 101, 127–133. [Google Scholar] [CrossRef]
- Abbasi, M.; Rouzbehan, Y.; Rezaei, J.; Jacobsen, S.E. The effect of lactic acid bacteria inoculation, molasses, or wilting on the fermentation quality and nutritive value of amaranth (Amaranthus hypochondriaus) silage. J. Anim. Sci. 2018, 96, 3983–3992. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, L.; Ma, G.; Jiang, X.; Yang, J.; Lv, J.; Zhang, Y. Cellulase interacts with lactic acid bacteria to affect fermentation quality, microbial community, and ruminal degradability in mixed silage of soybean residue and corn stover. Animals. 2021, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, L.; Yu, Z. Effects of different moisture levels and additives on the ensiling characteristics and in vitro digestibility of Stylosanthes silage. Animals 2022, 12, 1555. [Google Scholar] [CrossRef] [PubMed]
- Morrison, I.M. Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. J. Agric. Sci. 1979, 93, 581–586. [Google Scholar] [CrossRef]
- Lynch, J.P.; Baah, J.; Beauchemin, K.A. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant. J. Dairy Sci. 2015, 98, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.L.; Carter, J.N.; Sollenberger, L.E.; Blount, A.R.; Myer, R.O.; Maddox, M.K.; Phatak, S.C.; Adesogan, A.T. Nutritive value, fermentation characteristics, and in situ disappearance kinetics of ensiled warm-season legumes and bahiagrass. J. Dairy Sci. 2011, 94, 2042–2050. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian Australas. J. Anim. Sci. 2019, 32, 783–791. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yuan, X.; Zhang, J.; Li, J.; Shao, T. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J. Sci. Food Agric. 2016, 96, 1678–1685. [Google Scholar] [CrossRef]
- Ma, J.; Fan, X.; Ma, Z.; Huang, X.; Tang, M.; Yin, F.; Zhao, Z.; Gan, S. Silage additives improve fermentation quality, aerobic stability and rumen degradation in mixed silage composed of amaranth and corn straw. Front. Plant Sci. 2023, 14, 1189747. [Google Scholar] [CrossRef]
- Qiu, X.; Guo, G.; Yuan, X.; Shao, T. Effects of adding acetic acid and molasses on fermentation quality and aerobic stability of total mixed ration silage prepared with hulless barley straw in Tibet. Grassl. Sci. 2014, 60, 206–213. [Google Scholar] [CrossRef]
- Cai, Y.; Du, Z.; Yamasaki, S.; Nguluve, D.; Tinga, B.; Macome, F.; Oya, T. Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass. Anim. Biosci. 2020, 33, 1103–1112. [Google Scholar] [CrossRef]
- Hao, W.; Wang, H.L.; Ning, T.T.; Yang, F.Y.; Xu, C.C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian Australas. J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef]
- Wambacq, E.; Latré, J.P.; Haesaert, G. The effect of Lactobacillus buchneri inoculation on the aerobic stability and fermentation characteristics of alfalfa-ryegrass, red clover and maize silage. Agr. Food Sci. 2013, 22, 127–136. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.L.; Murray, J.-A. Survey of Equine Nutrition: Perceptions and Practices of Veterinarians in Georgia, USA. J. Equine Vet. Sci. 2013, 33, 454–459. [Google Scholar] [CrossRef]
- Muca, E.; Cavallini, D.; Raspa, F.; Bordin, C.; Bergero, D.; Valle, E. Integrating New Learning Methods into Equine Nutrition Classrooms: The Importance of Students’ Perceptions. J. Equine Vet. Sci. 2023, 126, 104537. [Google Scholar] [CrossRef]
- Becvarova, I.; Prochazka, D.; Chandler, M.L.; Meyer, H. Nutrition Education in European Veterinary Schools: Are European Veterinary Graduates Competent in Nutrition? J. Vet. Med. Educ. 2016, 43, 349–358. [Google Scholar] [CrossRef]
Item | Amaranth | Cornmeal |
---|---|---|
Chemical composition, energy, and buffering capacity | ||
Dry matter (g kg−1 FW) | 185 | 873 |
Organic matter (g kg−1 DM) | 876 | 981 |
Crude protein (g kg−1 DM) | 124 | 91.4 |
Neutral detergent fiber (g kg−1 DM) | 651 | 303 |
Acid detergent fiber (g kg−1 DM) | 377 | 85.0 |
Acid detergent lignin (g kg−1 DM) | 111 | 16.7 |
Water-soluble carbohydrate (g kg−1 DM) | 50.46 | 103.32 |
Gross energy (MJ kg−1 DM) | 18.0 | 19.5 |
Buffering capacity (mEq kg−1 DM) | 340 | 85.9 |
Microbial counts | ||
Lactic acid bacteria (log10 cfu−1 FW) | 2.42 | ND |
Yeast (log10 cfu−1 FW) | 2.00 | ND |
Mold (log10 cfu−1 FW) | 0.41 | ND |
Item ‡ | Moisture | Average | Additives † | SEM | Significance of Main Effects and Interactions (p-Value) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | E | L | M | W | E | L | W × E | W × L | L × E | W × L × E | ||||
pH value | W1 | 3.66 | 3.69 Ab | 3.63 a | 3.69 Ab | 3.62 a | 0.002 | <0.001 | <0.001 | 0.001 | <0.001 | 0.179 | 0.217 | 0.093 |
W2 | 3.70 | 3.77 Bb | 3.64 a | 3.73 Bb | 3.64 a | |||||||||
W3 | 3.70 | 3.77 Bc | 3.64 a | 3.73 Bb | 3.62 a | |||||||||
Average | 3.68 | 3.74 | 3.64 | 3.72 | 3.63 | |||||||||
LA (g kg−1 DM) | W1 | 16.9 | 16.6 Aab | 20.6 b | 12.2 a | 18.1 b | 0.078 | 0.020 | 0.811 | 0.338 | 0.116 | 0.599 | 0.953 | 0.455 |
W2 | 20.3 | 22.4 B | 17.7 | 21.1 | 19.8 | |||||||||
W3 | 14.6 | 14.3 A | 16.3 | 15.7 | 12.0 | |||||||||
Average | 17.2 | 17.8 | 18.2 | 16.3 | 16.6 | |||||||||
AA (g kg−1 DM) | W1 | 17.1 | 13.7 | 18.3 | 9.10 A | 10.1 | 0.090 | 0.041 | 0.941 | 0.047 | 0.090 | 0.199 | 0.514 | 0.126 |
W2 | 18.3 | 22.0 | 13.7 | 20.4 B | 17.2 | |||||||||
W3 | 17.5 | 16.5 | 24.2 | 15.0 AB | 14.1 | |||||||||
Average | 16.2 | 17.4 | 18.7 | 14.8 | 13.8 | |||||||||
PA (g kg−1 DM) | W1 | 0.03 | 0.11 | ND | ND | ND A | 0.131 | 0.002 | 0.082 | 0.681 | 0.053 | 0.836 | 0.535 | 0.671 |
W2 | ND | ND | ND | ND | ND A | |||||||||
W3 | 7.34 | ND | 19.3 | 8.30 | 1.76 B | |||||||||
Average | 2.46 | 0.37 | 6.43 | 2.77 | 0.59 | |||||||||
BA (g kg−1 DM) | W1 | 1.67 | 0.902 a | 3.85 Cb | 0.152 a | 1.78 a | 0.009 | <0.001 | <0.001 | 0.006 | <0.001 | 0.008 | 0.433 | 0.139 |
W2 | 1.06 | 0.721 | 1.59 B | 0.330 | 1.58 | |||||||||
W3 | 0.198 | 0.323 | ND A | 0.255 | 0.017 | |||||||||
Average | 0.990 | 0.649 | 1.81 | 0.246 | 1.26 | |||||||||
NH3-N (g kg−1 TN) | W1 | 19.3 | 21.0 Ab | 19.9 Aab | 18.1 Aa | 18.3 Aa | 0.016 | <0.001 | <0.001 | <0.001 | <0.001 | 0.036 | <0.001 | <0.001 |
W2 | 20.0 | 21.4 Ab | 19.2 Aab | 21.1 Bb | 18.4 Aa | |||||||||
W3 | 25.1 | 30.7 Bc | 21.9 Ba | 24.7 Cb | 22.9 Bab | |||||||||
Average | 21.5 | 24.4 | 20.3 | 21.3 | 19.9 |
Item ‡ | Moisture | Average | Additives † | SEM | Significance of Main Effects and Interactions (p-Value) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | E | L | M | W | E | L | W × E | W × L | L × E | W × L × E | ||||
DM (g kg−1) | W1 | 389 | 400 Cb | 382 Ca | 394 Cb | 381 Ca | 0.050 | <0.001 | <0.001 | 0.074 | 0.492 | 0.468 | 0.010 | 0.971 |
W2 | 330 | 338 Bb | 323 Ba | 335 Bb | 325 Ba | |||||||||
W3 | 287 | 296 Ab | 280 Aa | 292 Ab | 280 Aa | |||||||||
Average | 336 | 345 | 328 | 340 | 329 | |||||||||
OM (g kg−1 DM) | W1 | 952 | 954 Cb | 951 Ca | 953 Cb | 951 Ca | 0.015 | <0.001 | <0.001 | 0.832 | <0.001 | 0.108 | 0.924 | 0.957 |
W2 | 941 | 940 B | 941 B | 941 B | 942 B | |||||||||
W3 | 931 | 933 Ab | 929 Aa | 933 Ab | 929 Aa | |||||||||
Average | 941 | 942 | 940 | 942 | 941 | |||||||||
CP (g kg−1 DM) | W1 | 118 | 119 | 118 A | 116 A | 118 A | 0.022 | <0.001 | <0.001 | 0.766 | 0.002 | 0.017 | 0.773 | 0.035 |
W2 | 120 | 117 a | 122 Bb | 118 ABa | 121 Bb | |||||||||
W3 | 122 | 119 a | 122 Bb | 121 Bab | 124 Cb | |||||||||
Average | 120 | 118 | 121 | 118 | 121 | |||||||||
NDF (g kg−1 DM) | W1 | 627 | 643 B | 608 | 644 | 613 B | 0.368 | 0.004 | <0.001 | 0.190 | 0.924 | 0.024 | 0.248 | 0.553 |
W2 | 595 | 598 A | 584 | 623 | 575 A | |||||||||
W3 | 621 | 654 Bb | 628 ab | 625 ab | 576 Aa | |||||||||
Average | 615 | 632 | 607 | 631 | 588 | |||||||||
ADF (g kg−1 DM) | W1 | 115 | 114 A | 115 A | 121 A | 110 A | 0.151 | <0.001 | <0.001 | 0.828 | 0.033 | 0.900 | 0.655 | 0.508 |
W2 | 153 | 162 B | 145 B | 159 B | 144 B | |||||||||
W3 | 190 | 204 Cb | 177 Ca | 201 Cb | 176 Ca | |||||||||
Average | 152 | 160 | 146 | 160 | 143 | |||||||||
ADL (g kg−1 DM) | W1 | 19.9 | 19.1 A | 21.1 A | 19.4 A | 19.8 A | 0.033 | <0.001 | 0.478 | 0.713 | 0.393 | 0.854 | 0.193 | 0.110 |
W2 | 25.5 | 25.5 B | 25.9 BC | 24.3 B | 26.1 B | |||||||||
W3 | 34.0 | 35.7 C | 32.1 C | 33.2 C | 35.2 C | |||||||||
Average | 26.5 | 26.8 | 26.4 | 25.6 | 27.0 | |||||||||
GE (MJ kg −1 DM) | W1 | 18.7 | 18.7 B | 18.7 B | 18.7 B | 18.6 B | 0.009 | <0.001 | 0.274 | 0.467 | <0.001 | 0.017 | 0.734 | 0.920 |
W2 | 18.9 | 18.7 B | 18.9 C | 18.8 B | 19.0 C | |||||||||
W3 | 17.9 | 18.0 Ac | 17.9 Aab | 18.0 Abc | 17.8 Aa | |||||||||
SEM | 18.5 | 18.5 | 18.5 | 18.5 | 18.5 |
Item ‡ | Moisture | Average | Additives † | SEM | Significance of Main Effects and Interactions (p-Value) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | E | L | M | W | E | L | W × E | W × L | L × E | W × L × E | ||||
ivDMD (g kg−1) | W1 | 737 | 738 C | 737 C | 732 C | 741 C | 0.117 | <0.001 | <0.001 | 0.828 | 0.033 | 0.900 | 0.655 | 0.508 |
W2 | 709 | 701 B | 715 B | 703 B | 715 B | |||||||||
W3 | 680 | 669 Aa | 690 Ab | 671 Aa | 690 Ab | |||||||||
Average | 709 | 703 | 714 | 702 | 715 | |||||||||
ivOMD (g kg−1 DM) | W1 | 777 | 778 C | 777 C | 772 C | 781 C | 0.118 | <0.001 | <0.001 | 0.828 | 0.033 | 0.900 | 0.655 | 0.508 |
W2 | 748 | 740 B | 754 B | 742 B | 754 B | |||||||||
W3 | 719 | 708 Aa | 729 Ab | 710 Aa | 729 Ab | |||||||||
Average | 748 | 742 | 753 | 741 | 756 | |||||||||
ivCPD (g kg−1 DM) | W1 | 589 | 590 Cb | 589 Bab | 586 Ca | 591 Bb | 0.040 | <0.001 | <0.001 | 0.733 | 0.001 | 0.204 | 0.585 | 0.078 |
W2 | 582 | 577 Ba | 586 Bb | 578 Ba | 585 ABb | |||||||||
W3 | 574 | 568 Aa | 578 Ab | 571 Aa | 580 Ab | |||||||||
Average | 581 | 578 | 584 | 578 | 585 | |||||||||
ivNDFD (g kg−1 DM) | W1 | 579 | 594 B | 560 | 595 | 565 B | 0.355 | 0.004 | <0.001 | 0.190 | 0.924 | 0.024 | 0.248 | 0.553 |
W2 | 548 | 550 A | 537 | 575 | 528 A | |||||||||
W3 | 572 | 605 Bb | 579 ab | 576 ab | 529 Aa | |||||||||
Average | 567 | 583 | 559 | 583 | 541 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jin, Y.; Li, F.; Yu, M.; Du, J.; Yi, Q.; Zhao, T.; Yuan, B.; Wang, P. Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability. Fermentation 2024, 10, 378. https://doi.org/10.3390/fermentation10080378
Li X, Jin Y, Li F, Yu M, Du J, Yi Q, Zhao T, Yuan B, Wang P. Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability. Fermentation. 2024; 10(8):378. https://doi.org/10.3390/fermentation10080378
Chicago/Turabian StyleLi, Xinxin, Yitong Jin, Fuhou Li, Meng Yu, Jiarui Du, Qixuan Yi, Tianyue Zhao, Bao Yuan, and Peng Wang. 2024. "Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability" Fermentation 10, no. 8: 378. https://doi.org/10.3390/fermentation10080378
APA StyleLi, X., Jin, Y., Li, F., Yu, M., Du, J., Yi, Q., Zhao, T., Yuan, B., & Wang, P. (2024). Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability. Fermentation, 10(8), 378. https://doi.org/10.3390/fermentation10080378