The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Donors and Substrate
2.2. Urochloa Brizantha Extract Preparation
2.3. Treatments
2.4. In Vitro Gas Production Assay
2.5. Short-Chain Fatty Acid (SCFA) and Ammonia Nitrogen (NH3-N) Determination
2.6. Experimental Design and Statistical Analysis
- (1)
- Effect of monensin (MON) treatment against control (CTL);
- (2)
- Effect of extracts (EXT, the grouping of EE and HE extracts in all doses) concerning the positive control (MON);
- (3)
- Effect of extracts (EXT, the grouping of EE and HE extracts in all doses) concerning the negative control (CTL);
- (4)
- Effect of type of extract (ethanolic, EE, and hydroalcoholic, HE) at different doses: 50, 100, 150, and 200 mL/kg DM);
- (5)
- Level effect (LVL), comparing each level (50, 100, 150, and 200 mL/kg DM) against the other level of extracts;
- (6)
- EXT vs. LVL interaction effect.
3. Results
3.1. In Vitro Gas Production Assay
3.2. Short-Chain Fatty Acids and Ammonia Nitrogen
4. Discussion
4.1. In Vitro Gas Production Assay
4.2. Short-Chain Fatty Acids and Ammonia Nitrogen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal Microbiome and Microbial Metabolome: Effects of Diet and Ruminant Host. Animal 2020, 14, S78–S86. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of Plant Extracts on in Vitro Methanogenesis, Enzyme Activities and Fermentation of Feed in Rumen Liquor of Buffalo. Anim. Feed Sci. Technol. 2006, 128, 276–291. [Google Scholar] [CrossRef]
- e Silva, S.N.S.; Chabrillat, T.; Kerros, S.; Guillaume, S.; Gandra, J.R.; de Carvalho, G.G.P.; Silva, F.F.d.; Mesquita, L.G.; Gordiano, L.A.; Camargo, G.M.F.; et al. Effects of Plant Extract Supplementations or Monensin on Nutrient Intake, Digestibility, Ruminal Fermentation and Metabolism in Dairy Cows. Anim. Feed Sci. Technol. 2021, 275, 114886. [Google Scholar] [CrossRef]
- da Silva, C.S.; de Souza, E.J.O.; Pereira, G.F.C.; Cavalcante, E.O.; de Lima, E.I.M.; Torres, T.R.; da Silva, J.R.C.; da Silva, D.C. Plant Extracts as Phytogenic Additives Considering Intake, Digestibility, and Feeding Behavior of Sheep. Trop. Anim. Health Prod. 2017, 49, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Dhanasekaran, D.K.; Dias-Silva, T.P.; Abdalla Filho, A.L.; Sakita, G.Z.; Abdalla, A.L.; Louvandini, H.; Elghandour, M.M.M.Y. Plants Extract and Bioactive Compounds on Rumen Methanogenesis. Agrofor. Syst. 2020, 94, 1541–1553. [Google Scholar] [CrossRef]
- Hassan, A.; Abu Hafsa, S.H.; Elghandour, M.M.Y.; Kanth Reddy, P.R.; Salem, M.Z.M.; Anele, U.Y.; Ranga Reddy, P.P.; Salem, A.Z.M. Influence of Corymbia Citriodora Leaf Extract on Growth Performance, Ruminal Fermentation, Nutrient Digestibility, Plasma Antioxidant Activity and Faecal Bacteria in Young Calves. Anim. Feed Sci. Technol. 2020, 261, 114394. [Google Scholar] [CrossRef]
- Ashour, A.S.; El Aziz, M.M.A.; Gomha Melad, A.S. A Review on Saponins from Medicinal Plants: Chemistry, Isolation, and Determination. J. Nanomed. Res. 2019, 7, 282–288. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021, 26, 495. [Google Scholar] [CrossRef]
- Śliwiński, B.J.; Kreuzer, M.; Wettstein, H.R.; Machmüller, A. Rumen Fermentation and Nitrogen Balance of Lambs Fed Diets Containing Plant Extracts Rich in Tannins and Saponins, and Associated Emissions of Nitrogen and Methane. Arch. Anim. Nutr./Arch. Fur Tierernahr. 2002, 56, 379–392. [Google Scholar] [CrossRef]
- Zhang, F.; Li, B.; Ban, Z.; Liang, H.; Li, L.; Zhao, W.; Yan, X. Evaluation of Origanum Oil, Hydrolysable Tannins and Tea Saponin in Mitigating Ruminant Methane: In Vitro and In Vivo Methods. journal Anim. Physiol. Anim. Nutr. 2021, 105, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.J.; Kreikemeier, K.K.; Foote, S.; McLeod, K.R.; Harmon, D.L. Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals 2023, 13, 2308. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Xu, Z.; Yang, H.E.; McAllister, T.A.; Acharya, S.; Wang, Y. In Vitro Ruminal Fermentation of Fenugreek (Trigonella Foenum-Graecum, L.) Produced Less Methane than That of Alfalfa (Medicago sativa). Anim. Biosci. 2021, 34, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Preez, D.A.D.; Akanmu, A.M.; Adejoro, F.A.; Hassen, A. The Effect of Monensin vs. Neem, and Moringa Extracts on Nutrient Digestibility, Growth Performance, Methane, and Blood Profile of Merino Lambs. Animals 2023, 13, 3514. [Google Scholar] [CrossRef]
- Freitas, R.S.X.; Nepomuceno, D.d.D.; Modesto, E.C.; de Oliveira, D.R.; Pereira, T.P.; de Morais, L.F.; de Carvalho Almeida, J.C.; de Carvalho, M.G. Caracterização Do Extrato Metanólico de Urochloa Humidicola Como Aditivo Fitogênico Para Ruminantes. Biosci. J. 2017, 33, 1586–1591. [Google Scholar] [CrossRef]
- Gupta, A.; Naraniwal, M.; Kothari, V. Modern Extraction Methods for Preparation of Bioactive Plant Extracts. Int. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Niderkorn, V.; Jayanegara, A. Opportunities Offered by Plant Bioactive Compounds to Improve Silage Quality, Animal Health and Product Quality for Sustainable Ruminant Production: A Review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Leal, E.S.; Ítavo, L.C.V.; Do Valle, C.B.; Ítavo, C.C.B.F.; Dias, A.M.; Dos Santos Difante, G.; Barbosa-Ferreira, M.; Nonato, L.M.; De Melo, G.K.A.; Gurgel, A.L.C. Influence of Protodioscin Content on Digestibility and in Vitro Degradation Kinetics in Urochloa Brizantha Cultivars. Crop Pasture Sci. 2020, 71, 278–284. [Google Scholar] [CrossRef]
- Feitoza, R.B.B.; Varela, R.M.; Torres, A.; Molinillo, J.M.G.; Lima, H.R.P.; Moraes, L.F.D.; Da Cunha, M.; Macías, F.A. Evaluation of the Phytotoxicity of Urochloa Humidicola Roots by Bioassays and Microscopic Analysis. Characterization of New Compounds. J. Agric. Food Chem. 2020, 68, 4851–4864. [Google Scholar] [CrossRef]
- de Oliveira, D.R.; Nepomuceno, D.D.; Castro, R.N.; Braz Filho, R.; Carvalho, M.G.d. Special Metabolites Isolated from Urochloa Humidicola (Poaceae). An. Da Acad. Bras. De Ciências 2017, 89, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Brum, K.B.; Haraguchi, M.; Lemos, R.A.A.; Riet-Correa, F.; Fioravanti, M.C.S. Crystal-Ystal-Associated Cholangiopathy in Sheep Grazing Brachiaria Decumbens Containing the Saponin Protodioscin Protodioscin. Pesqui. Vet. Bras. 2007, 27, 39–42. [Google Scholar] [CrossRef]
- da Costa, M.C.M.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Dias, A.M.; dos Santos Difante, G.; Buschinelli de Goes, R.H. de T.; de Souza Leal, E.; Nonato, L.M.; Kozerski, N.D.; de Moraes, G.J.; et al. Natural Intoxication Caused by Protodioscin in Lambs Kept in Brachiaria Pastures. Trop. Anim. Health Prod. 2021, 53, 1–9. [Google Scholar] [CrossRef]
- Oliveira, M.W.; Lopes Goretti, A.; Lana, R.d.P.; Camacho Rodrigues, T. DRY MATTER AND PROTEIN ACCUMULATION AS A FUNCTION OF NITROGEN FERTILIZATION IN Brachiaria Brizantha CV. MARANDU (Urochloa Brizantha). Rev. Bras. De Agropecuária Sustentável 2022, 12, 10–18. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Cabral Filho, S.L.S.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.S.S.; Abdalla, A.L. Influence of Inoculum Source in a Gas Production Method. Anim. Feed Sci. Technol. 2005, 123–124 Pt 1, 95–105. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists (AOAC), 18th ed.; AOAC International, Ed.; AOAC: Gaithersburg, MD, USA, 2011. [Google Scholar]
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araújo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa, Ed.; Embrapa: Brasília, Brasil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Omer, E.A.; Hussein, E.A.A.; Hendawy, S.F.; El-din, A.A.E.; El-Gendy, A.G. Effect of Nitrogen and Potassium Fertilizers on Growth, Yield, Essential Oil and Artemisinin of Artemisia Annua L Plant. Int. Res. J. Hortic. 2014, 2, 11. [Google Scholar] [CrossRef]
- Rodrigues, L.d.C.; Bodini, R.B.; Caneppele, F. de L.; Dacanal, G.C.; Crevelin, E.J.; de Moraes, L.A.B.; de Oliveira, A.L. Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture). Processes 2023, 11, 2308. [Google Scholar] [CrossRef]
- Lee, S.T.; Mitchell, R.B.; Wang, Z.; Heiss, C.; Gardner, D.R.; Azadi, P. Isolation, Characterization, and Quantification of Steroidal Saponins in Switchgrass ( Panicum virgatum, L.). J. Agric. Food Chem. 2009, 57, 2599–2604. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated In Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The Estimation of the Digestibility and Metabolizable Energy Content of Ruminant Feedingstuffs from the Gas Production When They Are Incubated with Rumen Liquor In Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Fagundes, G.M.; Benetel, G.; Santos, K.C.; Welter, K.C.; Melo, F.A.; Muir, J.P.; Bueno, I.C.S. Tannin-Rich Plants as Natural Manipulators of Rumen Fermentation in the Livestock Industry. Molecules 2020, 25, 2943. [Google Scholar] [CrossRef]
- France, J.; Dhanoa, M.S.; Theodorou, M.K.; Lister, S.J.; Davies, D.R.; Isac, D. A Model to Interpret Gas Accumulation Profile Associated with In Vitro Degradation of Ruminant Feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- Blummel, B.Y.M.; Becker, K. The Degradability Characteristics of Fifty-Four Roughages and Roughage Neutral-Detergent Fibres as Described by In Vitro Gas Production and Thies Relationship to Voluntary Feed Intake. Br. J. Nutr. 1997, 77, 757–768. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Brandi, R.A.; Fagundes, G.M.; Benetel, G.; Muir, J.P. The Role of Condensed Tannins in the In Vitro Rumen Fermentation Kinetics in Ruminant Species: Feeding Type Involved? Animals 2020, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Kulasek, G. A Micromethod for Determining Urea in Blood Plasma, Whole Blood and Blood Corpuscles with the Use of Urease and Phenol Reagent. Pol. Arch. Weter. 1972, 15, 801–810. [Google Scholar]
- Foldager, J. Protein Requirement and Non-Protein Nitrogen for High Producing Cows in Early Lactation. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1977. [Google Scholar]
- Seo, S.; Lee, S.C.; Lee, S.Y.; Seo, J.G.; Ha, J.K. Degradation Kinetics of Carbohydrate Fractions of Ruminant Feeds Using Automated Gas Production Technique. Asian-Australas. J. Anim. Sci. 2009, 22, 356–364. [Google Scholar] [CrossRef]
- de Oliveira, J.S.; Zanine, A.D.M.; Santos, E.M. Diversidade Microbiana No Ecossitema Ruminal. Rev. Electrónica De Vet. 2007, 8, 1–12. [Google Scholar]
- de Freitas, R.S.X.; Nepomuceno, D.D.D.; Modesto, E.C.; Pereira, T.P.; Almeida, J.C.d.C.; de Morais, L.F.; Pereira, L.G.R.; Machado, F.S.; Campos, M.M.; Tomich, T.R. Methanolic Extract of Urochloa Humidicola on In Vitro Rumen Fermentation. Pesqui. Agropecuária Bras. 2018, 53, 504–513. [Google Scholar] [CrossRef]
- Jiménez-Peralta, F.S.; Salem, A.Z.M.; Mejia-Hernández, P.; González-Ronquillo, M.; Albarrán-Portillo, B.; Rojo-Rubio, R.; Tinoco-Jaramillo, J.L. Influence of Individual and Mixed Extracts of Two Tree Species on In Vitro Gas Production Kinetics of a High Concentrate Diet Fed to Growing Lambs. Livest. Sci. 2011, 136, 192–200. [Google Scholar] [CrossRef]
- Abarghuei, M.J.; Rouzbehan, Y.; Salem, A.F. The Influence of Pomegranate-Peel Extracts on In Vitro Gas Production Kinetics of Rumen Inoculum of Sheep. Turk. J. Vet. Anim. Sci. 2014, 38, 212–219. [Google Scholar] [CrossRef]
- Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. The Sustainable Mitigation of Ruminal Methane and Carbon Dioxide Emissions by Co-Ensiling Corn Stalk with Neolamarckia Cadamba Leaves for Cleaner Livestock Production. J. Clean. Prod. 2021, 311, 127680. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Wu, Y.; Guo, Y.; Ye, J. Effects of Tea Saponins on In Vitro Ruminal Fermentation and Growth Performance in Growing Boer Goat. Arch. Anim. Nutr. 2006, 60, 89–97. [Google Scholar] [CrossRef]
- Hart, K.J.; Yáñez-Ruiz, D.R.; Duval, S.M.; McEwan, N.R.; Newbold, C.J. Plant Extracts to Manipulate Rumen Fermentation. Anim. Feed Sci. Technol. 2008, 147, 8–35. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef] [PubMed]
- Raun, B.M.L.; Kristensen, N.B. Metabolic Effects of Feeding Ethanol or Propanol to Postpartum Transition Holstein Cows. J. Dairy Sci. 2011, 94, 2566–2580. [Google Scholar] [CrossRef]
- Cone, J.W.; Becker, P.M. Fermentation Kinetics and Production of Volatile Fatty Acids and Microbial Protein by Starchy Feedstuffs. Anim. Feed Sci. Technol. 2012, 172, 34–41. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. The Effect and Mode of Action of Saponins on the Microbial Populations and Fermentation in the Rumen and Ruminant Production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Takahashi, J. Meta-Analysis on Methane Mitigating Properties of Saponin-Rich Sources in the Rumen: Influence of Addition Levels and Plant Sources. Asian-Australas. J. Anim. Sci. 2014, 27, 1426–1435. [Google Scholar] [CrossRef]
- Kang, J.; Zeng, B.; Tang, S.; Wang, M.; Han, X.; Zhou, C.; Yan, Q.; Liu, J.; Tan, Z. Effects of Momordica Charantia Polysaccharide on In Vitro Ruminal Fermentation and Cellulolytic Bacteria. Ital. J. Anim. Sci. 2017, 16, 226–233. [Google Scholar] [CrossRef]
- Wina, E.; Muetzel, S.; Becker, K. The Impact of Saponins or Saponin-Containing Plant Materials on Ruminant Production—A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Yu, Z. Effects of Vanillin, Quillaja Saponin, and Essential Oils on In Vitro Fermentation and Protein-Degrading Microorganisms of the Rumen. Appl. Microbiol. Biotechnol. 2014, 98, 897–905. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Adegbeye, M.J.; Elghandour, M.M.M.Y.; Pilego, A.B.; Salem, A.Z.M.; Olaniyi, T.A.; Adediran, O.; Adewumi, M.K. Role of Diverse Fermentative Factors towards Microbial Community Shift in Ruminants. J. Appl. Microbiol. 2019, 127, 2–11. [Google Scholar] [CrossRef]
- Hino, T.; Russell, J.B. Effect of Reducing-Equivalent Disposal and NADH/NAD on Deamination of Amino Acids by Intact Rumen Microorganisms and Their Cell Extracts. Appl. Environ. Microbiol. 1985, 50, 1368–1374. [Google Scholar] [CrossRef]
- An, J.; He, H.; Lan, X.; Liu, L.; Wang, Z.; Ge, Y.; Shen, W.; Cheng, A.; Wan, F. Branched-Chain Amino Acids in Ruminant Nutrition: Function Effects and Summary of Recent Advances. Anim. Feed Sci. Technol. 2024, 312, 1–15. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Denton, B.L.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. I: Comparison with Branched-Chain Amino Acids and Forage Source in Ruminal Batch Cultures. J. Dairy Sci. 2021, 104, 6739–6755. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Russell, J.B. The Effect of Monensin Supplementation on Ruminal Ammonia Accumulation In Vivo and the Numbers of Amino Acid-Fermenting Bacteria. J. Anim. Sci. 1993, 71, 3470–3476. [Google Scholar] [CrossRef]
- Liu, J.Y.; Hou, Y.L.; Cao, R.; Qiu, H.X.; Cheng, G.H.; Tu, R.; Wang, L.; Zhang, J.L.; Liu, D. Protodioscin Ameliorates Oxidative Stress, Inflammation and Histology Outcome in Complete Freund’s Adjuvant Induced Arthritis Rats. Apoptosis 2017, 22, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, P.; Shi, H.; Fan, W.; Feng, X.; Chen, J.; Jing, S.; Wang, L.; Zheng, Y.; Zhang, D.; et al. Identification of Anti-Inflammatory Components in Dioscorea Nipponica Makino Based on HPLC-MS/MS, Quantitative Analysis of Multiple Components by Single Marker and Chemometric Methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1213, 123531. [Google Scholar] [CrossRef]
- Huang, C.F.; Hsieh, Y.H.; Yang, S.F.; Kuo, C.H.; Wang, P.H.; Liu, C.J.; Lin, R.C. Mitophagy Effects of Protodioscin on Human Osteosarcoma Cells by Inhibition of P38MAPK Targeting NIX/LC3 Axis. Cells 2023, 12, 395. [Google Scholar] [CrossRef]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and Mode of Action of Chitosan and Ivy Fruit Saponins on the Microbiome, Fermentation and Methanogenesis in the Rumen Simulation Technique. FEMS Microbiol. Ecol. 2016, 92, fiv160. [Google Scholar] [CrossRef]
Variables | EE | HE | MON | CTL | SEM | Contrast p-Valor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 50 | 100 | 150 | 200 | 1 | 2 | 3 | 4 | 5 | 6 | ||||
A (mL) | 335.7 | 303.3 | 294.7 | 270.3 | 352.4 | 325.4 | 318.9 | 307.2 | 302.6 | 320.6 | 19.2 | 0.05 | 0.63 | 0.71 | 0.07 | 0.35 | 0.74 |
L (h) | 4.27 | 6.35 | 5.32 | 5.74 | 7.31 | 7.49 | 6.01 | 6.55 | 9.29 | 7.50 | 1.22 | 0.14 | * | 0.10 | 0.02 | 0.53 | 0.94 |
μ T½ (/h) | 0.023 | 0.024 | 0.022 | 0.027 | 0.025 | 0.032 | 0.023 | 0.021 | 0.027 | 0.026 | 0.004 | 0.87 | 0.54 | 0.65 | 0.53 | 0.63 | 0.22 |
T½ (h) | 38.88 | 39.95 | 37.82 | 36.56 | 37.60 | 34.97 | 37.92 | 42.71 | 39.77 | 40.00 | 3.99 | 0.96 | 0.69 | 0.59 | 0.99 | 0.56 | 0.32 |
IVDMD (%) | 78.54 | 71.15 | 70.12 | 67.76 | 80.62 | 76.70 | 74.29 | 71.32 | 77.56 | 79.77 | 1.29 | 0.27 | 0.03 | ** | ** | 0.048 | 0.81 |
IVOMD (%) | 75.30 | 72.37 | 69.53 | 66.08 | 80.20 | 76.15 | 71.92 | 70.00 | 75.89 | 79.38 | 1.75 | 0.18 | 0.13 | *** | * | 0.12 | 0.65 |
PF (mg DMD/mL) | 2.45 | 2.41 | 2.44 | 2.42 | 2.41 | 2.39 | 2.29 | 2.40 | 2.79 | 2.52 | 0.09 | 0.01 | *** | 0.11 | 0.25 | 0.57 | 0.38 |
Variables | EE | HE | MON | CTL | SEM | Contrast p-Valor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 50 | 100 | 150 | 200 | 1 | 2 | 3 | 4 | 5 | 6 | ||||
SCFA (mM) | 39.63 | 60.75 | 55.05 | 60.26 | 71.00 | 72.28 | 49.46 | 56.34 | 53.12 | 47.49 | 7.56 | 0.63 | 0.19 | 0.59 | 0.63 | 0.14 | 0.06 |
C2 (molar %) | 44.28 | 42.57 | 43.17 | 43.82 | 46.64 | 48.31 | 46.68 | 48.03 | 47.57 | 44.57 | 1.50 | 0.16 | 0.64 | 0.16 | 0.57 | * | 0.90 |
C3 (molar %) | 28.11 | 25.44 | 27.09 | 26.78 | 26.44 | 25.05 | 25.45 | 25.36 | 33.48 | 30.69 | 2.25 | 0.09 | ** | ** | 0.23 | 0.17 | 0.97 |
C4 (molar %) | 21.96 | 24.93 | 24.49 | 24.17 | 19.81 | 20.74 | 22.27 | 20.95 | 13.64 | 18.41 | 1.62 | 0.02 | 0.01 | ** | 0.13 | 0.02 | 0.62 |
IC4 (molar %) | 0.82 | 0.70 | 0.65 | 0.73 | 0.86 | 0.71 | 0.78 | 0.72 | 0.63 | 0.82 | 0.08 | 0.06 | 0.21 | 0.16 | 0.12 | 0.26 | 0.56 |
IC5 (molar %) | 1.55 | 1.73 | 1.55 | 1.62 | 1.83 | 1.75 | 1.61 | 1.50 | 1.48 | 1.61 | 0.19 | 0.42 | 0.77 | 0.20 | 0.64 | 0.38 | 0.17 |
C5 (molar %) | 3.36 | 3.54 | 3.15 | 2.88 | 4.42 | 3.67 | 3.33 | 3.44 | 3.25 | 3.63 | 0.83 | 0.56 | 0.72 | 0.66 | 0.73 | 0.38 | 0.22 |
C2:C3 | 1.60 | 1.96 | 1.61 | 1.69 | 1.81 | 2.02 | 1.89 | 1.98 | 1.49 | 1.47 | 0.23 | 0.94 | 0.03 | 0.07 | 0.32 | 0.07 | 0.80 |
NH3-N (mg/100 mL) | 39.77 | 40.92 | 41.48 | 43.19 | 41.94 | 43.93 | 43.69 | 45.31 | 44.77 | 41.51 | 1.26 | 0.04 | 0.07 | 0.33 | * | 0.10 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, R.S.X.d.; da Silva, J.S.; Furtado, A.J.; Perna Junior, F.; de Oliveira, A.L.; Bueno, I.C.d.S. The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique. Fermentation 2024, 10, 447. https://doi.org/10.3390/fermentation10090447
Freitas RSXd, da Silva JS, Furtado AJ, Perna Junior F, de Oliveira AL, Bueno ICdS. The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique. Fermentation. 2024; 10(9):447. https://doi.org/10.3390/fermentation10090447
Chicago/Turabian StyleFreitas, Rafaela Scalise Xavier de, Janaina Silveira da Silva, Althieres José Furtado, Flavio Perna Junior, Alessandra Lopes de Oliveira, and Ives Cláudio da Silva Bueno. 2024. "The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique" Fermentation 10, no. 9: 447. https://doi.org/10.3390/fermentation10090447
APA StyleFreitas, R. S. X. d., da Silva, J. S., Furtado, A. J., Perna Junior, F., de Oliveira, A. L., & Bueno, I. C. d. S. (2024). The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique. Fermentation, 10(9), 447. https://doi.org/10.3390/fermentation10090447