Hydrogen Production from Sugarcane Bagasse Pentose Liquor Fermentation Using Different Food/Microorganism and Carbon/Nitrogen Ratios under Mesophilic and Thermophilic Conditions
Abstract
:1. Introduction
2. Methods
2.1. Overall Procedure for H2 Production
2.2. Composition of Substrate
2.3. Inoculum
2.4. Monitoring Analyses
2.5. Kinetic Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. H2 and SMP Production Outlook Using Thermophilic and Mesophilic Reactors under F/M and C/N Ratios
4.2. H2 Production Drawbacks from Non-Fermentative Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informal Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eker, S.; Sarp, M. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. Int. J. Hydrogen Energy 2017, 42, 2562–2568. [Google Scholar] [CrossRef]
- Arimi, M.M.; Knodel, J.; Kiprop, A.; Namango, S.S.; Zhang, Y.; Geißen, S.-U. Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass Bioenergy 2015, 75, 101–118. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsanaa, T.; Bharghavi, A.; Jayamuthunagai, J.; Praveenkumar, R. Biohydrogen and Biogas—An overview on feedstocks and enhancement process. Fuel 2016, 185, 810–828. [Google Scholar] [CrossRef]
- Ghimire, A.; Sposito, F.; Frunzo, L.; Trably, E.; Escudié, R.; Pirozzi, F.; Lens, P.N.; Esposito, G. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Manag. 2016, 50, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Phowan, P.; Danvirutai, P. Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: Effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 2014, 64, 1–10. [Google Scholar] [CrossRef]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A.; Abd Rahman, N. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Xu, K.-Q.; Kobayashi, T.; Li, Y.-Y.; Inamori, Y. Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. Int. J. Hydrogen Energy 2014, 39, 16863–16871. [Google Scholar] [CrossRef]
- Khamtib, S.; Reungsang, A. Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment. Int. J. Hydrogen Energy 2012, 37, 12219–12228. [Google Scholar] [CrossRef]
- Mamimin, C.; Chaikitkaew, S.; Niyasom, C.; Kongjan, P.; Sompong, O. Effect of Operating Parameters on Process Stability of Continuous Biohydrogen Production from Palm Oil Mill Effluent under Thermophilic Condition. Energy Procedia 2015, 79, 815–821. [Google Scholar] [CrossRef]
- Gupta, M.; Gomez-Flores, M.; Nasr, N.; Elbeshbishy, E.; Hafez, H.; El Naggar, M.H.; Nakhla, G. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions. Bioresour. Technol. 2015, 192, 741–747. [Google Scholar] [CrossRef]
- Kargi, F.; Eren, N.S.; Ozmihci, S. Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. Int. J. Hydrogen Energy 2012, 37, 8338–8342. [Google Scholar] [CrossRef]
- Cakır, A.; Ozmihci, S.; Kargi, F. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. Int. J. Hydrogen Energy 2010, 35, 13214–13218. [Google Scholar] [CrossRef]
- Peintner, C.; Zeidan, A.A.; Schnitzhofer, W. Bioreactor systems for thermophilic fermentative hydrogen production: Evaluation and comparison of appropriate systems. J. Clean. Prod. 2010, 18, S15–S22. [Google Scholar] [CrossRef]
- van Groenestijn, J.W.; Hazewinkel, J.H.O.; Nienoord, M.; Bussmann, P.J.T. Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int. J. Hydrogen Energy 2002, 27, 1141–1147. [Google Scholar] [CrossRef]
- Kundu, K.; Sharma, S.; Sreekrishnan, T.R. Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour. Technol. 2012, 118, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhang, R.; El-Mashad, H.M.; Sun, H.; Ying, Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 2008, 33, 6968–6975. [Google Scholar] [CrossRef]
- Lucas, S.D.M.; Peixoto, G.; Mockaitis, G.; Zaiat, M.; Gomes, S.D. Energy recovery from agro-industrial wastewaters through biohydrogen production: Kinetic evaluation and technological feasibility. Renew. Energy 2015, 75, 496–504. [Google Scholar] [CrossRef]
- del Pilar Anzola-Rojas, M.; Gonçalves da Fonseca, S.; Canedo da Silva, C.; Maia de Oliveira, V.; Zaiat, M. The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnol. Rep. 2015, 5, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lay, C.H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 2004, 29, 41–45. [Google Scholar] [CrossRef]
- Sreethawong, T.; Chatsiriwatana, S.; Rangsunvigit, P.; Chavadej, S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD:N ratio, and organic acid composition. Int. J. Hydrogen Energy 2010, 35, 4092–4102. [Google Scholar] [CrossRef]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef]
- Fan, Y.-T.; Zhang, Y.-H.; Zhang, S.-F.; Wei, H.; Ren, B. Efficient conversion of wheat straw waste into biohydrogen gas by cow dung compost. Bioresour. Technol. 2006, 97, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Bentsen, N.S.; Felby, C.; Thorsen, B.J. Agricultural residue production and potentials for energy and materials services. Prog. Energy Combust. Sci. 2014, 40, 59–73. [Google Scholar] [CrossRef]
- Rabelo, S.C.; Carrere, H.; Maciel Filho, R.; Costa, A.C. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour. Technol. 2011, 102, 7887–7895. [Google Scholar] [CrossRef]
- Cardona, C.A.; Quintero, J.A.; Paz, I.C. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresour. Technol. 2010, 101, 4754–4766. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Leitão, V.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass Valorization 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Mariano, A.P.; Dias, M.O.S.; Junqueira, T.L.; Cunha, M.P.; Bonomi, A.; Filho, R.M. Utilization of pentoses from sugarcane biomass: Techno-economics of biogas vs. butanol production. Bioresour. Technol. 2013, 142, 390–399. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, H.; He, T.; Sun, J.; Chen, K.; Yue, F. Highly selective extraction of lignin and hemicellulose with retained original structure from sugarcane bagasse via low-temperature soaking and acidic precipitation. Ind. Crops Prod. 2024, 209, 118015. [Google Scholar] [CrossRef]
- Rabelo, C.A.B.S.; Soares, L.A.; Sakamoto, I.K.; Silva, E.L.; Varesche, M.B.A. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. J. Environ. Manag. 2018, 223, 952–963. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, M. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour. Technol. 2013, 144, 623–631. [Google Scholar] [CrossRef]
- Rashidi, M.; Alavi, N.; Amereh, F.; Rafiee, M.; Amanidaz, N.; Partovi, K.; Mosanefi, S.; Bakhshoodeh, R. Biohydrogen production from co-digestion of sugarcane vinasse and bagasse using anaerobic dark fermentation. Bioresour. Technol. Rep. 2024, 25, 101793. [Google Scholar] [CrossRef]
- Adarme, O.F.H.; Baêta, B.E.L.; Lima, D.R.S.; Gurgel, L.V.A.; de Aquino, S.F. Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind. Crops Prod. 2017, 109, 288–299. [Google Scholar] [CrossRef]
- Braga, J.K.; Soares, L.A.; Motteran, F.; Sakamoto, I.K.; Varesche, M.B.A. Effect of 2-bromoethanesulfonate on anaerobic consortium to enhance hydrogen production utilizing sugarcane bagasse. Int. J. Hydrogen Energy 2016, 41, 22812–22823. [Google Scholar] [CrossRef]
- Tondro, H.; Musivand, S.; Zilouei, H.; Bazarganipour, M.; Zargoosh, K. Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum. Biomass Bioenergy 2020, 142, 105818. [Google Scholar] [CrossRef]
- Bu, J.; Wang, Y.-T.; Deng, M.-C.; Zhu, M.-J. Enhanced enzymatic hydrolysis and hydrogen production of sugarcane bagasse pretreated by peroxyformic acid. Bioresour. Technol. 2021, 326, 124751. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chen, X.; Hu, B.-B.; Wei, M.-Y.; Zhu, M.-J. Efficient hydrogen production from sugarcane bagasse and food waste by thermophilic clostridiales consortium and Fe–Mn impregnated biochars. Renew. Energy 2023, 211, 166–178. [Google Scholar] [CrossRef]
- Dharmaraja, J.; Shobana, S.; Arvindnarayan, S.; Francis, R.R.; Jeyakumar, R.B.; Saratale, R.G.; Ashokkumar, V.; Bhatia, S.K.; Kumar, V.; Kumar, G. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresour. Technol. 2023, 369, 128328. [Google Scholar] [CrossRef]
- Vasconcelos, M.H.; Mendes, F.M.; Ramos, L.; Dias, M.O.S.; Bonomi, A.; Jesus, C.D.F.; Watanabe, M.D.B.; Junqueira, T.L.; Milagres, A.M.F.; Ferraz, A.; et al. Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment. Energy 2020, 199, 117422. [Google Scholar] [CrossRef]
- Betancur, G.; Pereira, N., Jr. Sugar cane bagasse as feedstock for second generation ethanol production. Part I: Diluted acid pretreatment optimization. Electron. J. Biotechnol. 2010, 13, 10–11. [Google Scholar] [CrossRef]
- Maintinguer, S.I.; Fernandes, B.S.; Duarte, I.C.S.; Saavedra, N.K.; Adorno, M.A.T.; Varesche, M.B. Fermentative hydrogen production by microbial consortium. Int. J. Hydrogen Energy 2008, 33, 4309–4317. [Google Scholar] [CrossRef]
- Eaton, A.D.; Franson, M.A.H.; Association, A.P.H.; Association, A.W.W.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Mockaitis, G.; Rodrigues, J.A.D.; Foresti, E.; Zaiat, M. Toxic effects of cadmium (Cd2+) on anaerobic biomass: Kinetic and metabolic implications. J. Environ. Manag. 2012, 106, 75–84. [Google Scholar] [CrossRef]
- Peixoto, G.; Saavedra, N.K.; Varesche, M.B.A.; Zaiat, M. Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. Int. J. Hydrogen Energy 2011, 36, 8953–8966. [Google Scholar] [CrossRef]
- Zheng, H.-S.; Guo, W.-Q.; Yang, S.-S.; Feng, X.-C.; Du, J.-S.; Zhou, X.-J.; Chang, J.-S.; Ren, N.-Q. Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: Analysis of the advantages of microbial community and metabolism. Bioresour. Technol. 2014, 172, 433–437. [Google Scholar] [CrossRef]
- Coelho, N.M.G.; Droste, R.L.; Kennedy, K.J. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res. 2011, 45, 2822–2834. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Fang, H.H.P. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 2003, 69, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Karadag, D. Anaerobic H2 production at elevated temperature (60 °C) by enriched mixed consortia from mesophilic sources. Int. J. Hydrogen Energy 2011, 36, 458–465. [Google Scholar] [CrossRef]
- Mamimin, C.; Prasertsan, P. Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: Long-term evaluation and microbial community analysis. Electron. J. Biotechnol. 2011, 14, 9. [Google Scholar]
- Puhakka, J.A.; Karadag, D.; Nissilä, M.E. Comparison of mesophilic and thermophilic anaerobic hydrogen production by hot spring enrichment culture. Int. J. Hydrogen Energy 2012, 37, 16453–16459. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Thi Nguyen, M.-L.; Hung, P.-C.; Vo, T.-P.; Lay, C.-H.; Lin, C.-Y. Effect of food to microorganisms (F/M) ratio on biohythane production via single-stage dark fermentation. Int. J. Hydrogen Energy 2021, 46, 11313–11324. [Google Scholar] [CrossRef]
- Barua, V.B.; Kalamdhad, A.S. Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 2018, 217, 91–97. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.A.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Saidi, R.; Liebgott, P.P.; Hamdi, M.; Auria, R.; Bouallagui, H. Enhancement of fermentative hydrogen production by Thermotoga maritima through hyperthermophilic anaerobic co-digestion of fruit-vegetable and fish wastes. Int. J. Hydrogen Energy 2018, 43, 23168–23177. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Ren, N. Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. Int. J. Hydrogen Energy 2013, 38, 4361–4367. [Google Scholar] [CrossRef]
- Guo, W.-Q.; Ren, N.-Q.; Wang, X.-J.; Xiang, W.-S.; Meng, Z.-H.; Ding, J.; Qu, Y.-Y.; Zhang, L.-S. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int. J. Hydrogen Energy 2008, 33, 4981–4988. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy 2006, 31, 2147–2157. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Chen, C.-C.; Sen, B.; Chuang, Y.-S.; Tsai, C.-J.; Lay, C.-H. Effect of effluent recycle ratio in a continuous anaerobic biohydrogen production system. J. Clean. Prod. 2012, 32, 236–243. [Google Scholar] [CrossRef]
- Tawfik, A.; El-Qelish, M. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour. Technol. 2012, 114, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Kyazze, G.; Martinez-Perez, N.; Dinsdale, R.; Premier, G.C.; Hawkes, F.R.; Guwy, A.J.; Hawkes, D.L. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol. Bioeng. 2006, 93, 971–979. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, S.-K.; Shin, H.-S. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 2006, 41, 199–207. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chen, H.-P.; Wu, J.-H.; Lin, C.-Y. Fermentative hydrogen production at high sulfate concentration. Int. J. Hydrogen Energy 2008, 33, 1573–1578. [Google Scholar] [CrossRef]
- Hussy, I.; Hawkes, F.R.; Dinsdale, R.; Hawkes, D.L. Continuous Fermentative Hydrogen Production from a Wheat Starch Co-Product by Mixed Microflora. Biotechnol. Bioeng. 2003, 84, 619–626. [Google Scholar] [CrossRef]
- van Niel, E.; Claassen, P.; Stams, A. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 2003, 81, 255–262. [Google Scholar] [CrossRef]
- Kádár, Z.; de Vrije, T.; van Noorden, G.E.; Budde, M.A.; Szengyel, Z.; Réczey, K.; Claassen, P.A. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl. Biochem. Biotechnol. 2004, 114, 497–508. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Xiao, Y.; Tashiro, Y.; Wang, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J. Biosci. Bioeng. 2015, 119, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Ezaki, Y. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J. Biosci. Bioeng. 2006, 101, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Heriban, V.; ŠTurdík, E.; Zalibera, Ľ.; Matuš, P. Process and metabolic characteristics of Bacillus coagulans as lactic acid producer. Lett. Appl. Microbiol. 2008, 16, 243–246. [Google Scholar] [CrossRef]
- Ye, L.; Zhou, X.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour. Technol. 2013, 132, 38–44. [Google Scholar] [CrossRef]
- Tanaka, K.; Komiyama, A.; Sonomoto, K.; Ishizaki, A.; Hall, S.; Stanbury, P. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl. Microbiol. Biotechnol. 2002, 60, 160–167. [Google Scholar] [CrossRef]
- Zhang, K.; Woodruff, A.; Xiong, M.; Zhou, J.; Dhande, Y. A Synthetic Metabolic Pathway for Production of the Platform Chemical Isobutyric Acid. ChemSusChem 2011, 4, 1068–1070. [Google Scholar] [CrossRef]
- Ding, H.-B.; Tan, G.-Y.A.; Wang, J.-Y. Caproate formation in mixed-culture fermentative hydrogen production. Bioresour. Technol. 2010, 101, 9550–9559. [Google Scholar] [CrossRef] [PubMed]
- Galbally, I.E.; Kirstine, W. The Production of Methanol by Flowering Plants and the Global Cycle of Methanol. J. Atmos. Chem. 2002, 43, 195–229. [Google Scholar] [CrossRef]
- Pegoraro, J.; Salem, N.F.M.; Andreazzi, M.A.; Dos Santos, J.M.G. Uso de Glicerina na Alimentação Animal; VI Mostra Interna de Trabalhos de Iniciação Científica: Maringá, Brazil, 2011. [Google Scholar]
- Ohimain, E.I. Methanol contamination in traditionally fermented alcoholic beverages: The microbial dimension. Springerplus 2016, 5, 1607. [Google Scholar] [CrossRef]
- Hamacher, T.; Becker, J.; Gárdonyi, M.; Hahn-Hägerdal, B.; Boles, E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148, 2783–2788. [Google Scholar] [CrossRef] [PubMed]
- Prakasham, R.S.; Brahmaiah, P.; Sathish, T.; Sambasiva Rao, K.R.S. Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio. Int. J. Hydrogen Energy 2009, 34, 9354–9361. [Google Scholar] [CrossRef]
- Temudo, M.F.; Mato, T.; Kleerebezem, R.; van Loosdrecht, M.C.M. Xylose anaerobic conversion by open-mixed cultures. Appl. Microbiol. Biotechnol. 2009, 82, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Fangkum, A.; Reungsang, A. Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. Int. J. Hydrogen Energy 2011, 36, 8687–8696. [Google Scholar] [CrossRef]
- Pateraki, C.; Almqvist, H.; Ladakis, D.; Lidén, G.; Koutinas, A.A.; Vlysidis, A. Modelling succinic acid fermentation using a xylose based substrate. Biochem. Eng. J. 2016, 114, 26–41. [Google Scholar] [CrossRef]
- Tomás, A.; Karakashev, D.; Angelidaki, I. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic Thermoanaerobacter sp. In Proceedings of the 12th World Congress on Anaerobic Digestion, Guadalajara, Mexico, 31 October–4 November 2010. [Google Scholar]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Bundhoo, M.A.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Quéméneur, M.; Hamelin, J.; Barakat, A.; Steyer, J.-P.; Carrère, H.; Trably, E. Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrogen Energy 2012, 37, 3150–3159. [Google Scholar] [CrossRef]
- Cao, G.-L.; Ren, N.-Q.; Wang, A.-J.; Guo, W.-Q.; Xu, J.-F.; Liu, B.-F. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 2010, 35, 13475–13480. [Google Scholar] [CrossRef]
- Akobi, C.; Hafez, H.; Nakhla, G. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge. Bioresour. Technol. 2016, 221, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Veeravalli, S.S.; Chaganti, S.R.; Lalman, J.A.; Heath, D.D. Effect of furans and linoleic acid on hydrogen production. Int. J. Hydrogen Energy 2013, 38, 12283–12293. [Google Scholar] [CrossRef]
- Aguilar, R.; Ramírez, J.A.; Garrote, G.; Vázquez, M. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 2002, 55, 309–318. [Google Scholar] [CrossRef]
- Wang, B.; Wan, W.; Wang, J. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int. J. Hydrogen Energy 2008, 33, 7013–7019. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.-B.; Mu, Y.; Yu, H.-Q.; Harada, H.; Li, Y.-Y. Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int. J. Hydrogen Energy 2008, 33, 1164–1171. [Google Scholar] [CrossRef]
- Chin, H.-L.; Chen, Z.-S.; Chou, C.P. Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen Production. Biotechnol. Prog. 2003, 19, 383–388. [Google Scholar] [CrossRef]
- Logan, B. Inhibition of Bio-Hydrogen Production by Un-Dissociated Acetic and Butyric Acids. Environ. Sci. Technol. 2005, 39, 9351–9356. [Google Scholar] [CrossRef]
- Mizuno, O.; Li, Y.Y.; Noike, T. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion. Water Res. 1998, 32, 1626–1634. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, H.-P. Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int. J. Hydrogen Energy 2006, 31, 953–960. [Google Scholar] [CrossRef]
Kinetic Parameters of Substrate | Kinetic Parameters of Biogas Production | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reactor | Condition | (h−1) | CI (mg L−1) | CR (mg L−1) | EA | R2 | Hmax (L) | l (h) | p (L h−1) | R2 | HY ii (molH2 molS−1) | CO2 (L) |
mxr | F/M I | 0.02 ± 0.003 | 1101.1 ± 76.7 | 1.3 ± 28 | 0.99 | 0.95 | 0.11 ± 0.006 | 52 ± 7.9 | 0.029 ± 0.013 | 0.83 | 0.61 ± 0.21 | 0.12 |
F/M II | 0.006 ± 0.0007 | 4355 ± 283.5 | 0.0 i | 1.00 | 0.93 | 0.54 ± 0.07 | 262.3 ± 33.9 | 0.006 ± 0.002 | 0.85 | 0.85 ± 0.48 | 0.68 | |
F/M III | 0.004 ± 0.0005 | 10,789.5 ± 750.1 | 0.0 i | 1.00 | 0.89 | 0.86 ± 0.02 | 360.9 ± 9.7 | 0.004 ± 0.0004 | 0.99 | 0.35 ± 0.14 | 1.6 | |
F/M IV | - | - | - | - | - | 1.2 ± 0.04 | 342.8 ± 12 | 0.005 ± 0.0007 | 0.97 | 0.84 ± 0.37 | 2.1 | |
mplr | F/M I | 0.02 ± 0.002 | 692.5 ± 31.9 | 0.0 i | 1.00 | 0.98 | - | - | - | - | 0.36 ± 0.33 | 0.09 |
F/M II | 0.02 ± 0.003 | 3313.3 ± 223.3 | 0.0 i | 1.00 | 0.95 | - | - | - | - | 0.22 ± 0.09 | 0.52 | |
F/M III | 0.01 ± 0.002 | 5553.4 ± 308.2 | 265 ± 134.9 | 1.00 | 0.96 | - | - | - | - | 0.31 ± 0.11 | 0.98 | |
F/M IV | 0.01 ± 0.001 | 10,183 ± 284.1 | 206.7 ± 161.7 | 1.00 | 0.99 | - | - | - | - | 0.22 ± 0.07 | 2.9 | |
txr | F/M I | 0.016 ± 0.004 | 1658.27 ± 140 | 82 ± 69.4 | 1.00 | 0.93 | 0.10 ± 0.014 | 149.2 ± 27.6 | 0.008 ± 0.004 | 0.80 | 0.24 ± 0.16 | 0.11 |
F/M II | 0.001 ± 0.0001 | 5330.4 ± 171.5 | 0.0 i | 1.00 | 0.90 | - | - | - | - | 1.4 ± 0.72 | 0.46 | |
F/M III | - | - | - | - | - | 0.62 ± 0.029 | 301 ± 22.5 | 0.004 ± 0.0007 | 0.89 | 1.0 ± 0.28 | 0.67 | |
F/M IV | - | - | - | - | - | 0.93 ± 0.083 | 369.9 ± 49.8 | 0.002 ± 0.0006 | 0.79 | 0.9 ± 0.44 | 0.89 | |
tplr | F/M I | 0.03 ± 0.005 | 642.5 ± 47.5 | 49.4 ± 11.3 | 1.00 | 0.90 | 0.20 ± 0.003 | 109 ± 8.6 | 0.008 ± 0.001 | 0.93 | 1.9 ± 0.54 | 0.31 |
F/M II | 0.005 ± 0.0006 | 3164.8 ± 207 | 0.0 i | 1.00 | 0.91 | 0.66 ± 0.024 | 367.2 ± 33 | 0.002 ± 0.0003 | 0.90 | 0.82 ± 0.32 | 1.4 | |
F/M III | 0.001 ± 0.00001 | 5067.4 ± 24.2 | 0.0 i | 1.00 | 0.99 | 1.83 ± 0.098 | 749.5 ± 49.7 | 0.001 ± 0.0001 | 0.95 | 0.99 ± 0.62 | 2.0 | |
F/M IV | - | - | - | - | - | 1.2 ± 0.10 | 713.5 ± 86 | 0.001 ± 0.0004 | 0.93 | 0.78 ± 0.48 | 1.6 | |
mxr | C/N I | 0.022 ± 0.003 | 1620 ± 117.8 | 78.9 ± 33.7 | 1.00 | 0.92 | - | - | - | - | 0.18 ± 0.13 | 0.12 |
C/N II | 0.012 ± 0.001 | 6548.9 ± 364.5 | 0.0 i | 1.00 | 0.96 | 0.65 ± 0.02 | 76.5 ± 9.3 | 0.018 ± 0.007 | 0.88 | 0.70 ± 0.15 | 0.86 | |
C/N III | 0.003 ± 0.0003 | 11,167.5 ± 662.4 | 1753.1 ± 571 | 1.00 | 0.92 | 1.1 ± 0.04 | 220.1 ± 20 | 0.003 ± 0.0004 | 0.94 | 0.64 ± 0.12 | 1.5 | |
C/N IV | - | - | - | - | - | 0.54 ± 0.02 | 83.6 ± 12.9 | 0.009 ± 0.002 | 0.89 | 0.52 ± 0.16 | 0.95 | |
mplr | C/N I | - | - | - | - | - | - | - | - | - | 0.12 ± 0.08 | 0.0 |
C/N II | 0.03 ± 0.001 | 4677.9 ± 76.1 | 124.1 ± 20.2 | 1.00 | 0.99 | - | - | - | - | 0.06 ± 0.04 | 1.1 | |
C/N III | 0.02 ± 0.003 | 5026.2 ± 294.8 | 310.8 ± 80.8 | 1.00 | 0.94 | - | - | - | - | 0.13 ± 0.11 | 1.1 | |
C/N IV | 0.019 ± 0.003 | 10,892 ± 833.9 | 577.3 ± 236 | 1.00 | 0.90 | - | - | - | - | 0.12 ± 0.03 | 2.2 | |
txr | C/N I | 0.02 ± 0.0004 | 935.6 ± 7.2 | 4.25 ± 1.8 | 1.00 | 1.00 | - | - | - | - | 0.31 ± 0.15 | 0.05 |
C/N II | 0.004 ± 0.0006 | 5369.7 ± 287.3 | 0.0 i | 1.00 | 0.95 | 0.97 ± 0.03 | 260.2 ± 12.2 | 0.003 ± 0.0003 | 0.97 | 1.2 ± 0.18 | 1.4 | |
C/N III | - | - | - | - | - | 1.2 ± 0.05 | 378.4 ± 27 | 0.002 ± 0.0003 | 0.95 | 1.4 ± 0.41 | 1.5 | |
C/N IV | - | - | - | - | - | - | - | - | - | 0.75 ± 0.34 | 1.2 | |
tplr | C/N I | 0.01 ± 0.001 | 531.1 ± 27.7 | 0.0 i | 1.00 | 0.96 | - | - | - | - | 1.6 ± 1.1 | 0.00 |
C/N II | 0.01 ± 0.002 | 4473.9 ± 305.2 | 0.0 i | 1.00 | 0.96 | - | - | - | - | 0.38 ± 0.38 | 0.54 | |
C/N III | 0.002 ± 0.0002 | 5308 ± 285 | 0.0 i | 1.00 | 0.83 | 1.9 ± 0.06 | 555.4 ± 28.9 | 0.002 ± 0.0002 | 0.96 | 1.4 ± 0.76 | 2.8 | |
C/N IV | - | - | - | - | - | 1.1 ± 0.06 | 890.1 ± 48.9 | 0.001 ± 0.0001 | 0.96 | 0.56 ± 0.33 | 2.1 |
Reactors | Experimental Conditions | Hci (Citric Acid) | Hm (Malic Acid) | Hsu (Succinic Acid) | Hlac (Lactic Acid) | Hf (Formic Acid) | Hac (Acetic Acid) | Hp (Propionic Acid) | Hib (Isobutyric Acid) | Hbu (Butyric Acid) | Hiv (Isovaleric Acid) | Hva (Valeric Acid) | Hca (Caproic Acid) | EtOH (Etha-nol) | MeOH (Methanol) | SMPtotal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mxr | F/M I | 0.89 | 3.93 | 8.36 | 16.21 | 9.13 | 49.46 | 11.34 | 8.76 | 29.88 | 6.69 | 138.74 | 0.00 | 108.01 | 28.53 | 419.95 |
F/M II | 2.10 | 8.71 | 23.82 | 77.62 | 13.19 | 109.42 | 7.21 | 9.25 | 180.09 | 67.90 | 17.00 | 0.00 | 407.28 | 48.71 | 1035.30 | |
F/M III | 6.60 | 11.95 | 29.42 | 387.48 | 34.67 | 281.37 | 10.83 | 22.77 | 12.36 | 132.41 | 53.45 | 2.85 | 1067.51 | 37.47 | 2091.16 | |
F/M IV | 3.76 | 18.27 | 37.54 | 649.45 | 35.40 | 406.85 | 12.70 | 13.15 | 31.20 | 209.49 | 86.74 | 0.00 | 1691.69 | 64.47 | 3260.72 | |
mplr | F/M I | 3.88 | 2.37 | 14.00 | 18.25 | 14.63 | 280.95 | 38.37 | 17.93 | 219.70 | 15.40 | 86.48 | 124.45 | 0.00 | 0.00 | 835.44 |
F/M II | 3.33 | 12.51 | 33.83 | 14.08 | 16.46 | 673.50 | 91.72 | 54.80 | 435.73 | 26.20 | 149.04 | 357.73 | 0.00 | 381.89 | 2250.83 | |
F/M III | 4.62 | 8.10 | 162.92 | 147.41 | 22.17 | 1222.06 | 148.41 | 172.98 | 579.18 | 45.44 | 10.28 | 310.23 | 0.00 | 921.00 | 3754.80 | |
F/M IV | 7.30 | 11.52 | 269.02 | 167.62 | 21.96 | 1409.78 | 497.69 | 375.37 | 657.49 | 137.04 | 251.39 | 190.96 | 0.00 | 0.00 | 3997.14 | |
txr | F/M I | 2.78 | 20.62 | 5.15 | 185.39 | 14.14 | 65.46 | 6.45 | 16.61 | 18.72 | 20.81 | 11.76 | 0.00 | 3.72 | 3.67 | 375.28 |
F/M II | 11.03 | 18.00 | 9.14 | 186.42 | 13.19 | 92.06 | 9.10 | 33.00 | 7.10 | 19.75 | 9.53 | 0.00 | 22.58 | 0.67 | 431.56 | |
F/M III | 4.08 | 9.04 | 9.92 | 57.88 | 10.91 | 139.66 | 7.63 | 17.36 | 92.91 | 14.08 | 0.00 | 9.57 | 23.51 | 0.00 | 396.57 | |
F/M IV | 8.80 | 33.60 | 11.89 | 113.41 | 13.73 | 120.85 | 7.29 | 106.87 | 18.22 | 16.30 | 14.15 | 16.24 | 10.45 | 2.16 | 493.96 | |
tplr | F/M I | 3.10 | 14.19 | 15.81 | 35.06 | 23.41 | 250.80 | 2.86 | 24.54 | 202.42 | 24.40 | 9.11 | 5.84 | 0.00 | 0.00 | 611.53 |
F/M II | 4.11 | 14.86 | 100.96 | 63.64 | 20.79 | 625.79 | 6.25 | 8.79 | 323.16 | 39.26 | 6.54 | 26.68 | 0.00 | 0.00 | 1240.81 | |
F/M III | 6.98 | 18.63 | 85.84 | 167.38 | 28.04 | 1179.37 | 16.54 | 94.73 | 619.06 | 87.23 | 8.82 | 81.53 | 0.00 | 0.00 | 2394.16 | |
F/M IV | 7.05 | 27.23 | 44.52 | 711.02 | 40.80 | 1347.06 | 22.82 | 179.79 | 616.02 | 47.37 | 13.11 | 73.38 | 0.00 | 0.00 | 3130.16 | |
mxr | C/N I | 2.36 | 5.96 | 5.34 | 3.28 | 15.89 | 241.72 | 29.76 | 21.70 | 160.46 | 9.99 | 2.60 | 5.71 | 0.00 | 0.86 | 505.65 |
C/N II | 2.35 | 2.80 | 12.87 | 3.39 | 12.85 | 468.41 | 65.00 | 26.97 | 881.39 | 14.69 | 2.38 | 21.53 | 0.00 | 215.23 | 1729.87 | |
C/N III | 2.47 | 5.60 | 15.95 | 2.40 | 16.28 | 426.46 | 173.77 | 80.96 | 927.56 | 36.12 | 8.71 | 29.90 | 29.87 | 1261.75 | 3017.82 | |
C/N IV | 2.65 | 11.96 | 21.92 | 11.36 | 14.99 | 379.48 | 191.35 | 63.97 | 767.95 | 11.03 | 6.61 | 16.10 | 22.78 | 2845.25 | 4367.40 | |
mplr | C/N I | 2.77 | 4.22 | 14.92 | 12.98 | 14.09 | 328.75 | 25.82 | 7.43 | 13.98 | 30.79 | 40.63 | 14.26 | 0.00 | 0.00 | 510.65 |
C/N II | 3.13 | 7.78 | 27.17 | 6.79 | 11.73 | 871.10 | 128.48 | 28.27 | 107.45 | 27.08 | 128.76 | 33.48 | 0.00 | 981.62 | 2362.86 | |
C/N III | 3.88 | 6.77 | 47.30 | 8.32 | 10.21 | 869.92 | 227.08 | 24.33 | 80.49 | 34.80 | 35.72 | 35.04 | 0.00 | 430.98 | 1814.84 | |
C/N IV | 3.33 | 13.13 | 126.51 | 9.02 | 11.54 | 1477.81 | 349.28 | 98.50 | 87.28 | 37.85 | 46.22 | 23.25 | 0.00 | 1300.96 | 3584.69 | |
txr | C/N I | 2.32 | 1.55 | 5.41 | 21.42 | 12.94 | 217.70 | 6.70 | 31.73 | 145.50 | 34.67 | 1.68 | 13.76 | 0.00 | 0.00 | 502.33 |
C/N II | 2.78 | 2.26 | 7.40 | 11.45 | 12.32 | 506.29 | 9.29 | 2.03 | 296.56 | 84.93 | 0.00 | 24.69 | 0.00 | 0.00 | 960.02 | |
C/N III | 5.92 | 7.95 | 5.94 | 61.48 | 13.94 | 476.31 | 13.75 | 2.10 | 386.06 | 75.59 | 1.32 | 11.01 | 0.00 | 0.00 | 1061.38 | |
C/N IV | 3.60 | 17.97 | 7.00 | 180.44 | 14.35 | 318.28 | 20.05 | 2.27 | 231.27 | 42.84 | 1.17 | 0.00 | 0.00 | 0.00 | 839.25 | |
tplr | C/N I | 2.60 | 1.60 | 7.00 | 6.17 | 14.33 | 197.80 | 8.60 | 11.41 | 49.47 | 27.97 | 4.84 | 3.71 | 0.00 | 0.00 | 335.79 |
C/N II | 2.40 | 3.65 | 13.92 | 9.95 | 20.06 | 518.85 | 8.59 | 40.05 | 171.46 | 34.08 | 13.86 | 34.00 | 0.00 | 0.00 | 870.87 | |
C/N III | 11.05 | 20.59 | 85.49 | 159.45 | 27.26 | 1076.47 | 7.12 | 56.48 | 567.40 | 77.61 | 5.75 | 45.01 | 1.97 | 0.00 | 2141.60 | |
C/N IV | 17.61 | 43.47 | 63.90 | 977.04 | 58.12 | 1865.24 | 20.31 | 328.99 | 147.67 | 72.59 | 2.72 | 0.00 | 0.00 | 0.00 | 3597.64 |
Reactors | Experimental Conditions | Hbu/SMPtotal | Hac/SMPtotal | EtOH/SMPtotal | Hbu/Hac | Hac/EtOH | pH Initial | pH Final |
---|---|---|---|---|---|---|---|---|
mxr | F/M I | 0.07 | 0.11 | 0.26 | 0.60 | 0.46 | 6.4 | 4.0 |
F/M II | 0.17 | 0.10 | 0.39 | 1.65 | 0.27 | 6.4 | 3.5 | |
F/M III | 0.006 | 0.13 | 0.50 | 0.04 | 0.26 | 6.3 | 3.0 | |
F/M IV | 0.009 | 0.12 | 0.51 | 0.08 | 0.24 | 6.1 | 2.9 | |
mplr | F/M I | 0.26 | 0.34 | 0.00 | 0.78 | - | 5.3 | 4.7 |
F/M II | 0.19 | 0.30 | 0.00 | 0.65 | - | 6.0 | 4.2 | |
F/M III | 0.15 | 0.32 | 0.00 | 0.47 | - | 6.1 | 4.3 | |
F/M IV | 0.16 | 0.35 | 0.00 | 0.47 | - | 6.6 | 5.3 | |
txr | F/M I | 0.05 | 0.17 | 0.01 | 0.29 | 17.66 | 7.1 | 3.1 |
F/M II | 0.02 | 0.21 | 0.05 | 0.08 | 4.08 | 6.0 | 3.6 | |
F/M III | 0.23 | 0.35 | 0.06 | 0.66 | 5.94 | 6.1 | 3.5 | |
F/M IV | 0.04 | 0.24 | 0.02 | 0.15 | 11.56 | 6.1 | 3.6 | |
tplr | F/M I | 0.33 | 0.41 | 0.00 | 0.81 | - | 6.0 | 4.8 |
F/M II | 0.26 | 0.50 | 0.00 | 0.51 | - | 6.9 | 4.7 | |
F/M III | 0.26 | 0.49 | 0.00 | 0.52 | - | 6.7 | 4.6 | |
F/M IV | 0.20 | 0.43 | 0.00 | 0.46 | - | 6.4 | 4.6 | |
mxr | C/N I | 0.32 | 0.48 | 0.00 | 0.66 | - | 6.6 | 4.5 |
C/N II | 0.51 | 0.27 | 0.00 | 1.88 | - | 6.0 | 3.9 | |
C/N III | 0.30 | 0.14 | 0.01 | 2.17 | 14.3 | 5.7 | 3.5 | |
C/N IV | 0.18 | 0.09 | 0.005 | 2.02 | 16.66 | 5.3 | 3.6 | |
mplr | C/N I | 0.03 | 0.64 | 0.00 | 0.04 | - | 6.0 | 6.4 |
C/N II | 0.04 | 0.36 | 0.00 | 0.12 | - | 6.1 | 4.6 | |
C/N III | 0.04 | 0.48 | 0.00 | 0.09 | - | 6.1 | 5.2 | |
C/N IV | 0.02 | 0.41 | 0.00 | 0.06 | - | 6.1 | 5.3 | |
txr | C/N I | 0.29 | 0.43 | 0.00 | 0.67 | - | 6.0 | 4.3 |
C/N II | 0.30 | 0.52 | 0.00 | 0.59 | - | 5.8 | 3.8 | |
C/N III | 0.36 | 0.45 | 0.00 | 0.81 | - | 6.1 | 3.6 | |
C/N IV | 0.27 | 0.38 | 0.00 | 0.73 | - | 6.1 | 3.5 | |
tplr | C/N I | 0.15 | 0.58 | 0.00 | 0.25 | - | 6.1 | 5.0 |
C/N II | 0.19 | 0.59 | 0.00 | 0.33 | - | 6.0 | 4.6 | |
C/N III | 0.26 | 0.50 | 0.0009 | 0.53 | 546.43 | 6.5 | 4.6 | |
C/N IV | 0.04 | 0.52 | 0.00 | 0.08 | - | 6.6 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattiello-Francisco, L.; Ferreira, F.V.; Peixoto, G.; Mockaitis, G.; Zaiat, M. Hydrogen Production from Sugarcane Bagasse Pentose Liquor Fermentation Using Different Food/Microorganism and Carbon/Nitrogen Ratios under Mesophilic and Thermophilic Conditions. Fermentation 2024, 10, 432. https://doi.org/10.3390/fermentation10080432
Mattiello-Francisco L, Ferreira FV, Peixoto G, Mockaitis G, Zaiat M. Hydrogen Production from Sugarcane Bagasse Pentose Liquor Fermentation Using Different Food/Microorganism and Carbon/Nitrogen Ratios under Mesophilic and Thermophilic Conditions. Fermentation. 2024; 10(8):432. https://doi.org/10.3390/fermentation10080432
Chicago/Turabian StyleMattiello-Francisco, Luísa, Filipe Vasconcelos Ferreira, Guilherme Peixoto, Gustavo Mockaitis, and Marcelo Zaiat. 2024. "Hydrogen Production from Sugarcane Bagasse Pentose Liquor Fermentation Using Different Food/Microorganism and Carbon/Nitrogen Ratios under Mesophilic and Thermophilic Conditions" Fermentation 10, no. 8: 432. https://doi.org/10.3390/fermentation10080432
APA StyleMattiello-Francisco, L., Ferreira, F. V., Peixoto, G., Mockaitis, G., & Zaiat, M. (2024). Hydrogen Production from Sugarcane Bagasse Pentose Liquor Fermentation Using Different Food/Microorganism and Carbon/Nitrogen Ratios under Mesophilic and Thermophilic Conditions. Fermentation, 10(8), 432. https://doi.org/10.3390/fermentation10080432