Microbial Fermentation and Therapeutic Potential of p-Cymene: Insights into Biosynthesis and Antimicrobial Bioactivity
Abstract
:1. Introduction
2. p-C Terpenoid Biosynthetic Pathway
3. Antimicrobial Activities of p-C
3.1. Biosynthesis and Antibacterial Effects from Plants
3.2. Antifungal Effects of p-C Based on Fermentation Characteristics
4. Therapeutic Potential and Applications of p-C
5. Conclusions and Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Kasprzak-Drozd, K.; Oniszczuk, A.; Borowicz-Reutt, K. Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies—A Non-Systematic Review. Int. J. Mol. Sci. 2021, 22, 7366. [Google Scholar] [CrossRef] [PubMed]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhong, C.; Yu, J. Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 2429. [Google Scholar] [CrossRef]
- Lawal, I.O.; Ajay, H.; Dairo, P.; Ogunbamowo, P.O. Comparative studies of essential oils of Clausena anisata (Hook) using solvent-free microwave extraction and hydrodistillation methods. J. Med. Plants Econ. Dev. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, E113. [Google Scholar] [CrossRef]
- Gheorghita, D.; Robu, A.; Antoniac, A.; Antoniac, I.; Ditu, L.M.; Raiciu, A.-D.; Tomescu, J.; Grosu, E.; Saceleanu, A. In Vitro Antibacterial Activity of Some Plant Essential Oils against Four Different Microbial Strains. Appl. Sci. 2022, 12, 9482. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Gao, A.; Van Dyke, T.E. Role of suppressors of cytokine signaling 3 in bone inflammatory responses. Front. Immunol. 2014, 4, 506. [Google Scholar] [CrossRef]
- Formiga, R.d.O.; Alves Júnior, E.B.; Vasconcelos, R.C.; Guerra, G.C.B.; Antunes de Araújo, A.; Carvalho, T.G.d.; Garcia, V.B.; de Araújo Junior, R.F.; Gadelha, F.A.A.F.; Vieira, G.C.; et al. p-Cymene and Rosmarinic Acid Ameliorate TNBS-Induced Intestinal Inflammation Upkeeping ZO-1 and MUC-2: Role of Antioxidant System and Immunomodulation. Int. J. Mol. Sci. 2020, 21, 5870. [Google Scholar] [CrossRef]
- Sousa, L.G.V.; Castro, J.; Cavaleiro, C.; Salgueiro, L.; Tomás, M.; Palmeira-Oliveira, R.; Martinez-Oliveira, J.; Cerca, N. Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ρ-cymene and linalool against Gardnerella species. Sci. Rep. 2022, 12, 4417. [Google Scholar] [CrossRef] [PubMed]
- El-Guendouz, S.; Aazza, S.; Anahi Dandlen, S.; Majdoub, N.; Lyoussi, B.; Raposo, S.; Dulce Antunes, M.; Gomes, V.; Graça Miguel, M. Antioxidant Activity of Thyme Waste Extract in O/W Emulsions. Antioxidants 2019, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lasekan, O.; Khatib, A.; Juhari, H.; Patiram, P.; Lasekan, S. Headspace solid-phase microextraction gas chromatography-mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Food Chem. 2013, 141, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Di Nicolantonio, L.; Gigliobianco, M.R.; Peregrina, D.V.; Angeloni, S.; Ilorini, L.; Martino, P.D.; Censi, R. Impact of the Interactions between Fragrances and Cosmetic Bases on the Fragrance Olfactory Performance: A Tentative to Correlate SPME-GC/MS Analysis with That of an Experienced Perfumer. Cosmetics 2022, 9, 70. [Google Scholar] [CrossRef]
- Alsharif, A.; Smith, N.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase. Catalysts 2021, 11, 1245. [Google Scholar] [CrossRef]
- Tibbetts, J.D.; Russo, D.; Lapkin, A.A.; Bull, S.D. Efficient Syntheses of Biobased Terephthalic Acid, p-Toluic Acid, and p-Methylacetophenone via One-Pot Catalytic Aerobic Oxidation of Monoterpene Derived Bio-p-cymene. ACS Sustain. Chem. Eng. 2021, 9, 8642–8652. [Google Scholar] [CrossRef]
- Luo, C.; Niu, C.; Zhou, J.; Li, X. Synthesis of p-cymene by the electrocatalytic oxidation of α-terpinene and γ-terpinene. New J. Chem. 2023, 47, 8489–8493. [Google Scholar] [CrossRef]
- Doninique, M.R.; Diete, B.; John, P.M.N.; Wolfgang, F.H. Catalytic aspects in the transformation of pinenes to p-cymene. Appl. Catal. A Gen. 2001, 215, 111–124. [Google Scholar] [CrossRef]
- Lin, H.H.; Mendez-Perez, D.; Park, J.; Wang, X.; Cheng, Y.; Huo, J.; Mukhopadhyay, A.; Lee, T.S.; Shanks, B.H. Precursor prioritization for p-cymene production through synergistic integration of biology and chemistry. Biotechnol. Biofuels Bioprod. 2022, 15, 126. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, Y.; Xiao, Z.; Chen, Y.; Jiang, J.; Rao, X.; Zheng, Y. Construction of Palladium Nanoparticles Modified Covalent Triazine Frameworks towards Highly-Efficient Dehydrogenation of Dipentene for p-Cymene Production. Catalysts 2023, 13, 1248. [Google Scholar] [CrossRef]
- Gratien, A.; Johnson, S.N.; Ezell, M.J.; Dawson, M.L.; Bennett, R.; Finlayson-Pitts, B.J. Surprising formation of p-cymene in the oxidation of α-pinene in air by the atmospheric oxidants OH, O3, and NO3. Environ. Sci. Technol. 2011, 45, 2755–2760. [Google Scholar] [CrossRef] [PubMed]
- Adamová, T.; Hradecký, J.; Pánek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef] [PubMed]
- El Dib, G.; Mano Priya, A.; Lakshmipathi, S. Investigation of the Gas-Phase Reaction of Nopinone with OH Radicals: Experimental and Theoretical Study. Atmosphere 2022, 13, 1247. [Google Scholar] [CrossRef]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. Engl. 2016, 55, 8164–8215. [Google Scholar] [CrossRef]
- Ahmed, I.O.; Zhi, Y.L.; Mohamed, F.; Chung, L.Y.; Ahmed, M.E.; Ahmed, H.; Ikko, I.; Ahmed, S.A.; David, W.R.; Pow-Seng, Y. Optimizing biomass pathways to bioenergy and biochar application in electricity generation, biodiesel production, and biohydrogen production. Environ. Chem. Lett. 2023, 21, 2639–2705. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, Y.; Lui, M.Y.; Mika, L.T.; Chen, X. Catalytic conversion of chitin-based biomass to nitrogen-containing chemicals. iScience 2024, 27, 109857. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Petka-Poniatowska, K. Antimicrobial Compounds in Food Packaging. Int. J. Mol. Sci. 2023, 24, 2457. [Google Scholar] [CrossRef]
- Pritam, P.; Deka, R.; Bhardwaj, A.; Srivastava, R.; Kumar, D.; Jha, A.K.; Jha, N.K.; Villa, C.; Jha, S.K. Antioxidants in Alzheimer’s Disease: Current Therapeutic Significance and Future Prospects. Biology 2022, 11, 212. [Google Scholar] [CrossRef]
- Seifi-Nahavandi, B.; Yaghmaei, P.; Ahmadian, S.; Ghobeh, M.; Ebrahim-Habibi, A. Cymene consumption and physical activity effect in Alzheimer’s disease model: An in vivo and in vitro study. J. Diabetes Metab. Disord. 2020, 19, 1381–1389. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, Y.U.; Leng, Q.; Sun, Y.U.; Hoffman, R.M.; Jin, H. The Anti-oxidant Monoterpene p-Cymene Reduced the Occurrence of Colorectal Cancer in a Hyperlipidemia Rat Model by Reducing Oxidative Stress and Expression of Inflammatory Cytokines. Anticancer Res. 2021, 41, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.B.R.; Pina, L.T.S.; de Oliveira, M.A.; Santos, L.A.B.O.; Batista, M.V.A.; Trindade, G.G.G.; Duarte, M.C.; Almeida, J.R.G.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; et al. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules 2023, 28, 4465. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.C.; Fernandes, P. Production of metabolites as bacterial responses to the marine environment. Mar. Drugs 2010, 8, 705–727. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sharma, K.; Sinha, M.; Dhyani, A.; Pathak, B.; Jang, H.; Park, S.; Pashikanti, S.; Cho, S. Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes 2021, 9, 220. [Google Scholar] [CrossRef]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef]
- Hyatt, D.C.; Youn, B.; Zhao, Y.; Santhamma, B.; Coates, R.M.; Croteau, R.B.; Kang, C. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci. USA 2007, 104, 5360–5365. [Google Scholar] [CrossRef]
- Jiang, S.; Chang, C.-W.; Swann, W.A.; Li, C.W.; Miller, J.T. Pt3Mn/SiO2 + ZSM-5 Bifunctional Catalyst for Ethane Dehydroaromatization. Catalysts 2024, 14, 365. [Google Scholar] [CrossRef]
- Rolf, J.; Julsing, M.K.; Rosenthal, K.; Lütz, S. A Gram-Scale Limonene Production Process with Engineered Escherichia coli. Molecules 2020, 25, 1881. [Google Scholar] [CrossRef]
- Lange, B.M.; Srividya, N.; Lange, I.; Parrish, A.N.; Benzenberg, L.R.; Pandelova, I.; Vining, K.J.; Wüst, M. Biochemical basis for the formation of organ-specific volatile blends in mint. Front. Plant Sci. 2023, 14, 1125065. [Google Scholar] [CrossRef]
- Liu, J.; Lin, M.; Han, P.; Yao, G.; Jiang, H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024, 12, 706. [Google Scholar] [CrossRef]
- Pavlović, J.; Rajić, N. Clinoptilolite—An Efficient Carrier for Catalytically Active Nano Oxide Particles. Minerals. 2023, 13, 877. [Google Scholar] [CrossRef]
- Fani, K.; Lycourghiotis, S.; Bourikas, K.; Kordouli, E. Influence of Natural Mordenite Activation Mode on Its Efficiency as Support of Nickel Catalysts for Biodiesel Upgrading to Renewable Diesel. Nanomaterials 2023, 13, 1603. [Google Scholar] [CrossRef] [PubMed]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Activation of natural mordenite by various acids: Characterization and evaluation in the transformation of limonene into p-cymene. Mol. Catal. 2018, 450, 95–103. [Google Scholar] [CrossRef]
- Satira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts 2021, 11, 387. [Google Scholar] [CrossRef]
- Dimitra, M.; Sotiris, L.; Eleana, K.; Kyriakos, B.; Christos, K.; Vassilis, D. Transformation of limonene into p-cymene over acid activated natural mordenite utilizing atmospheric oxygen as a green oxidant: A novel mechanism. Appl. Catal. B Environ. 2018, 224, 740–750. [Google Scholar] [CrossRef]
- Xie, G.; Chen, N.; Soromou, L.W.; Liu, F.; Xiong, Y.; Wu, Q.; Li, H.; Feng, H.; Liu, G. p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules 2012, 17, 8159–8173. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D.M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801. [Google Scholar] [CrossRef]
- Popp, J.; Hanf, S.; Hey-Hawkins, E. Facile Arene Ligand Exchange in p-Cymene Ruthenium(II) Complexes of Tertiary P-Chiral Ferrocenyl Phosphines. ACS Omega 2019, 4, 22540–22548. [Google Scholar] [CrossRef]
- Ngome, M.T.; Alves, J.G.L.F.; de Oliveira, A.C.F.; da Silva Machado, P.; Mondragón-Bernal, O.L.; Piccoli, R.H. Linalool, citral, eugenol and thymol: Control of planktonic and sessile cells of Shigella flexneri. AMB Express 2018, 8, 105. [Google Scholar] [CrossRef]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef]
- Azizi, Z.; Salimi, M.; Amanzadeh, A.; Majelssi, N.; Naghdi, N. Carvacrol and Thymol Attenuate Cytotoxicity Induced by Amyloid β25-35 via Activating Protein Kinase C and Inhibiting Oxidative Stress in PC12 Cells. Iran. Biomed. J. 2020, 24, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Baginska, S.; Golognko, A.; Swislocka, R.; Lewandowski, W. Monoterpenes as medicinal agents: Exploring the pharmaceutical potential of p-cymene, p-cymenene, and γ-terpinene. Acta Pol. Pharm.—Drug Res. 2023, 80, 879–892. [Google Scholar] [CrossRef]
- Pinna, S.; Kunz, C.; Halpern, A.; Harrison, S.A.; Jordan, S.F.; Ward, J.; Werner, F.; Lane, N. A prebiotic basis for ATP as the universal energy currency. PLoS Biol. 2022, 20, e3001437. [Google Scholar] [CrossRef] [PubMed]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 2010, 110, 614–619. [Google Scholar] [CrossRef]
- Bourhia, M.; Alyousef, A.A.; Doumane, G.; Saghrouchni, H.; Giesy, J.P.; Ouahmane, L.; Gueddari, F.E.; Al-Sheikh, Y.A.; Aboul-Soud, M.A.M. Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules 2023, 28, 2839. [Google Scholar] [CrossRef]
- Ambrosio, R.L.; Rosselló, C.A.; Casares, D.; Palmieri, G.; Anastasio, A.; Escribá, P.V. The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. Int. J. Mol. Sci. 2022, 23, 12392. [Google Scholar] [CrossRef]
- Vepštaitė-Monstavičė, I.; Ravoitytė, B.; Būdienė, J.; Valys, A.; Lukša, J.; Servienė, E. Essential Oils of Mentha arvensis and Cinnamomum cassia Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin. Foods 2023, 12, 3938. [Google Scholar] [CrossRef]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods 2017, 6, 59. [Google Scholar] [CrossRef]
- Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Alqubaisy, M.; AlAli, M.; Molouki, A.; Ong-Abdullah, J.; Abushelaibi, A.; Lai, K.S.; Lim, S.E. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021, 26, 628. [Google Scholar] [CrossRef]
- Nowotarska, S.W.; Nowotarski, K.J.; Friedman, M.; Situ, C. Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules 2014, 19, 7497–7515. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Jamali, C.A.; El Bouzidi, L.; Bekkouche, K.; Lahcen, H.; Markouk, M.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical composition and antioxidant and anticandidal activities of essential oils from different wild Moroccan Thymus species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Drioiche, A.; Zahra Radi, F.; Ailli, A.; Bouzoubaa, A.; Boutakiout, A.; Mekdad, S.; Al Kamaly, O.; Saleh, A.; Maouloua, M.; Bousta, D.; et al. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharm. J. 2022, 30, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Preljević, K.; Pašić, I.; Vlaović, M.; Matić, I.Z.; Krivokapić, S.; Petrović, N.; Stanojković, T.; Živković, V.; Perović, S. Comparative analysis of chemical profiles, antioxidant, antibacterial, and anticancer effects of essential oils of two Thymus species from Montenegro. Fitoterapia 2024, 174, 105871. [Google Scholar] [CrossRef]
- Aznar, A.; Fernández, P.S.; Periago, P.M.; Palop, A. Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Sci. Technol. Int. 2015, 21, 72–79. [Google Scholar] [CrossRef]
- Bukvički, D.; Stojković, D.; Soković, M.; Vannini, L.; Montanari, C.; Pejin, B.; Savić, A.; Veljić, M.; Grujić, S.; Marin, P.D. Satureja horvatii essential oil: In vitro antimicrobial and antiradical properties and in situ control of Listeria monocytogenes in pork meat. Meat Sci. 2014, 96, 1355–1360. [Google Scholar] [CrossRef]
- Bagheri-Josheghani, S.; Bakhshi, B. Investigation of the Antibacterial and Antibiofilm Activity of Selenium Nanoparticles against Vibrio cholerae as a Potent Therapeutics. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3432235. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Kiskó, G.; Roller, S. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol. 2005, 5, 36. [Google Scholar] [CrossRef]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.D.; Maknikar, P.P.; Wankhade, S.J.; Ukesh, C.S.; Rai, M.K. Chemical composition, antimicrobial and antioxidant activity of essential oils from cumin and ajowan. Nusant. Biosci. 2016, 8, 60–65. [Google Scholar] [CrossRef]
- Wang, J.; Qin, T.; Chen, K.; Pan, L.; Xie, J.; Xi, B. Antimicrobial and Antivirulence Activities of Carvacrol against Pathogenic Aeromonas hydrophila. Microorganisms 2022, 10, 2170. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; Rama Krishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Petroula, T.; Alexandros, P.; Nikolaos, T.; Aikaterini, M.; Magdalini, H.; Katerina, K.; Ioannis, M. Sensory analysis, volatile profiles and antimicrobial properties of Origanum vulgare L. essential oil. Flavour. Fragr. J. 2022, 37, 43–51. [Google Scholar] [CrossRef]
- Rathore, S.; Mukhia, S.; Kumar, R.; Kumar, R. Essential oil composition and antimicrobial potential of aromatic plants grown in the mid-hill conditions of the Western Himalayas. Sci. Rep. 2023, 13, 4878. [Google Scholar] [CrossRef]
- Mohsen, S.; Ahmad, A.; Vida, A.; Thomas, H.R. Phenolic compounds and antimicrobial properties of mint and thyme. J. Herbal. Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Xie, Q.H.; Liang, T.; Li, B.Y.; Yu, J.N.; Zheng, Y.; Du, S.S.; Borjigidai, A. Bioactivities of thymol and p-cymene from the essential oil of Adenosma buchneroides against three stored-product insects. Environ. Sci. Pollut. Res. Int. 2023, 30, 110841–110850. [Google Scholar] [CrossRef]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Hamdi, N.; Ben Halima, N.; Abdelkafi, S. Characterization of essential oil from Citrus aurantium L. flowers: Antimicrobial and antioxidant activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Dhruv, S.; Kaushik, V.; Sen, K.K.; Khan, N.S.; Abhishek, A.; Dixit, A.K.; Tripathi, V.N. A comparative study of antibacterial and antifungal activities of extracts from four indigenous plants. Bioinformation 2020, 16, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Taibi, M.; Elbouzidi, A.; Ou-Yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C.; et al. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.M.; de Carvalho, R.B.; da Costa, I.H.; de Oliveira, G.A.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Nazzaro, F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int. J. Mol. Sci. 2023, 24, 6073. [Google Scholar] [CrossRef]
- Ausra, S.; Petras, R.V.; Renata, B.; Antanas, S. Antimicrobial Activity of Commercial Samples of Thyme and Marjoram Oils. J. Essent. Oil Res. 2006, 18, 698–703. [Google Scholar] [CrossRef]
- Aebisher, D.; Cichonski, J.; Szpyrka, E.; Masjonis, S.; Chrzanowski, G. Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity. Molecules 2021, 26, 3793. [Google Scholar] [CrossRef]
- Hussein, K.N.; Friedrich, L.; Dalmadi, I.; Kiskó, G. Evaluation of In Vitro Antimicrobial Activity of Bioactive Compounds and the Effect of Allyl-Isothiocyanate on Chicken Meat Quality under Refrigerated Conditions. Appl. Sci. 2023, 13, 10953. [Google Scholar] [CrossRef]
- Joch, M.; Cermak, L.; Hakl, J.; Hucko, B.; Duskova, D.; Marounek, M. In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation. Asian-Australas. J. Anim. Sci. 2016, 29, 952–959. [Google Scholar] [CrossRef]
- Suffys, S.; Richard, G.; Burgeon, C.; Werrie, P.Y.; Haubruge, E.; Fauconnier, M.L.; Goffin, D. Characterization of Aroma Active Compound Production during Kombucha Fermentation: Towards the Control of Sensory Profiles. Foods 2023, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma. Front. Plant Sci. 2016, 7, 1472. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, L.; Bauer, J.; Ortner, E.; Buettner, A. Structure-Odor Activity Studies on Derivatives of Aromatic and Oxygenated Monoterpenoids Synthesized by Modifying p-Cymene. J. Nat. Prod. 2020, 83, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; del Hierro, A.M.; Eder, R. Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Boscaini, A.; Prandi, A.; Dal Cin, A.; Zandonà, V.; Luzzini, G.; Ugliano, M. Influence of Different Modalities of Grape Withering on Volatile Compounds of Young and Aged Corvina Wines. Molecules 2020, 25, 2141. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Rádis-Baptista, G. Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? J. Xenobiot. 2023, 13, 121–131. [Google Scholar] [CrossRef]
- Shareef, S.H.; Al-Medhtiy, M.H.; Ibrahim, I.A.A.; Alzahrani, A.R.; Jabbar, A.A.; Galali, Y.; Agha, N.F.S.; Aziz, P.Y.; Thabit, M.A.; Agha, D.N.F.; et al. Gastroprophylactic Effects of p-Cymene in Ethanol-Induced Gastric Ulcer in Rats. Processes 2022, 10, 1314. [Google Scholar] [CrossRef]
- Bittner Fialová, S.; Rendeková, K.; Mučaji, P.; Nagy, M.; Slobodníková, L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine—A Review. Int. J. Mol. Sci. 2021, 22, 10746. [Google Scholar] [CrossRef]
- Jia, B.; Li, G.; Cao, E.; Luo, J.; Zhao, X.; Huang, H. Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio 2023, 19, 100582. [Google Scholar] [CrossRef]
- Sturabotti, E.; Moldoveanu, V.G.; Camilli, A.; Martinelli, A.; Simonetti, G.; Valletta, A.; Serangeli, I.; Giustini, A.; Miranda, E.; Migneco, L.M.; et al. Thymol-Functionalized Hyaluronic Acid as Promising Preservative Biomaterial for the Inhibition of Candida albicans Biofilm Formation. ACS Macro Lett. 2023, 12, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Pujante-Galián, M.A.; Pérez, S.A.; Montalbán, M.G.; Carissimi, G.; Fuster, M.G.; Víllora, G.; García, G. p-Cymene Complexes of Ruthenium(II) as Antitumor Agents. Molecules 2020, 25, 5063. [Google Scholar] [CrossRef] [PubMed]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef] [PubMed]
- Arshad, J.; Tong, K.K.H.; Movassaghi, S.; Söhnel, T.; Jamieson, S.M.F.; Hanif, M.; Hartinger, C.G. Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide. Molecules 2021, 26, 833. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Leng, Q.; Zhang, C.; Zhu, Y.; Wang, J. P-cymene prevent high-fat diet-associated colorectal cancer by improving the structure of intestinal flora. J. Cancer 2021, 12, 4355–4361. [Google Scholar] [CrossRef] [PubMed]
- Sah, D.K.; Arjunan, A.; Park, S.Y.; Lee, B.; Jung, Y.D. Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells. Antioxidants 2024, 13, 406. [Google Scholar] [CrossRef]
- Santos, W.B.R.; Melo, M.A.O.; Alves, R.S.; de Brito, R.G.; Rabelo, T.K.; Prado, L.D.S.; Silva, V.K.D.S.; Bezerra, D.P.; de Menezes-Filho, J.E.R.; Souza, D.S.; et al. p-Cymene attenuates cancer pain via inhibitory pathways and modulation of calcium currents. Phytomedicine 2019, 61, 152836. [Google Scholar] [CrossRef]
- Ose, R.; Tu, J.; Schink, A.; Maxeiner, J.; Schuster, P.; Lucas, K.; Saloga, J.; Bellinghausen, I. Cinnamon extract inhibits allergen-specific immune responses in human and murine allergy models. Clin. Exp. Allergy 2020, 50, 41–50. [Google Scholar] [CrossRef]
- Schink, A.; Naumoska, K.; Kitanovski, Z.; Kampf, C.J.; Fröhlich-Nowoisky, J.; Thines, E.; Pöschl, U.; Schuppan, D.; Lucas, K. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct. 2018, 9, 5950–5964. [Google Scholar] [CrossRef]
Plant Species | Antimicrobial Component | Experimental Design | Results | References |
---|---|---|---|---|
TVEO | p-C (29.52%), thymol (22.8%), linalool (4.73%) | Evaluation of biological activities of any TVEO, TSEO in Montenegro: antioxidant, antimicrobial, cytotoxicity, apoptosis, oxidative stress reduction, tumor suppressor gene expression | Essential oil shows high antibacterial activity against E. coli TVEO induces cervical adenocarcinoma HeLa cell apoptosis via caspase-3 and caspase-8 TSEO induces apoptosis via caspase-3 Shows antioxidant activity in the MRC-5 cell line May have potential as a cancer prevention and cancer treatment agent | [64] |
TSEO | p-C (19.04%), geraniol (11.09%), linalool (9.16%), geranyl acetate (6.49%), borneol (5.24%) | |||
Candida lusitaniae | nisin, thymol, carvacrol, p-C | Adding different concentrations of antimicrobial ingredients at 25 °C Observation of yeast growth | p-C completely inhibits yeast growth for at least 21 days at concentrations above 1 mm | [65] |
Satureja horvatii | p-C (33.14%), thymol (26.11%), thymol methyl ether (15.08%) | Uses hydroxyl radicals generated in the Fenton reaction Bacteria: 0.07 to 1.15 mg/mL Yeast: 1.11 to 5.57 mg/mL | Successfully inhibiting the development of Listeria monocytogenes in pork | [66] |
Indian spicescumin and ajowan | cumin: cuminaldehyde (36.67%), caren-10-al (21.34%) azowan: p-cymene (15.54%), thymol (15.48%) | Antimicrobial activity evaluation: Disk diffusion method, broth microdilution method Evaluation of DPPH radical scavenging capacity | Spice essential oils have significant potential for controlling human and food pathogens | [72] |
Thyme (Thymus vulgaris) | Thymol, p-C | Folin Ciocalteu, DPPH, CUPRAC, and ABTS | Thyme and oregano oils show the highest antioxidant activity Thyme’s antibacterial and antioxidant activities are due to thymol and p-C | [73] |
Adenosma buchneroides Bonati (A. buchneroides) | Thymol, p-C | Evaluate p-C for insecticidal activity against red flower beetle (Tribolium castaneum), tobacco beetle (Lasioderma serricorne), and bookworm (Liposcelis bostrychophila) | p-C shows potent toxic activity against insect pests Shows potential to be developed into a plant-derived biopesticide that is safe for humans and the environment | [79] |
Basil, thyme | Thymol, carvacrol, p-C, estragon, linalool, linalool | Antimicrobial testing, evaluating cleaning effectiveness | Antimicrobial effects of thyme essential oil, thymol, and carvacrol against Shigella sp. The use of thyme essential oil, thymol, and carvacrol is limited by the organoleptic properties of lettuce (browning, strong odor) | [80] |
Essential oils from a variety of plants | p-C | Subjects: Swiss mice Treatment: p-C 50, 100, 150 mg/kg, ascorbic acid 250 mg/kg, control (0.05% Tween 80 and 0.9% saline) Measured: lipid peroxides (TBARS), nitrite concentration, CAT and SOD activities | Lipid peroxide nitrate concentrations decreased in p-C treated groups compared to controls All p-C treatments increased SOD and CAT activity at all doses | [81] |
Thyme, marjoram | Thyme oil: p-Cymene (25.2%), thymol (31.4%), carvacrol (3.8%) Marjoram oil: limonene (17.3%), linalool (15.5%), terpinen-4-ol (7.3%), α-Terpineol (13.0%), linalyl acetate (14.1%) | Gradient GC and combined GC/MS Evaluate antimicrobial activity against 10 bacteria and 8 yeast species | Thyme oil showed excellent antimicrobial activity against the tested microorganisms, while marjoram oil showed relatively low antimicrobial activity The antimicrobial activity of the oils was higher against yeast than bacteria | [83] |
Thyme, savory, oregano, sage, hyssop, lavender and mint | Major volatile compounds, including p-C | Evaluate antioxidant activity | Thyme and savory show the highest antioxidant activity, driven by thymol and carvacrol, surpassing oregano, sage, and hyssop. Oregano’s, sage’s, and hyssop’s activities are influenced by terpin, o-cymene, terpinolene, and terpin-4-ol. Activity against ABTS radicals is higher than against DPPH radicals | [84] |
Subjects | Treatment Strategies | Setting | Findings | References |
---|---|---|---|---|
Candida albicans and Candida glabrata (antimicrobial test strains) NIH3T3 cell line (cytotoxicity test) | Electrospinning of p-C loaded gellan/PVA nanofibers Loading of p-C into nanofibers based on gellan and PVA for use as wound dressing material | In vitro: Characterize nanofibers’ morphologically and physicochemically evaluate antimicrobial and biocompatibility In vivo: Conduct wound healing studies using full-thickness excisional wound models | p-C is an effective biomaterial for skin tissue regeneration, with antimicrobial, biocompatible, and rapid wound healing properties | [98] |
30 Sprague Dawley rats | Normal vs. ulcer control: Oral administration of 0.5% CMC Baseline: 20 mg/kg omeprazole orally Experimental group: 30 mg/kg and 60 mg/kg p-cymene orally | Absolute ethanol-induced acute gastric mucosal hemorrhagic lesion model Rats were sacrificed after the experiment to perform gastric mucosal and inflammation-related analyses | p-C significantly reduced ethanol-induced gastric lesions, increased mucus secretion, increased pH, and decreased ulcer area and edema SOD, CAT, and PGE2 activities increased and MDA levels decreased Increased PAS staining intensity, increased HSP 70 expression, decreased Bax expression, decreased TNF-α and IL-6, and increased IL-10 No signs of toxicity at a 500 mg/kg dose and enhanced gastric mucosal protection | [99] |
HeLa cells (cervical cancer cells) MCF-7 cells (breast cancer cells) BGM cells (healthy monkey kidney skin cells) | Ruthenium(II) complexes [(η6-p-cymene)RuCl2L] (L = 4-cyanopyridine, 2-aminophenol, 4-aminophenol, pyridazine) and [(η6-p-cymene)RuClL2]PF6 (L = cyanopyridine, 2-aminophenol) | In vitro: Cytotoxicity evaluation of each ruthenium complex against the above cell lines | Complex II showed selectivity for healthy BGM cells, a promising property that could reduce side effects of current therapies in cancer treatment | [100] |
Ruthenium(II) complexes: RuII(cym)Cl (cym = η6-p-cymene) Osmium, rhodium, and iridium complexes: Os(cym), Rh-, Ir(Cp*) (Cp* = pentamethylcyclopentadienyl) Amino acids: Cys, His | Replacing the metal center of plecstatin 2, the most promising oral anticancer drug, with Ru, Os, Rh, and Ir Spectroscopic techniques and X-ray diffraction analysis Reaction with amino acids (Cys, His) in in vitro experiments | Solvent: Ligand exchange reaction in aqueous solution Analytical methods: 1H NMR spectra, amino acid reactions, and in vitro experiments to assess anticancer activity | RuII(cym)Cl complexes show strongest anticancer activity Effective regardless of halogen leaving groups Implying that the metal center has a significant impact on anticancer activity | [102] |
40 Wistar rats | Groups G2 and G4 received subcutaneous injections of DMH and groups G3 and G4 received oral administrations of p-C | Experiments: Tumor development, inflammatory factors, glucose and fat metabolism, and gut microbiome analysis | Significant decrease in IL-1, increase in IL-6, and decrease in LEP after p-C use p-C works by preventing high-fat-diet-associated colon cancer development, modulating inflammatory factors, and promoting beneficial bacteria | [103] |
HT-29 colon cancer cells | SFN processing | IL-1β induction experiments | SFN reduces IL-6 expression induced by IL-1β Reduces oxidative stress by inhibiting ROS production and inhibits HT-29 cell proliferation and invasiveness by regulating MAPK/AP-1 and STAT3 signaling pathways. SFN has potential in the treatment and prevention of CRC | [104] |
Male Swiss rat (tumor induction in the right hind leg with S180 cells) | p-C dosing: 12.5, 25, and 50 mg/kg, subcutaneous injection (s.c.) | Preclinical studies, long-term, blinded, and randomized study designs | Antinociceptive effects of p-C on oncologic pain Acts on both ascending and descending pain pathways, and exerts effects by modulating calcium channel currents | [105] |
Monocyte-derived mature DCs and autologous CD4+ T cells from people with allergic reactions BALB/c mice (mice sensitized with OVA) | CE, p-C, and trans-cinnamaldehyde Controls: Ethanol and CE plus ethanol treatment | In vitro: Dendritic cells were injected with allergen, then co-cultured with CE, p-cymene, CA, or ethanol In vivo: Oral administration of CE or ethanol to BALB/c mice immunized with OVA | In vitro: CE, p-cymene, and CA inhibited DC maturation and allergen-specific T-cell proliferation, Th1 and Th2 cytokine production, and reduced sulfide leukotriene release and CD63 expression in macrophages In vivo: In OVA-sensitized mice, CE inhibits IgE to IgG2a conversion and OVA-specific proliferation, reduces airborne inflammation and anaphylaxis, and prevents atopic dermatitis-like inflammation | [106] |
THP-1 monocytes, HEK-TLR2 and HEK-TLR4 reporter cells | Anti-inflammatory effects of cinnamon extract, trans-cinnamaldehyde, p-C, and their combination | High-performance liquid chromatography, mass spectrometry, and cell stimulation and measurement | Trans-cinnamaldehyde and p-C reduced IL-8 secretion, mitigated phosphorylation of Akt and IκBα, and their combination enhanced anti-inflammatory effects | [107] |
Rats in a TNBS-induced colitis model | p-C and rosmarinic acid administered orally (25–200 mg/kg) | TNBS-induced colitis model | p-C and RA reduce ulceration, lesion score, and diarrhea index in colonic inflammation Reduces MDA and MPO, restores GSH, and increases SOD activity Reduces IL-1β and TNF-α and maintains IL-10 Modulates T-cell populations and inflammation-related gene expression Increases MUC-2 and ZO-1 expression | [108] |
HCT116 and HepG2 cells | O. onites essential oil, carvacrol, and p-C at a concentration of 400 µg/mL | Cell experiments (using MTT assay and DCFH-DA method) | p-C, carvacrol in O. onites essential oil may be considered as a pharmaceutical product candidate for cancer treatment | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyo, Y.; Jung, Y.J. Microbial Fermentation and Therapeutic Potential of p-Cymene: Insights into Biosynthesis and Antimicrobial Bioactivity. Fermentation 2024, 10, 488. https://doi.org/10.3390/fermentation10090488
Pyo Y, Jung YJ. Microbial Fermentation and Therapeutic Potential of p-Cymene: Insights into Biosynthesis and Antimicrobial Bioactivity. Fermentation. 2024; 10(9):488. https://doi.org/10.3390/fermentation10090488
Chicago/Turabian StylePyo, Yeonhee, and Yeon Ja Jung. 2024. "Microbial Fermentation and Therapeutic Potential of p-Cymene: Insights into Biosynthesis and Antimicrobial Bioactivity" Fermentation 10, no. 9: 488. https://doi.org/10.3390/fermentation10090488
APA StylePyo, Y., & Jung, Y. J. (2024). Microbial Fermentation and Therapeutic Potential of p-Cymene: Insights into Biosynthesis and Antimicrobial Bioactivity. Fermentation, 10(9), 488. https://doi.org/10.3390/fermentation10090488