Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products
Abstract
:1. Introduction
2. Fermented Products
3. Production of Fermented Products
3.1. Preparation of Dairy-Based Fermented Products
3.1.1. Collection and Processing of Milk Samples
3.1.2. Pasteurization of Dairy-Based Fermented Drinks
3.1.3. Inoculation with Starter Cultures
3.1.4. Fermentation of Dairy-Based Products
3.2. Preparation of Plant-Based Fermented Products
3.2.1. Collection and Processing of Substrates
3.2.2. Composition Standardization
3.2.3. Pasteurization of Plant-Based Fermented Drinks
3.2.4. Starter Culture Inoculation
3.2.5. Fermentation of Plant-Based Products
3.2.6. Cooling, Storage, and Packaging
4. Sanitation and Hygiene during the Production of Fermented Drinks
4.1. Sanitation Strategies for Sample Collection and Processing
4.2. Significance of Sanitation during the Inoculation of Starter Culture
4.3. Hygiene and Sanitation Approaches in Fermentation
4.4. Sanitation Methods for Storage and Packaging
5. Product Yield on Compliance and Non-Compliance to Hygiene Standards
6. Conclusions
7. Future Directions
- The development of new and more efficient sanitation methods, such as ozone therapy and ultraviolet (UV) sterilization, could improve hygiene standards and lower the risk of contamination. The use of ozone in the preservation of food products, including fermented foods, is gaining popularity as a result of its antimicrobial properties, oxidative activities, and absence of any residue in foods after decomposition. Ozone exhibits efficacy on pathogenic microbes, biofilms, and molds. Ozone technology has the potential to effectively control microbial growth, improve food safety, as well as provide shelf life extension [107]. Moreover, the utilization of UV treatment in food production is a promising decontamination approach. Shortwave UV radiation exhibits germicidal activity against numerous pathogenic microbes, including viruses, bacteria, yeasts, fungi, and molds. The technology has benefits like cost-effectiveness, low maintenance, and reduced energy requirements. These non-thermal approaches prevent nutrient damage that is commonly observed in thermal techniques [108].
- The development of fast and sensitive microbial detection methods will allow for the real-time monitoring of contamination, resulting in faster reactions to hygiene violations. Advanced techniques, like multiplex the Polymerase Chain Reaction (PCR), reverse transcriptase PCR, real-time PCR, quantitative PCR, nucleic acid sequence-based amplification, next-generation sequencing, DNA microarray, and nanotechnology-based approaches, are used for the effective and quicker detection of pathogens in food products, including fermented products [109]. Additionally, immunological assays and techniques like Enzyme Linked Immuno-Sorbent Assay (ELISA), antibodies, and latex agglutination methods are also used for the rapid detection of pathogens. However, the biosensors approach is identified to be the most effective technology, with benefits like portability, rapid identification, and sensitivity for microbial detection in food production. Biosensor technology in the food industry includes immune sensors, electrochemical sensors, enzyme-based sensors, optical sensors, and magnetoelastic sensors [110].
- Integrating automated systems for cleaning and smart sensors into industrial facilities could improve hygiene practices by making them more reliable and efficient. The scientific advancements have resulted in the increased implementation of automated systems and technologies in food industries, including fermented food production units. Computer software robotics are used to control every process of food production. Automated systems have several advantages, including enhanced productivity, improvement in quality, and increased profitability [111]. Furthermore, sensors and artificial intelligence (AI) are also utilized for the efficient automation of food processing units. Machine learning and data mining approaches can be used to develop intelligent sensors that modulate and control the production process in addition to maintaining adequate hygiene conditions [112].
- Studies on sustainable hygiene procedures that reduce water consumption and chemical waste while maintaining safety and quality will be critical for reducing the environmental impact of fermented drink production. The sustainable hygiene approaches include strategies like cleaning out of place and cleaning in place [113]. Sustainable hygiene is greatly dependent on the design of the equipment and facility to avoid the introduction of contaminants at any stage. It promotes the use of mild green detergents, which are natural, safe, environment friendly, and efficient substitutes for chemical detergents and sanitizing agents [114].
- The use of the artificial intelligence (AI)-based approach for tracking and monitoring the hygiene and sanitation of the fermentation facility. With simulation studies, an efficient strategy for the sanitation of the complete facility can be devised. Internet of Things (IoT) technologies of AI have potential applications in the food industry for controlling the hygiene and sanitation of the fermentation unit. The study of this approach is in its initial stages and requires a large amount of research to establish its efficacy in ensuring the good hygiene condition of production facilities and preventing spoilage [115].
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An Overview of Fermentation in the Food Industry—Looking Back from a New Perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; McSweeney, P.L.H. Beverages. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Tarfeen, N.; Mohamed, H.; Song, Y. Fermented Foods: Their Health-Promoting Components and Potential Effects on Gut Microbiota. Fermentation 2023, 9, 118. [Google Scholar] [CrossRef]
- Chong, A.Q.; Lau, S.W.; Chin, N.L.; Talib, R.A.; Basha, R.K. Fermented Beverage Benefits: A Comprehensive Review and Comparison of Kombucha and Kefir Microbiome. Microorganisms 2023, 11, 1344. [Google Scholar] [CrossRef]
- Savaiano, D.A.; Hutkins, R.W. Yogurt, Cultured Fermented Milk, and Health: A Systematic Review. Nutr. Rev. 2020, 79, 599–614. [Google Scholar] [CrossRef]
- Koakoski, D.L.; Bordin, T.; Cavallini, D.; Buonaiuto, G. A Preliminary Study of the Effects of Gaseous Ozone on the Microbiological and Chemical Characteristics of Whole-Plant Corn Silage. Fermentation 2024, 10, 398. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Morales-de la Peña, M.; Miranda-Mejía, G.A.; Martín-Belloso, O. Recent Trends in Fermented Beverages Processing: The Use of Emerging Technologies. Beverages 2023, 9, 51. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679. [Google Scholar] [CrossRef]
- Saleem, G.N.; Gu, R.; Qu, H.; Bahar Khaskheli, G.; Rashid Rajput, I.; Qasim, M.; Chen, X. Therapeutic Potential of Popular Fermented Dairy Products and Its Benefits on Human Health. Front. Nutr. 2024, 11, 1328620. [Google Scholar] [CrossRef]
- Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.-L. Traditional Low-Alcoholic and Non-Alcoholic Fermented Beverages Consumed in European Countries: A Neglected Food Group. Nutr. Res. Rev. 2017, 30, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, N.-K.; Paik, H.-D. Overview of Dairy-Based Products with Probiotics: Fermented or Non-Fermented Milk Drink. Food Sci. Anim. Resour. 2024, 44, 255–268. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.-J.; Frutos, M.-J. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.; Hill, C.; Ross, R.; Cotter, P. Fermented Beverages with Health-Promoting Potential: Past and Future Perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef]
- García-Burgos, M.; Moreno-Fernández, J.; Alférez, M.J.M.; Díaz-Castro, J.; López-Aliaga, I. New Perspectives in Fermented Dairy Products and Their Health Relevance. J. Funct. Foods 2020, 72, 104059. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Aguiar, N.F.B.; Voss, G.B.; Pintado, M.E. Properties of Fermented Beverages from Food Wastes/By-Products. Beverages 2023, 9, 45. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020, 8, 752. [Google Scholar] [CrossRef]
- Pontonio, E.; Rizzello, C. Milk Alternatives and Non-Dairy Fermented Products: Trends and Challenges. Foods 2021, 10, 222. [Google Scholar] [CrossRef]
- da Silva Vale, A.; Venturim, B.C.; da Silva Rocha, A.R.F.; Martin, J.G.P.; Maske, B.L.; Balla, G.; De Dea Lindner, J.; Soccol, C.R.; de Melo Pereira, G.V. Exploring Microbial Diversity of Non-Dairy Fermented Beverages with a Focus on Functional Probiotic Microorganisms. Fermentation 2023, 9, 496. [Google Scholar] [CrossRef]
- Sharma, A.; Noda, M.; Sugiyama, M.; Ahmad, A.; Kaur, B. Production of Functional Buttermilk and Soymilk Using Pediococcus Acidilactici BD16 (alaD+). Molecules 2021, 26, 4671. [Google Scholar] [CrossRef] [PubMed]
- Smolnikova, F.; Moldabayeva, Z.; Klychkova, M.; Gorelik, O.; Khaybrakhmanov, R.; Mironova, I.; Kalimullin, A.; Latypova, G. Sour Milk Production Technology and Its Nutritive Value. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 670–672. [Google Scholar]
- Kaledina, M.; Popenko, V.; Shevchenko, N.; Chuev, S. Kefir and Ayran—Traditional Fermented Products of Russia. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012109. [Google Scholar] [CrossRef]
- Surono, I.S.; Hosono, A. FERMENTED MILKS|Types and Standards of Identity. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 470–476. ISBN 978-0-12-374407-4. [Google Scholar]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Lidums, I.; Karklina, D.; Kirse-Ozolina, A. Quality Changes of Naturally Fermented Kvass During Production. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being” FOODBALT 2014, Jelgava, Latvia, 8–9 May 2014. [Google Scholar]
- Pulatsu, E.; Malik, S.; Lin, M.; Krishnaswamy, K.; Vardhanabhuti, B. Preparation and characterization of Boza Enriched with Nonfat Dry Milk and Its Impact on the Fermentation Process. Gels 2024, 10, 22. [Google Scholar] [CrossRef]
- Hancioğlu, Ö.; Karapinar, M. Microflora of Boza, a Traditional Fermented Turkish Beverage. Int. J. Food Microbiol. 1997, 35, 271–274. [Google Scholar] [CrossRef]
- Sulieman, A.M. Production and Quality Assessment of Hulu-Mur Fermented Beverage. In African Fermented Food Products-New Trends; Springer International Publishing: Cham, Switzerland, 2022; pp. 313–328. ISBN 978-3-030-82901-8. [Google Scholar]
- Janiszewska-Turak, E.; Walczak, M.; Rybak, K.; Pobiega, K.; Gniewosz, M.; Woźniak, Ł.; Witrowa-Rajchert, D. Influence of Fermentation Beetroot Juice Process on the Physico-Chemical Properties of Spray Dried Powder. Molecules 2022, 27, 1008. [Google Scholar] [CrossRef]
- Nicolau, A.I.; Gostin, A.I. Chapter 20—Safety of Borsh. In Regulating Safety of Traditional and Ethnic Foods; Prakash, V., Martín-Belloso, O., Keener, L., Astley, S., Braun, S., McMahon, H., Lelieveld, H., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 381–394. ISBN 978-0-12-800605-4. [Google Scholar]
- Bhardwaj, K.N.; Jain, K.K.; Kumar, S.; Kuhad, R.C. Microbiological Analyses of Traditional Alcoholic Beverage (Chhang) and Its Starter (Balma) Prepared by Bhotiya Tribe of Uttarakhand, India. Indian J. Microbiol. 2016, 56, 28–34. [Google Scholar] [CrossRef]
- Thakur, N.; Savitri; Saris, P.E.; Bhalla, T.C. Microorganisms Associated with Amylolytic Starters and Traditional Fermented Alcoholic Beverages of North Western Himalayas in India. Food Biosci. 2015, 11, 92–96. [Google Scholar] [CrossRef]
- Jimenez, M.E.; O’donovan, C.M.; de Ullivarri, M.F.; Cotter, P.D. Microorganisms Present in Artisanal Fermented Food from South America. Front. Microbiol. 2022, 13, 941866. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.T.M.; Hosken, B.d.O.; Venturim, B.C.; Lopes, I.L.; Martin, J.G.P. Traditional Brazilian Fermented Foods: Cultural and Technological Aspects. J. Ethn. Foods 2022, 9, 35. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. [Google Scholar] [CrossRef]
- Laureys, D.; Leroy, F.; Vandamme, P.; De Vuyst, L. Backslopping Time, Rinsing of the Grains During Backslopping, and Incubation Temperature Influence the Water Kefir Fermentation Process. Front. Microbiol. 2022, 13, 871550. [Google Scholar] [CrossRef]
- Terefe, N. Recent Developments in Fermentation Technology: Toward the next Revolution in Food Production. In Food Engineering Innovations across the Food Supply Chain; Elsevier: Amsterdam, The Netherlands, 2022; pp. 89–106. ISBN 978-0-12-821292-9. [Google Scholar]
- Lamsar, H.; Abhilasha, A. Chapter Four—Dairy-Based Functional Food Products. In Industrial Application of Functional Foods, Ingredients and Nutraceuticals; Anandharamakrishnan, C., Subramanian, P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 127–170. ISBN 978-0-12-824312-1. [Google Scholar]
- Fox, P.F. Introduction | History of Dairy Products and Processes. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 12–17. ISBN 978-0-12-374407-4. [Google Scholar]
- Harper, A.R.; Dobson, R.C.J.; Morris, V.K.; Moggré, G. Fermentation of Plant-based Dairy Alternatives by Lactic Acid Bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. CODEX ALIMENTARIUS—International Food Standards. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 18 September 2024).
- Panesar, P. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food Nutr. Sci. 2011, 2, 47–51. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission Procedural Manual; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2023; ISBN 978-92-5-137755-0.
- Patil, S.; Ananthan, A.; Nanavati, R.N.; Nataraj, G.; Prasad, P. Effect of Different Methods of Pasteurization on Bactericidal Action of Human Milk: A Prospective Observational Study. Indian J. Med. Res. 2019, 150, 504–507. [Google Scholar] [CrossRef]
- Iordache, F.; Gheorghe, I.; Lazar, V.; Curutiu, C.; Ditu, L.M.; Grumezescu, A.M.; Holban, A.M. 9—Nanostructurated Materials for Prolonged and Safe Food Preservation. In Food Preservation; Grumezescu, A.M., Ed.; Nanotechnology in the Agri-Food Industry; Academic Press: Cambridge, MA, USA, 2017; pp. 305–335. ISBN 978-0-12-804303-5. [Google Scholar]
- Farag, M.A.; Jomaa, S.A.; El-Wahed, A.A.; El-Seedi, H.R.; Farag, M.A.; Jomaa, S.A.; El-Wahed, A.A.; El-Seedi, H.R. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Anjum, F.; Waris, N.; Husaain, M.; Ikram, A.; Ateeq, H.; Muhammad Anjum, F.; Suleria, H. Nutritional and Ethnomedicinal Scenario of Koumiss: A Concurrent Review. Food Sci. Nutr. 2021, 9, 6421–6428. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gómez-Sala, B.; O’Connor, E.M.; Kenny, J.G.; Cotter, P.D. Global Regulatory Frameworks for Fermented Foods: A Review. Front. Nutr. 2022, 9, 902642. [Google Scholar] [CrossRef] [PubMed]
- Office of Regulatory Affairs US FDA. Dairy Product Manufacturers (4/95). U.S. Food and Drug Administration. 2018; pp. 1–25. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/dairy-product-manufacturers-495 (accessed on 18 September 2024).
- Battcock, M.; Azam-Ali, S. Fermented Frutis and Vegetables. A Global Perspective. Table of Contents; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Zamfir, M.; Angelescu, I.-R.; Voaides, C.; Cornea, C.-P.; Boiu-Sicuia, O.; Grosu-Tudor, S.-S. Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. Microorganisms 2022, 10, 2314. [Google Scholar] [CrossRef]
- Deziderio, M.A.; de Souza, H.F.; Kamimura, E.S.; Petrus, R.R. Plant-Based Fermented Beverages: Development and Characterization. Foods 2023, 12, 4128. [Google Scholar] [CrossRef] [PubMed]
- Kırlangıç, O.; Ilgaz, C.; Kadiroğlu, P. Influence of Pasteurization and Storage Conditions on Microbiological Quality and Aroma Profiles of Shalgam. Food Biosci. 2021, 44, 101350. [Google Scholar] [CrossRef]
- Sigüenza-Andrés, T.; Gómez, M.; Rodríguez-Nogales, J.M.; Caro, I. Development of a Fermented Plant-Based Beverage from Discarded Bread Flour. LWT 2023, 182, 114795. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. (Eds.) Nondairy Fermented Foods and Products. In Modern Food Microbiology; Springer: Boston, MA, USA, 2005; pp. 175–195. ISBN 978-0-387-23413-7. [Google Scholar]
- Azizi, N.; Rajah Kumar, M.; Yeap, S.K.; Ong Abdullah, J.; Khalid, M.; Omar, A.; Osman, M.; Syed, S.; Alitheen, N. Kefir and Its Biological Activities. Foods 2021, 10, 1210. [Google Scholar] [CrossRef]
- Dey, T.K.; Lindahl, J.F.; Sanjukta, R.; Arun Prince Milton, A.; Das, S.; Kannan, P.; Lundkvist, Å.; Sen, A.; Ghatak, S. Characterization of Lactic Acid Bacteria and Pathogens Isolated from Traditionally Fermented Foods, In Relation to Food Safety and Antimicrobial Resistance in Tribal Hill Areas of Northeast India. J. Food Qual. 2023, 2023, 6687015. [Google Scholar] [CrossRef]
- Awuchi, C.G. HACCP, Quality, and Food Safety Management in Food and Agricultural Systems. Cogent Food Agric. 2023, 9, 2176280. [Google Scholar] [CrossRef]
- Vuppu, S.; Mishra, T.; Chinamgari, A. Use of Hand Sanitizers in COVID-19 Prevention: A Comprehensive Overview. Pharmacoepidemiology 2023, 2, 257–271. [Google Scholar] [CrossRef]
- Aslani, R.; Mazaheri, Y.; Jafari, M.; Sadighara, P.; Molaee-aghaee, E.; Özçakmak, S.; Reshadat, Z. Implementation of Hazard Analysis and Critical Control Point (HACCP) in Yogurt Production. J. Dairy Res. 2024, 91, 125–135. [Google Scholar] [CrossRef]
- Bayili, G.; Konkobo-Yaméogo, C.; Diarra, S.; Diawara, B.; Jespersen, L.; Sawadogo-Lingani, H. Effect of Fermentation Process on Hygiene and Perceived Quality of Lait Caillé, an Ethnic Milk Product from Burkina Faso. J. Ethn. Foods 2023, 10, 17. [Google Scholar] [CrossRef]
- ISO 18593:2018; Microbiology of the Food Chain—Horizontal Methods for Surface Sampling. The International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/64950.html (accessed on 18 September 2024).
- Salo, S.; Friis, A.; Wirtanen, G. Cleaning Validation of Fermentation Tanks. Food Bioprod. Process. 2008, 86, 204–210. [Google Scholar] [CrossRef]
- Ali, R.; Hayat, A.; Fatima, M.; Noman, M. Detection and Enumeration of Enteric Bacteria Associated with Food Handlers and Surfaces of Food Manufacturing Industry Located in Hub City, Pakistan. World Sci. News 2016, 49, 192–203. [Google Scholar]
- Chiu, P.-W.; Hsu, C.-T.; Huang, S.-P.; Chiou, W.-Y.; Lin, C.-H. Prediction of Contaminated Areas Using Ultraviolet Fluorescence Markers for Medical Simulation: A Mobile Phone Application Approach. Bioengineering 2023, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- Tatini, S.R.; Kauppi, K.L. ANALYSIS | Microbiological Analyses. In Encyclopedia of Dairy Sciences; Roginski, H., Ed.; Elsevier: Oxford, UK, 2002; pp. 74–79. ISBN 978-0-12-227235-6. [Google Scholar]
- Fayyaz, K.; Nawaz, A.; Olaimat, A.N.; Akram, K.; Farooq, U.; Fatima, M.; Siddiqui, S.A.; Rana, I.S.; Mahnoor; Shahbaz, H.M. Microbial Toxins in Fermented Foods: Health Implications and Analytical Techniques for Detection. J. Food Drug. Anal. 2022, 30, 523–537. [Google Scholar] [CrossRef]
- Owolabi, I.O.; Kolawole, O.; Jantarabut, P.; Elliott, C.T.; Petchkongkaew, A. The Importance and Mitigation of Mycotoxins and Plant Toxins in Southeast Asian Fermented Foods. npj Sci. Food 2022, 6, 39. [Google Scholar] [CrossRef]
- Pal, A.; Chakravarty, A.K. Chapter 2—Major Diseases of Livestock and Poultry and Problems Encountered in Controlling Them. In Genetics and Breeding for Disease Resistance of Livestock; Pal, A., Chakravarty, A.K., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 11–83. ISBN 978-0-12-816406-8. [Google Scholar]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Starter Cultures as a Reservoir of Antibiotic Resistant Microorganisms. LWT 2020, 127, 109424. [Google Scholar] [CrossRef]
- Avîrvarei, A.C.; Salanță, L.C.; Pop, C.R.; Mudura, E.; Pasqualone, A.; Anjos, O.; Barboza, N.; Usaga, J.; Dărab, C.P.; Burja-Udrea, C.; et al. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023, 12, 838. [Google Scholar] [CrossRef]
- Yıldırım, H.K. Alternative Methods of Sulfur Dioxide Used IN Wine Production. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 675–687. [Google Scholar] [CrossRef]
- Fia, G.; Menghini, S.; Mari, E.; Proserpio, C.; Pagliarini, E.; Granchi, L. Replacement of SO2 with an Unripe Grape Extract and Chitosan during Oak Aging: Case Study of a Sangiovese Wine. Antioxidants 2023, 12, 365. [Google Scholar] [CrossRef]
- Ahmed, N.; Karobari, M.I.; Yousaf, A.; Mohamed, R.N.; Arshad, S.; Basheer, S.N.; Peeran, S.W.; Noorani, T.Y.; Assiry, A.A.; Alharbi, A.S.; et al. The Antimicrobial Efficacy Against Selective Oral Microbes, Antioxidant Activity and Preliminary Phytochemical Screening of Zingiber officinale. Infect. Drug Resist. 2022, 15, 2773–2785. [Google Scholar] [CrossRef] [PubMed]
- Gopal, J.; Muthu, M.; Paul, D.; Kim, D.-H.; Chun, S. Bactericidal Activity of Green Tea Extracts: The Importance of Catechin Containing Nano Particles. Sci. Rep. 2016, 6, 19710. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Galovičová, L.; Valková, V.; Tvrdá, E.; Terentjeva, M.; Žiarovská, J.; Kunová, S.; Savitskaya, T.; Grinshpan, D.; Štefániková, J.; et al. Antimicrobial and Antioxidant Activities of Cinnamomum Cassia Essential Oil and Its Application in Food Preservation. Open Chem. 2021, 19, 214–227. [Google Scholar] [CrossRef]
- Khatun, M.; Nur, M.A.; Biswas, S.; Khan, M.; Amin, M.Z. Assessment of the Anti-Oxidant, Anti-Inflammatory and Anti-Bacterial Activities of Different Types of Turmeric (Curcuma longa) Powder in Bangladesh. J. Agric. Food Res. 2021, 6, 100201. [Google Scholar] [CrossRef]
- Olivas-Méndez, P.; Chávez-Martínez, A.; Santellano-Estrada, E.; Guerrero Asorey, L.; Sánchez-Vega, R.; Rentería-Monterrubio, A.L.; Chávez-Flores, D.; Tirado-Gallegos, J.M.; Méndez-Zamora, G. Antioxidant and Antimicrobial Activity of Rosemary (Rosmarinus officinalis) and Garlic (Allium sativum) Essential Oils and Chipotle Pepper Oleoresin (Capsicum annum) on Beef Hamburgers. Foods 2022, 11, 2018. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Mishra, T.; Kidie, E.; Vuppu, S. Microalgae-Based Disinfectant Formulation for Aseptic Processing of Ethiopian Ingredient-Sourced Functional Bread and Its Molecular Docking Analysis to Reduce Hypernatremia. Mol. Biotechnol. 2023, 65, 1–17. [Google Scholar] [CrossRef]
- Raghav, P.; Saini, M. Antimicrobial Propeties of Tulsi (Ocimum sanctum). Int. J. Green Herb. Chem. 2018, 7, 20–32. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021, 11, 20. [Google Scholar] [CrossRef]
- Owusu-Ansah, P.; Alhassan, A.R.; Ayamgama, A.A.; Adzaworlu, E.G.; Afoakwah, N.A.; Mahunu, G.K.; Amagloh, F.K. Phytochemical Analysis, Enumeration, Isolation, and Antimicrobial Activity of Lemongrass and Moringa Leaves Extracts. J. Agric. Food Res. 2023, 12, 100579. [Google Scholar] [CrossRef]
- Hasan, M.; Roy, P.; Alam, M.; Hoque, M.; Zzaman, W. Antimicrobial Activity of Peels and Physicochemical Properties of Juice Prepared from Indigenous Citrus Fruits of Sylhet Region, Bangladesh. Heliyon 2022, 8, e09948. [Google Scholar] [CrossRef] [PubMed]
- Ogo, O.; Hembafan, N.; Amokaha, R.; Jeremiah, O.; Inalegwu, B. Characterization and Antioxidant Activity of Peel Extracts from Three Varieties of Citrus Sinensis. Heliyon 2024, 10, e28456. [Google Scholar] [CrossRef]
- Dubey, D.; Balamurugan, K.; Agrawal, R.C.; Verma, R.; Jain, R. Evalution of Antibacterial and Antioxidant Activity of Methanolic and Hydromethanolic Extract of Sweet Orange Peels. Recent Res. Sci. Technol. 2011, 3, 22–25. [Google Scholar]
- Soleimani, M.; Arzani, A.; Arzani, V.; Roberts, T.H. Phenolic Compounds and Antimicrobial Properties of Mint and Thyme. J. Herb. Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Mancuso, M. The Antibacterial Activity of Mentha. In Herbs and Spices; IntechOpen: London, UK, 2020; ISBN 978-1-83962-936-5. [Google Scholar]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum Zeylanicum Bark Essential Oil. Evid. -Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Virkajärvi, I. Hygiene Requirements in the Fermentation Process. In VTT Symposium; Valtion Teknillinen Tutkimuskeskus: Espoo, Finland, 2003; pp. 129–144. [Google Scholar]
- Memiši, N.R.; Moracanin, V.-M.; Škrinjar, M.M.; Iličić, M.; Ač, M.D. Storage Temperature: A Factor of Shelf Life of Dairy Products. Acta Period. Technol. 2014, 45, 55–66. [Google Scholar] [CrossRef]
- Shankar, V.; Mahboob, S.; Al-Ghanim, K.A.; Ahmed, Z.; Al-Mulhm, N.; Govindarajan, M. A Review on Microbial Degradation of Drinks and Infectious Diseases: A Perspective of Human Well-Being and Capabilities. J. King Saud Univ. Sci. 2021, 33, 101293. [Google Scholar] [CrossRef]
- Fernández, M.; Hudson, J.A.; Korpela, R.; de los Reyes-Gavilán, C.G. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview. Biomed. Res. Int. 2015, 2015, 412714. [Google Scholar] [CrossRef]
- El-Sayed, A.; Ibrahim, H.; Farag, M. Detection of Potential Microbial Contaminants and Their Toxins in Fermented Dairy Products: A Comprehensive Review. Food Anal. Methods 2022, 15, 3. [Google Scholar] [CrossRef]
- Seo, S.-O.; Park, S.-K.; Jung, S.-C.; Ryu, C.-M.; Kim, J.-S. Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Bartkiene, E.; Viskelis, P.; Urbonaviciene, D.; Eidukonyte, D.; Bobinas, C.; Juodeikiene, G.; Bartkiene, E.; Viskelis, P.; Urbonaviciene, D.; et al. Fermentation Processes Using Lactic Acid Bacteria Producing Bacteriocins for Preservation and Improving Functional Properties of Food Products. In Advances in Applied Biotechnology; IntechOpen: London, UK, 2012; ISBN 978-953-307-820-5. [Google Scholar]
- Hutabarat, D.J.C. Irene Chemical and Physical Characteristics of Fermented Beverages from Plant-Based Milk with the Addition of Butterfly Pea Flower (Clitoria ternatea L.) Extracts. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012140. [Google Scholar] [CrossRef]
- Piskors, N.; Heck, A.; Filla, J.M.; Atamer, Z.; Hinrichs, J. High Protein—Low Viscosity? How to Tailor Rheological Properties of Fermented Concentrated Milk Products. Dairy 2023, 4, 594–605. [Google Scholar] [CrossRef]
- Gursoy, O.; Kocatürk, K.; Güler, H.; Yakalı, H.; Yilmaz, Y. Physicochemical and Rheological Properties of Commercial Kefir Drinks. Akad. Gıda 2020, 18, 375–381. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska-Sobieraj, E.; Siedlecka-Rell, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielinska-Blizniewska, H.; Kwiatkowski, P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef]
- Iskakova, J.; Smanalieva, J.; Methner, F.-J. Investigation of Changes in Rheological Properties during Processing of Fermented Cereal Beverages. J. Food Sci. Technol. 2019, 56, 3980–3987. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef]
- Chawla, A.; Lobacz, A.; Tarapata, J.; Zulewska, J. UV Light Application as a Mean for Disinfection Applied in the Dairy Industry. Appl. Sci. 2021, 11, 7285. [Google Scholar] [CrossRef]
- Aladhadh, M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms 2023, 11, 1111. [Google Scholar] [CrossRef]
- Akkina, R.C.; Payala, V.; Maganti, S.S.; Akkina, R.C.; Payala, V.; Maganti, S.S. Tools for Rapid Detection and Control of Foodborne Microbial Pathogens. In Foodborne Pathogens—Recent Advances in Control and Detection; IntechOpen: London, UK, 2022; ISBN 978-1-80355-904-9. [Google Scholar]
- Arachchige, U.; Chandrasiri, S.; Wijenayake, A. Development of Automated Systems for the Implementation of Food Processing. J. Res. Technol. Eng. 2022, 3, 2022–2030. [Google Scholar]
- Watson, N.J.; Bowler, A.L.; Rady, A.; Fisher, O.J.; Simeone, A.; Escrig, J.; Woolley, E.; Adedeji, A.A. Intelligent Sensors for Sustainable Food and Drink Manufacturing. Front. Sustain. Food Syst. 2021, 5, 642786. [Google Scholar] [CrossRef]
- Tomas, N.; Tiwari, B.K. Sustainable Cleaning and Sanitation in the Food Industry. In Sustainable Food Processing; Wiley: Hoboken, NJ, USA, 2013; pp. 363–376. ISBN 978-0-470-67223-5. [Google Scholar]
- Faille, C.; Cunault, C.; Dubois, T.; Bénézech, T. Hygienic Design of Food Processing Lines to Mitigate the Risk of Bacterial Food Contamination with Respect to Environmental Concerns. Innov. Food Sci. Emerg. Technol. 2018, 46, 65–73. [Google Scholar] [CrossRef]
- Sonwani, E.; Bansal, U.; Alroobaea, R.; Baqasah, A.; Hedabou, M. An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Front. Public Health 2022, 9, 816226. [Google Scholar] [CrossRef] [PubMed]
Product | Geographic Distribution | Raw Materials (Substrate) | Microorganisms Used in Fermentation (Starter Culture) | Fermentation Time | Reference |
---|---|---|---|---|---|
Buttermilk | Europe | Cow milk | Mesophilic LAB | 16 h | [12,23] |
Sour milk | Iceland, Denmark, Sweden, and Southern Norway | Milk | Mesophilic LAB | 6–8 h | [14,24] |
Ayran | Asia (Central Asia and the Middle East) and Europe | Cow milk | Lactobacillus bulgaricus and Streptococcus thermophilus | 4–6 h | [12,17,25] |
Acidophilus milk | America and Europe | Cow milk | Lactobacillus acidophilus | 18–24 h | [12,15,26] |
Kefir grains with milk | Eastern Europe | Milk | Lactobacillus casei, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus acidophilus, Lactococcus spp., Leuconostoc spp., Acetobacter spp., Kluyveromyces marxianus, Saccharomyces cerevisiae, Saccharomyces unisporus, and Saccharomyces exiguus | 16 h | [15,17,18] |
Koumiss | Asia and Russia | Horse milk | Lactobacillus helveticus NS8 | Primary fermentation: 2 h Secondary fermentation (after packaging): 2–3 days | [17,26] |
Product | Geographic Distribution | Raw Materials (Substrate) | Microorganisms Used in Fermentation (Starter Culture) | Fermentation Time | Reference |
---|---|---|---|---|---|
Kvass | Russia | Rye and barley malt or flour and rye bread | Leuconostoc mesenteroides, Lactobacillus casei, and Saccharomyces cerevisiae | 4–10 h | [17,27] |
Boza | Turkey and Bulgaria | Barley, wheat, rye, rice, millet, oats, or maize | Leuconostoc mesenteroides, Leuconostoc paramesenteroides, Leuconostoc sanfranciscensis, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Saccharomyces cerevisiae, Saccharomyces uvarum, Candida spp., and Pichia fermentans | 24–48 h | [17,28,29] |
Kaera | Estonia | Oat | LAB | 6–12 h | [14] |
Hulumur | Turkey | Rice, millet, and sorghum | LAB | 24 h | [14,30] |
Borsh | Hungary and Romania | Beetroot (for red borsh) and cereals (for white borsh) | LAB | 7 days | [14,31,32] |
Chhang | Himalayan belt of India | Rice | Lactobacillus pentosus, Pediococcus pentosaceus, Bacillus aerophilus, Bacillus subtilis, Saccharomyces spp., Saccharomycopsis malanga, Saccharomycopsis fibuligera, and Kluyveromyces marxianus | 12–24 h | [33] |
Jau chhang | Himalayan belt of India | Barley | Lactobacillus plantarum, Pediococcus pentosaceus, Serratia spp., Saccharomyces cerevisiae, and Candida tropicalis | 3–5 days | [22,34] |
Chicha | South America | Rice, corn, peanuts, cassava, and fruits | Lactobacillus plantarum, Streptococcus spp., Leuconostoc spp., Weissella spp., Saccharomyces cerevisiae, Torulaspora delbrueckii, Candida spp., and Pichia spp. | 1–3 days | [22,35] |
Tarubá | Amazonas, Brazil | Cassava | Bacillus subtilis, Lactobacillus brevis, Lactobacillus plantarum, Leuconostoc mesenteroides, Torulaspora delbrueckii, Pichia exigua, and Candida spp. | 12 days | [22,36] |
Apple cider | Global | Apple | Lentilactobacillus diolivorans, Lentilactobacillus buchneri, Secundilactobacillus collinoides, Secundilactobacillus paracollinoides, Lactobacillus plantarum, Limosilactobacillus fermentum, and Paucilactobacillus suebicus | 2–3 weeks | [22] |
Kombucha | Global, prominent in China | Tea | Lactobacillus spp., Acetobacter spp., Gluconacetobacter xylinus, Candida spp., Saccharomyces spp., Pichia spp., Zygosaccharomyces spp., Dekkera spp., Torulaspora spp., and Hanseniaspora spp. | 14 days | [17,22,37] |
Water kefir | Global, prominent in Mexico | Fruits, vegetables, and molasses | Lactobacillus plantarum, Lactobacillus casei, Lactobacillus brevis, Lactobacillus hilgardii, Lactobacillus pentosus, Lactococcus lactis, Leuconostoc mesenteroides, Zymomonas spp., Saccharomyces cerevisiae, Zygosaccharomyces Florentina, Zygosaccharomyces lentus, Dekkera bruxellensis, Sekkera anomola, Hanseniaspora vinea, Hanseniaspora valbyensis, and Lachancea fermentati | 2–4 days | [17,22,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, T.; Machireddy, J.; Vuppu, S. Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products. Fermentation 2024, 10, 489. https://doi.org/10.3390/fermentation10090489
Mishra T, Machireddy J, Vuppu S. Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products. Fermentation. 2024; 10(9):489. https://doi.org/10.3390/fermentation10090489
Chicago/Turabian StyleMishra, Toshika, Jyothi Machireddy, and Suneetha Vuppu. 2024. "Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products" Fermentation 10, no. 9: 489. https://doi.org/10.3390/fermentation10090489
APA StyleMishra, T., Machireddy, J., & Vuppu, S. (2024). Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products. Fermentation, 10(9), 489. https://doi.org/10.3390/fermentation10090489