High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and the Steam Explosion Conditions
2.2. Enzymatic Hydrolysis and Detoxification
2.3. L-lactic Acid Fermentation
2.4. Analysis
3. Results and Discussion
3.1. The Characterization of the Steam-Exploded Corn Stover
3.2. The Enzymatic Hydrolysis of the Steam-Exploded Corn Stover
3.3. L-lactic Acid Fermentation Using the Steam-Exploded Corn Stover Hydrolysate
3.4. Fed-Batch Simultaneous Saccharification and Fermentation for L-Lactic Acid Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abedi, E.; Hashemi, S.M.B. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, 10. [Google Scholar] [CrossRef]
- Cubas-Cano, E.; González-Fernández, C.; Ballesteros, M.; Tomás-Pejó, E. Biotechnological advances in lactic acid production by lactic acid bacteria: Lignocellulose as novel substrate. Biofuels Bioprod. Biorefin. 2018, 12, 290–303. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, X.P.; Duong, X.Q.; Ağbulut, Ü.; Len, C.; Nguyen, P.Q.P.; Kchaou, M.; Chen, W.-H. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. Bioresour. Technol. 2023, 385, 129398. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, N.; Maniet, G.; Vanderghem, C.; Delvigne, F.; Richel, A. Application of steam explosion as pretreatment on lignocellulosic material: A review. Ind. Eng. Chem. Res. 2015, 54, 2593–2598. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, H. Formation kinetics of potential fermentation inhibitors in a steam explosion process of corn straw. Appl. Biochem. Biotechnol. 2013, 169, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Yankov, D. Fermentative lactic acid production from lignocellulosic feedstocks: From source to purified product. Front. Chem. 2022, 10, 823005. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Uppugundla, N.; Bowman, M.J.; Cavalier, D.; Da Costa Sousa, L.; E Dale, B.; Balan, V. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnol. Biofuels 2015, 8, 195. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Shang, N.; Li, P. Microbial fermentation processes of lactic acid: Challenges, solutions, and future prospects. Foods 2023, 12, 2311. [Google Scholar] [CrossRef]
- Li, C.; Gao, M.; Zhu, W.; Wang, N.; Ma, X.; Wu, C.; Wang, Q. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021, 104, 142–151. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings–a review. Biomass Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef]
- Zhao, K.; Qiao, Q.; Chu, D.; Gu, H.; Dao, T.H.; Zhang, J.; Bao, J. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour. Technol. 2013, 135, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Zhang, J.; Peng, N.; Liang, Y.; Zhao, S. High-titer lactic acid production by Pediococcus acidilactici PA204 from corn stover through fed-batch simultaneous saccharification and fermentation. Microorganisms 2020, 8, 1491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Z.; Lu, M.; Ma, X.; Chen, S.; Wang, Y.; Shen, W.; Li, P.; Jin, M. High titer (>200 g/L) lactic acid production from undetoxified pretreated corn stover. Bioresour. Technol. 2023, 388, 129729. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zhang, C.; Wu, Y.; Zhu, Q.; Wen, J.; Wang, Y.; Zhao, J.; Liu, Y.; Qin, P.; Cai, D. Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover. Renew. Energy 2022, 200, 592–600. [Google Scholar] [CrossRef]
- Zhang, C.; Si, Z.; Zhang, L.; Wen, J.; Su, C.; Chen, H.; Zhao, J.; Cai, D.; Zhang, X.; Qin, P. Reduction wastewater discharge in second-generation acetone-butanol-ethanol (ABE) fermentation process by adsorptive removal of organic acids toward the broth recycling system. J. Clean. Prod. 2022, 337, 130573. [Google Scholar] [CrossRef]
- Chen, H.; Chen, B.; Su, Z.; Wang, K.; Wang, B.; Wang, Y.; Si, Z.; Wu, Y.; Cai, D.; Qin, P. Efficient lactic acid production from cassava bagasse by mixed culture of Bacillus coagulans and Lactobacillus rhamnosus using stepwise pH controlled simultaneous saccharification and co-fermentation. Ind. Crops Prod. 2020, 146, 112175. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass—NREL. TP-510-42618; 2012. Available online: https://www.nrel.gov/docs/gen/fy13/42618.pdf (accessed on 8 January 2025).
- Wang, Y.; Cai, D.; Jiang, Y.; Mei, X.; Ren, W.; Sun, M.; Su, C.; Cao, H.; Zhang, C.; Qin, P. Rapid fractionation of corn stover by microwave-assisted protic ionic liquid [TEA][HSO4] for fermentative acetone–butanol–ethanol production. Biotechnol. Biofuels Bioprod. 2024, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Ma, Z.; Wang, Y.; Zheng, Z.; Ouyang, J. Achieving efficient and rapid high-solids enzymatic hydrolysis for producing high titer ethanol with the assistance of di-rhamnolipids. Bioresour. Technol. 2024, 394, 130189. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, J.; Zong, Q.-J.; Wang, L.; Xu, T.; Gong, J.; Liu, Z.-H.; Li, B.-Z.; Yuan, Y.-J. High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chem. Eng. J. 2022, 427, 130962. [Google Scholar] [CrossRef]
- Pielhop, T.; Larrazábal, G.O.; Studer, M.H.; Brethauer, S.; Seidel, C.-M.; von Rohr, P.R. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chem. 2015, 17, 3521–3532. [Google Scholar] [CrossRef]
- He, J.; Huang, C.; Lai, C.; Wang, Z.; Yuan, L.; Ragauskas, A.; Yan, Y.; Yong, Q. Revealing the mechanism of lignin re-polymerization inhibitor in acidic pretreatment and its impact on enzymatic hydrolysis. Ind. Crops Prod. 2022, 179, 114631. [Google Scholar] [CrossRef]
- Zhou, H.; Lou, H.; Yang, D.; Zhu, J.; Qiu, X. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Ind. Eng. Chem. Res. 2013, 52, 8464–8470. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 2010, 32, 284–291. [Google Scholar] [CrossRef]
- Hilpmann, G.; Becher, N.; Pahner, F.-A.; Kusema, B.; Mäki-Arvela, P.; Lange, R.; Murzin, D.Y.; Salmi, T. Acid hydrolysis of xylan. Catal. Today 2016, 259, 376–380. [Google Scholar] [CrossRef]
- Si, S.; Chen, Y.; Fan, C.; Hu, H.; Li, Y.; Huang, J.; Liao, H.; Hao, B.; Li, Q.; Peng, L. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 2015, 183, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Chen, S.; Zhang, X.; Xu, F. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. Bioresour. Technol. 2017, 224, 611–617. [Google Scholar] [CrossRef]
- Agrawal, R.; Verma, A.; Singhania, R.R.; Varjani, S.; Di Dong, C.; Patel, A.K. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour. Technol. 2021, 332, 125042. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Xu, G.; Chu, J.; Zhuang, Y.; Zhang, S. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl. Biochem. Biotechnol. 2010, 160, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Cai, D.; Zhang, H.; Wu, Y.; Jiang, Y.; Liu, Y.; Zhang, C.; Li, C.; Qin, P.; Tan, T. Pilot-scale acetone-butanol-ethanol fermentation from corn stover. Green Carbon 2024, 2, 81–93. [Google Scholar] [CrossRef]
- Ouyang, S.; Zou, L.; Qiao, H.; Shi, J.; Zheng, Z.; Ouyang, J. One-pot process for lactic acid production from wheat straw by an adapted Bacillus coagulans and identification of genes related to hydrolysate-tolerance. Bioresour. Technol. 2020, 315, 123855. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, E.; Springer, J.; Vriesendorp, B.; Weusthuis, R.; Eggink, G. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation. Appl. Biochem. Biotechnol. 2016, 100, 10307–10319. [Google Scholar] [CrossRef]
- Ma, K.; Hu, G.; Pan, L.; Wang, Z.; Zhou, Y.; Wang, Y.; Ruan, Z.; He, M. Highly efficient production of optically pure L-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresour. Technol. 2016, 219, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, S.; Wang, Y.; Jiang, Z. Integrated production of optically pure L-lactic acid from paper mill sludge by simultaneous saccharification and co-fermentation (SSCF). Waste Manag. 2021, 129, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, Y.; Zhang, Z.; Xiang, T.; Mei, Y.; Zhao, S.; Liang, Y.; Peng, N. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour. Technol. 2016, 214, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Alves, W.R.; Da Silva, T.A.; Zandoná Filho, A.; Pereira Ramos, L. Lactic acid production from steam-exploded sugarcane bagasse using Bacillus coagulans DSM2314. Fermentation 2023, 9, 789. [Google Scholar] [CrossRef]
- Aulitto, M.; Fusco, S.; Bartolucci, S.; Franzén, C.J.; Contursi, P. Bacillus coagulans MA-13: A promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol. Biofuels. 2017, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- D’ambrosio, S.; Zaccariello, L.; Sadiq, S.; D’Albore, M.; Battipaglia, G.; D’Agostino, M.; Battaglia, D.; Schiraldi, C.; Cimini, D. Grape stalk valorization: An efficient re-use of lignocellulosic biomass through hydrolysis and fermentation to produce lactic acid from Lactobacillus rhamnosus IMC501. Fermentation 2023, 9, 616. [Google Scholar] [CrossRef]
- Sasaki, C.; Okumura, R.; Asakawa, A.; Asada, C.; Nakamura, Y. Production of D-lactic acid from sugarcane bagasse using steam-explosion. J. Phys. Conf. Ser. 2012, 352, 012054. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Raj, T.; Chauhan, P.S.; Kumari, P.; Satlewal, A.; Gupta, R.P.; Kumar, R. High-titer lactic acid production from pilot-scale pretreated non-detoxified rice straw hydrolysate at high-solid loading. Biochem. Eng. J. 2022, 187, 108668. [Google Scholar] [CrossRef]
Samples | Chemical Composition (wt%) | Solid Recovery (%) | |||
---|---|---|---|---|---|
Glucan | Xylan | Lignin | Others | ||
CS | 35.5 ± 2.6 | 20.7 ± 2.0 | 27.2 ± 2.4 | 16.6 ± 1.2 | 85.0 ± 4.7 |
SECS | 38.0 ± 1.8 | 21.2 ± 1.6 | 28.4 ± 2.0 | 12.4 ± 0.7 |
Concentrations | Solid Loading (%, w/v) | |||
---|---|---|---|---|
10 | 20 | 30 | 40 | |
Glucose (g L−1) | 36.48 ± 0.83 | 66.69 ± 1.16 | 109.38 ± 2.29 | 167.60 ± 3.47 |
Xylose (g L−1) | 15.98 ± 0.06 | 37.88 ± 0.17 | 48.27 ± 2.78 | 58.15 ± 3.53 |
HMF (g L−1) | 0.82 ± 0.01 | 1.72 ± 0.11 | 2.82 ± 0.03 | 3.52 ± 0.01 |
Furfural (g L−1) | 0.32 ± 0.01 | 0.62 ± 0.05 | 1.08 ± 0.09 | 1.57 ± 0.09 |
Formic acid (g L−1) | 1.21 ± 0.03 | 2.18 ± 0.30 | 3.72 ± 0.91 | 4.10 ± 0.65 |
Acetic acid (g L−1) | 2.36 ± 0.43 | 4.65 ± 0.36 | 8.09 ± 0.64 | 10.16 ± 0.58 |
Vanillin (mg L−1) | 14.04 ± 1.58 | 25.38 ± 2.89 | 46.73 ± 1.17 | 61.53 ± 4.40 |
Parameters | Solid Loading (w/v) | |||
---|---|---|---|---|
10 | 20 | 30 | 40 | |
Initial glucose (g L−1) | 36.48 ± 0.83 | 66.69 ± 1.16 | 109.38 ± 2.29 | 167.60 ± 3.67 |
Initial xylose (g L−1) | 15.98 ± 0.06 | 37.88 ± 0.17 | 48.27 ± 2.78 | 58.15 ± 3.53 |
Fermentation period (h) | 30 | 36 | 54 | 54 |
Residual sugars (g L−1) | 0.00 | 0.00 | 18.46 ± 1.15 | 16.05 ± 2.76 |
L-LA conc. (g L−1) | 52.36 ± 1.19 | 90.98 ± 2.04 | 119.39 ± 3.66 | 147.65 ± 5.54 |
Productivity (g L−1 h−1) | 1.88 | 3.04 | 2.45 | 2.27 |
L-LA yield (g g−1) | 0.97 | 0.95 | 0.93 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Su, C.; Wu, Y.; Xue, Q.; Zhang, C.; Wang, Y.; Wang, B.; Cai, D. High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover. Fermentation 2025, 11, 25. https://doi.org/10.3390/fermentation11010025
Deng L, Su C, Wu Y, Xue Q, Zhang C, Wang Y, Wang B, Cai D. High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover. Fermentation. 2025; 11(1):25. https://doi.org/10.3390/fermentation11010025
Chicago/Turabian StyleDeng, Liheng, Changsheng Su, Yilu Wu, Qiang Xue, Changwei Zhang, Yong Wang, Bin Wang, and Di Cai. 2025. "High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover" Fermentation 11, no. 1: 25. https://doi.org/10.3390/fermentation11010025
APA StyleDeng, L., Su, C., Wu, Y., Xue, Q., Zhang, C., Wang, Y., Wang, B., & Cai, D. (2025). High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover. Fermentation, 11(1), 25. https://doi.org/10.3390/fermentation11010025