Bioconversion of Biomass for Effective Production of Biofuels as Well as Biobased Chemicals and Materials

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 6639

Special Issue Editor


E-Mail Website
Guest Editor
Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino, Chiba 275-8575, Japan
Interests: biomass conversion; fermentation; synthetic biology; environmental microbiology; microbial isolation; enzymes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, from the perspectives of carbon neutrality and the UN Sustainable Development Goals, intensive studies have been conducted to develop technologies to convert biomass into fuels, chemicals, materials, etc. Biomass conversion technologies range from simple ones that use biomass as an energy source through combustion to more advanced ones that produce biofuels as well as biobased chemicals and materials through enzymatic hydrolysis and fermentation. Moreover, the level of achievement of these technologies ranges from the basic research stage to the demonstration stage to the practical application stage. On the other hand, many kinds of biomass have not yet been effectively utilized, and many of the existing conversion technologies have problems such as high production costs. An economical business model can be created through the development of biomass conversion technologies that overcome these problems, which contributes to the formation of a recycling-based society.

The purpose of this Special Issue is to present current achievements, challenges, and prospects in biomass conversion technology for the effective production of biofuels as well as biobased chemicals and materials. Such studies include, but are not limited to, the identification and effective utilization of novel microorganisms, metabolic engineering of microorganisms, pretreatment and enzymatic hydrolysis of biomass, microbial fermentation of biofuels as well as biobased chemicals and materials, improved fermentation technology for yield improvement as well as the production and characterization of novel biobased chemicals and materials.

Dr. Hironaga Akita
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomass conversion
  • enzymatic hydrolysis
  • microbial identification
  • metabolic engineering
  • microbial fermentation
  • biofuel
  • biobased chemicals and materials
  • industrial biotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 1786 KiB  
Article
Identification of Corn Chaff as an Optimal Substrate for the Production of Rhamnolipids in Pseudomonas aeruginosa Fermentations
by Adriana Bava, Sara Carnelli, Mentore Vaccari, Trello Beffa and Fabrizio Beltrametti
Fermentation 2025, 11(2), 74; https://doi.org/10.3390/fermentation11020074 (registering DOI) - 3 Feb 2025
Abstract
Waste biomass deriving from agricultural activities has different destinations depending on the possibility of applying it to specific processes. As the waste biomass is abundant, cheap, and generally safe, it can be used for several applications, biogas production being the most relevant from [...] Read more.
Waste biomass deriving from agricultural activities has different destinations depending on the possibility of applying it to specific processes. As the waste biomass is abundant, cheap, and generally safe, it can be used for several applications, biogas production being the most relevant from the quantitative point of view. In this study, we have used a set of agricultural by-products (agro-waste) deriving from the post-harvest treatment of cereals and legumes as the growth substrate for selected biosurfactant-producing microbial strains. The agricultural by-products were easily metabolized and highly effective for the growth of microorganisms and the production of rhamnolipids and surfactin by Pseudomonas aeruginosa and Bacillus subtilis, respectively. In particular, the use of corn chaff (“bee-wings”) was suitable for the production of rhamnolipids. Indeed, in corn-chaff-based media, rhamnolipids yields ranged from 2 to 18 g/L of fermentation broth. This study demonstrated that the use of waste raw materials could be applied to reduce the carbon footprint of the production of biosurfactants without compromising the possibility of having a suitable fermentation medium for industrial production. Full article
13 pages, 2030 KiB  
Article
High-Titer L-lactic Acid Production by Fed-Batch Simultaneous Saccharification and Fermentation of Steam-Exploded Corn Stover
by Liheng Deng, Changsheng Su, Yilu Wu, Qiang Xue, Changwei Zhang, Yong Wang, Bin Wang and Di Cai
Fermentation 2025, 11(1), 25; https://doi.org/10.3390/fermentation11010025 - 9 Jan 2025
Viewed by 528
Abstract
Steam explosion (SE) is an effective lignocellulose pretreatment technology for second-generation L-lactic acid (L-LA) production. In this study, targeted to produce high-concentration L-LA from corn stover (CS), the fed-batch simultaneous saccharification and fermentation (SSF) of acidic, SE-pretreated CS was developed and demonstrated in [...] Read more.
Steam explosion (SE) is an effective lignocellulose pretreatment technology for second-generation L-lactic acid (L-LA) production. In this study, targeted to produce high-concentration L-LA from corn stover (CS), the fed-batch simultaneous saccharification and fermentation (SSF) of acidic, SE-pretreated CS was developed and demonstrated in a 5 L scale bioreactor under non-strict conditions (without detoxification and sterilization). The results indicated that the fed-batch SSF, with a simple pH control, realized a higher tolerance of the strains to the toxic by-products of hydrolysate, in comparison to the conventional sequential hydrolysis and fermentation (SHF), allowing for 153.8 g L−1 of L-LA production, along with a productivity of 1.83 g L−1 h−1 in a system with a total of 40% (w/v) solid loading. The mass balance indicated that up to 449 kg of L-LA can be obtained from 1 t of dried CS. It exhibited obvious superiorities and laid down a solid foundation for the industrialization of second-generation L-LA production. Full article
Show Figures

Figure 1

20 pages, 2717 KiB  
Article
Harnessing Bacillus subtilis QY5 PP784163 for Bioethanol Production from Potato Peel Waste and Nutrient Recovery for Animal Feed: Maximizing Resource Efficiency
by Qudsia Mushtaq, Uzair Ishtiaq, Nicolas Joly, Alexis Spalletta and Patrick Martin
Fermentation 2024, 10(10), 523; https://doi.org/10.3390/fermentation10100523 - 14 Oct 2024
Viewed by 1916
Abstract
The present work focuses on the utilization of potato peel waste for the production of bioethanol. In the present study, extensive screening was undertaken to isolate amylolytic and cellulolytic microbes using starchy biomass. After confirming the chemical composition of potato peel waste (PPW), [...] Read more.
The present work focuses on the utilization of potato peel waste for the production of bioethanol. In the present study, extensive screening was undertaken to isolate amylolytic and cellulolytic microbes using starchy biomass. After confirming the chemical composition of potato peel waste (PPW), several trials were performed to enhance the amylase and cellulase production from Bacillus subtilis to hydrolyze the PPW in submerged fermentation. Optimization of physical parameters was performed using both commercial and indigenous media from enzymatically hydrolyzed PPW. Different routes of various combinations were designed to enhance bioethanol production. The maximum ethanol titer of 0.50% and 0.41% was recorded in Route B and A, i.e., separate saccharification and ethanol fermentation and consolidated fermentation. Simultaneous saccharification and fermentation (SSF) also measured a good ethanol yield of 0.46%. The fermented residual cake was checked for nutritional components and showed a high content of protein and amino acids because of the addition of unicellular yeasts. This cake can be utilized as an animal feed supplement. Full article
Show Figures

Figure 1

13 pages, 801 KiB  
Article
Simultaneous Saccharification and Fermentation for Isobutanol Production from Banana Peel
by Hironaga Akita, Shodai Shibata, Tomoe Komoriya, Shinnosuke Kamei, Hiromichi Asamoto and Masakazu Matsumoto
Fermentation 2024, 10(3), 161; https://doi.org/10.3390/fermentation10030161 - 12 Mar 2024
Cited by 1 | Viewed by 2363
Abstract
Each year, near 40 million tons of banana peels are discarded around the world. This plant biomass could potentially be utilized for energy production. Simultaneous saccharification and fermentation (SSF) is an effective method for producing biofuels from plant biomasses. Since SSF with enzymatic [...] Read more.
Each year, near 40 million tons of banana peels are discarded around the world. This plant biomass could potentially be utilized for energy production. Simultaneous saccharification and fermentation (SSF) is an effective method for producing biofuels from plant biomasses. Since SSF with enzymatic hydrolysis and fermentation are performed simultaneously in the same reactor, the production process is simpler than most existing methods. Here, we describe isobutanol production using SSF with hydrothermally treated banana peel samples and an Escherichia coli strain able to utilize glucose and xylose to produce isobutanol. To enhance the glucose and xylose concentrations, the reaction conditions for the enzymatic hydrolysis of plant biomass using two kinds of saccharification enzymes were optimized, including the enzyme unit ratio, reaction temperature and sample gram. When the optimized conditions for enzymatic hydrolysis were applied to SSF, the glucose and xylose produced from the hydrothermally treated samples were consumed, producing isobutanol. Moreover, the isobutanol concentration increased with an increasing initial culture pH, reaching 1.27 g/L at pH 6.5, which was consistent with the optimal initial culture pH for isobutanol production by this E. coli strain. Taken together, these results indicate that the established method is potentially useful for industrial isobutanol production. Full article
Show Figures

Figure 1

Back to TopTop