Preliminary Study on the Impact of Ruminal Ciliate Inoculation in Fauna-Free Conditions on the Ruminal Fermentation and Ciliate–Prokaryote Association In Vitro
Abstract
:1. Introduction
- (1)
- A decrease in overall digestibility, including organic matter digestibility (OMD), neutral detergent fiber digestibility (NDFD), acid detergent fiber digestibility (ADFD), and volatile fatty acid (VFA) concentrations, particularly butyrate.
- (2)
- A reduction in methanogen abundance, methane emissions, and ammonia concentrations, alongside increases in duodenal nitrogen flow and microbial protein synthesis efficiency.
- (3)
- Significant decreases in the abundance of anaerobic fungi and cellulolytic bacteria such as Ruminococcus albus and Ruminococcus flavefaciens.
- (4)
- Reduced dry matter intake (DMI) by the host ruminant, while average daily gain (ADG) increased.
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Inoculated In Vitro Cultures of Each Ruminal Microbe
- (1)
- Rumen fluid used for isolation was filtered through two layers of cheesecloth, sedimented in a separatory funnel at 39 °C for 45 min, and the white pellet layer enriched with ciliate cells was collected.
- (2)
- The white pellet layer was further filtered through a 100 µm pluristrainer (J.One LifeScience, Seoul, Korea) to remove feed particles and large ciliates (>100 µm).
- (3)
- For the Epidinium and Ophryoscolex cultures, filtrates were resuspended in sterile M or SP medium after sequential filtration through a 70 µm pluristrainer. The single-cell isolation method was performed using microscopy to obtain meroxenic cultures [17].
- (4)
- For the small entodinia culture, the filtrate collected below a 30 µm pluristrainer was resuspended in a sterile SP medium to establish the culture.
- (1)
- Rumen fluid filtered through two layers of cheesecloth was passed through a 100 µm pluristrainer to remove impurities and ciliates larger than 100 µm.
- (2)
- The filtrate (300 mL) was transferred to a separatory funnel, supplemented with 1.5 g of glucose, and incubated at 39 °C for 30 min to sediment isotrichid cells into a white layer [19].
- (3)
- The collected white layer was sequentially filtered through 100, 85, 70, 50, and 40 µm pluristrainers, with microscopy used to identify fractions rich in Isotricha (50–70 µm) and Isotricha plus Dasytricha (40–50 µm). These fractions were cultured in DRM for seven days to remove the remaining entodiniomorphid ciliates.
- (4)
- After confirming the absence of entodiniomorphids under a microscope, viable isotrichid cells were used for inoculation in this experiment.
2.3. Preparation of In Vitro Ruminal Inoculums and Animal Donors
2.4. In Vitro Digestibility Experiment
2.5. Metagenomic DNA Extraction and Microbiome Analysis
2.6. Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Effect of Inoculated Ciliates on In Vitro Fermentation Parameters
3.2. Impasct of Inoculated Ciliates on Alpha and Beta Diversity of Ruminal Microbiota
3.3. Predicted Microbial Functional Changes Induced by Inoculated Ciliates
3.4. Alterations in the Ruminal Microbial Composition by Inoculated Ciliates
3.5. Effect of Inoculated Ciliates on the Correlations Between In Vitro Fermentation Parameters and Microbial Composition
3.6. Quantitative Analysis of Ruminal Microbes Using Real-Time qPCR
4. Discussion
4.1. Impact of Inoculated Ciliates on Ruminal Fermentation and Total Copy Number
4.2. Implications of Inoculated Ciliates on Alpha and Beta Diversity of the Ruminal Microbiota
4.3. Functional Predictions of Ruminal Microbiota in Response to Inoculated Ciliates
4.4. Metabolic Relationship Between Ruminal Fermentation Parameters and Microbial Genera
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hungate, R. The Rumen and Its Microbes; Academic Press: New York, NY, USA; London, UK, 1966. [Google Scholar]
- Tharwat, M.; Al-Sobayil, F.; Ali, A.; Buczinski, S. Transabdominal ultrasonographic appearance of the gastrointestinal viscera of healthy camels (Camelus dromedaries). Res. Vet. Sci. 2012, 93, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Munoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef] [PubMed]
- Puniya, A.K.; Singh, R.; Kamra, D.N. Rumen Microbiology: From Evolution to Revolution; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Ribeiro, G.O.; Cameron, A.; McAllister, T.A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 2019, 13, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Coleman, G. The rumen protozoa. In The Rumen Microbial Ecosystem; Springer: Berlin/Heidelberg, Germany, 1997; pp. 73–139. [Google Scholar]
- Demeyer, D.; Van Nevel, C. Effect of defaunation on the metabolism of rumen micro-organisms. Br. J. Nutr. 1979, 42, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.; Veira, D. Duodenal flow and soluble proportions of zinc, manganese, copper and iron in the rumen fluid and duodenal digesta of faunated and defaunated sheep. Can. J. Anim. Sci. 1982, 62, 979–982. [Google Scholar] [CrossRef]
- Abel, H.; Schröder, B.; Lebzien, P.; Flachowsky, G. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal. Br. J. Nutr. 2006, 95, 99–104. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef]
- Park, T.; Meulia, T.; Firkins, J.L.; Yu, Z. Inhibition of the rumen ciliate Entodinium caudatum by antibiotics. Front. Microbiol. 2017, 8, 1189. [Google Scholar] [CrossRef]
- Fonty, G.; Jouany, J.-P.; Thivend, P.; Gouet, P.; Senaud, J. A descriptive study of rumen digestion in meroxenic lambs according to the nature and complexity of the microflora. Reprod. Nutr. Développement 1983, 23, 857–873. [Google Scholar] [CrossRef]
- Koenig, K.M.; Ivan, M.; Teferedegne, B.; Morgavi, D.; Rode, L.; Ibrahim, I.; Newbold, C. Effect of dietary Enterolobium cyclocarpum on microbial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixed fauna or with Entodinium caudatum monofauna. Br. J. Nutr. 2007, 98, 504–516. [Google Scholar] [CrossRef]
- Ivan, M. Comparison of duodenal flow and digestibility in fauna-free sheep inoculated with Holotrich protozoa, Entodinium monofauna or total mixed protozoa population. Br. J. Nutr. 2008, 101, 34–40. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente Oliver, G.; Morgavi, D.P.; Belanche, A.; Fondevila, M. In vitro predation of pure bacterial species by rumen protozoa from monofaunated sheep, determined by qPCR. Options Méditerranéennes: Série A. Séminaires Méditerranéens 2011, 99, 91–96. [Google Scholar]
- Dehority, B.A. Physiological characteristics of several rumen protozoa grown in vitro with observations on within and among species variation. Eur. J. Protistol. 2010, 46, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Dehority, B.A. Generation times of Epidinium caudatum and Entodinium caudatum, determined in vitro by transferring at various time intervals. J. Anim. Sci. 1998, 76, 1189–1196. [Google Scholar] [CrossRef]
- Xu, Q.; He, J.; Wang, Y.; Xiong, J.; Qin, W.; Feng, J. Improved and easy method for long-term in vitro culture of rumen ciliates Dasytricha ruminantium. MethodsX 2024, 13, 102902. [Google Scholar] [CrossRef]
- Heald, P.; Oxford, A.; Sugden, B. A convenient method for preparing massive suspensions of virtually bacteria-free ciliate protozoa of the genera Isotricha and Dasytricha for manometric studies. Nature 1952, 169, 1055–1056. [Google Scholar] [CrossRef]
- Hamid, M.M.A.; Moon, J.; Yoo, D.; Kim, H.; Lee, Y.K.; Song, J.; Seo, J. Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source. J. Anim. Sci. Technol. 2020, 62, 801. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; McGill, S.K.; Dougherty, M.K. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019, 47, e103. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Kaehler, B.D.; Bokulich, N.A.; McDonald, D.; Knight, R.; Caporaso, J.G.; Huttley, G.A. Species abundance information improves sequence taxonomy classification accuracy. Nat. Commun. 2019, 10, 4643. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Xia, Y. q2-repeat-rarefy: QIIME2 plugin for generating the average rarefied table for library size normalization using repeated rarefaction. GitHub. 2021. Available online: https://github.com/xy-repo/q2-repeat-rarefy (accessed on 3 December 2024).
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Nadkarni, M.A.; Martin, F.E.; Jacques, N.A.; Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002, 148, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hernandez-Sanabria, E.; Guan, L.L. Assessment of the Microbial Ecology of Ruminal Methanogens in Cattle with Different Feed Efficiencies. Appl. Environ. Microbiol. 2009, 75, 6524–6533. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022, 51, D587–D592. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Nozière, P.; Morgavi, D.; Doreau, M.; Martin, C. Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animal 2014, 8, 1816–1825. [Google Scholar] [CrossRef]
- Vogels, G.D.; Hoppe, W.F.; Stumm, C.K. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 1980, 40, 608–612. [Google Scholar] [CrossRef]
- Takenaka, A.; Itabashi, H. Changes in the population of some functional groups of rumen bacteria including methanogenic bacteria by changing the rumen ciliates in calves. J. Gen. Appl. Microbiol. 1995, 41, 377–387. [Google Scholar] [CrossRef]
- Hayirli, A.; Gulsen, N.; Umucalilar, H.D.; Alatas, M.S. Effect of lactic acid on Entodinium caudatum monoculture. Sci. Pap Ser. D Anim. Sci. 2014, 57, 98–100. [Google Scholar]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Collaborators, G.R.C.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.J.; Holzapfel, W. The Genera of Lactic Acid Bacteria; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1992; Volume 2. [Google Scholar]
- Cabral, L.d.S.; Weimer, P.J. Megasphaera elsdenii: Its role in ruminant nutrition and its potential industrial application for organic acid biosynthesis. Microorganisms 2024, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, T.; Koyama, H.; Okada, M.; Ushida, K. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J. Nutr. 2002, 132, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Taxis, T.M.; Wolff, S.; Gregg, S.J.; Minton, N.O.; Zhang, C.; Dai, J.; Schnabel, R.D.; Taylor, J.F.; Kerley, M.S.; Pires, J.C. The players may change but the game remains: Network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res. 2015, 43, 9600–9612. [Google Scholar] [CrossRef]
- Ryan, E.; Gonzalez Pastor, B.; Gethings, L.A.; Clarke, D.J.; Joyce, S.A. Lipidomic analysis reveals differences in Bacteroides species driven largely by plasmalogens, glycerophosphoinositols and certain sphingolipids. Metabolites 2023, 13, 360. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Z.; Zhou, Y.; Wang, B.; Xie, Z.; Yu, N.; Zhao, J.; Goldfine, H.; Dai, S.; Zhang, G.; et al. Characterization and heterologous expression of plasmalogen synthase MeHAD from Megasphaera elsdenii. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2023, 1868, 159358. [Google Scholar] [CrossRef]
- Yarlett, N.; Hann, A.C.; Lloyd, D.; Williams, A. Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem. J. 1981, 200, 365–372. [Google Scholar] [CrossRef]
- Yarlett, N.; Hann, A.C.; Lloyd, D.; Williams, A.G. Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp. Biochem. Physiol. Part B Comp. Biochem. 1983, 74, 357–364. [Google Scholar] [CrossRef]
- Alatas, M.; Arık, H.; Gulsen, N.; Kahraman, O. Effects of Entodinium caudatum monocultures in an acidotic environment on in vitro rumen fermentation. J. Anim. Feed. Sci. 2022, 31, 379–383. [Google Scholar] [CrossRef]
Sample | CON | ENTO | EPI | ISO | OPH | MIX | |
---|---|---|---|---|---|---|---|
Bacterial fraction (mL) | 15 | 15 | 15 | 15 | 15 | 15 | |
Ruminal bacteria for feed (mL) | 1 | 1 | 1 | 1 | 1 | 1 | |
Culture medium (mL) | SP * | 2 | 1 | 2 | 2 | 1 | 1.5 |
M * | 1 | 1 | 0 | 1 | 1 | 0.75 | |
SP salt solution of DRM * | 1 | 1 | 1 | 0 | 1 | 0.75 | |
Ciliate culture (mL) | ENTO | 0 | 1 | 0 | 0 | 0 | 0.25 |
EPI | 0 | 0 | 1 | 0 | 0 | 0.25 | |
ISO | 0 | 0 | 0 | 1 | 0 | 0.25 | |
OPH | 0 | 0 | 0 | 0 | 1 | 0.25 |
Item | CON | ENTO | EPI | ISO | OPH | MIX | p-Value | Pooled SEM |
---|---|---|---|---|---|---|---|---|
DMD (%) | 71.26 | 70.51 | 70.78 | 72.04 | 72.40 | 72.67 | 0.791 | 3.17 |
NDFD (%) | 51.61 | 49.95 | 50.13 | 52.24 | 52.89 | 51.61 | 0.808 | 4.72 |
ADFD (%) | 37.33 | 36.23 | 36.23 | 40.14 | 41.88 | 37.33 | 0.526 | 7.53 |
pH | 6.47 | 6.46 | 6.49 | 6.48 | 6.49 | 6.48 | 0.664 | 0.03 |
NH3-N (mg/dL) | 4.49 | 4.73 | 4.74 | 4.42 | 4.78 | 4.44 | 0.414 | 0.39 |
Total Gas (mL) | 39.06 | 38.28 | 38.50 | 38.73 | 38.70 | 39.98 | 0.838 | 2.31 |
CH4 (mL) | 0.98 b | 1.27 a | 1.15 ab | 1.33 a | 1.38 a | 1.39 a | 0.096 | 0.25 |
CH4 (mL/g dDM) | 6.86 | 9.19 | 8.15 | 9.22 | 9.56 | 9.58 | 0.130 | 1.78 |
Total VFA (mM) | 38.16 | 34.28 | 29.22 | 33.31 | 24.95 | 41.13 | 0.496 | 14.90 |
A:P ratio | 1.66 C | 1.63 C | 1.64 C | 1.72 B | 1.66 C | 1.78 A | <0.001 | 7.95 |
Item | CON | ENTO | EPI | ISO | OPH | MIX | p-Value | Pooled SEM |
---|---|---|---|---|---|---|---|---|
Total VFA (mM) | 38.16 | 34.28 | 29.22 | 33.31 | 24.95 | 41.13 | 0.496 | 14.90 |
A:P ratio | 1.66 C | 1.63 C | 1.64 C | 1.72 B | 1.66 C | 1.78 A | <0.001 | 7.95 |
Acetate (%) | 53.27 B | 52.51 B | 52.52 B | 52.34 B | 52.72 B | 54.77 A | 0.001 | 4.82 |
Propionate (%) | 32.03 AB | 32.28 A | 32.00 AB | 30.40 C | 31.79 B | 30.78 C | <0.001 | 0.03 |
Isobutyrate (%) | 0.69 | 0.62 | 0.58 | 0.68 | 0.57 | 0.52 | 0.111 | 0.11 |
Butyrate (%) | 11.96 B | 12.38 B | 12.60 B | 13.56 A | 12.59 B | 11.75 B | 0.012 | 1.75 |
Isovalerate (%) | 0.88 B | 1.06 A | 1.09 A | 1.06 A | 1.07 A | 0.91 B | 0.005 | 0.15 |
Valerate (%) | 1.17 B | 1.16 B | 1.20 B | 1.96 A | 1.27 B | 1.28 B | <0.001 | 0.16 |
Total VFA (mM) | 38.16 | 34.28 | 29.22 | 33.31 | 24.95 | 41.13 | 0.496 | 14.90 |
A:P ratio | 1.66 C | 1.63 C | 1.64 C | 1.72 B | 1.66 C | 1.78 A | <0.001 | 7.95 |
Item | CON | ENTO | EPI | ISO | OPH | MIX | p-Value | Pooled SEM |
---|---|---|---|---|---|---|---|---|
Observed ASVs | 777 A | 783 A | 727 B | 744 AB | 674 C | 709 BC | 0.003 | 38.160 |
Evenness | 0.816 A | 0.804 AB | 0.796 BC | 0.813 A | 0.789 C | 0.816 A | 0.008 | 0.012 |
Faith’s PD | 57.209 AB | 59.345 A | 55.137 BC | 57.246 AB | 52.061 C | 52.671 C | 0.033 | 3.696 |
Chao1 | 777 A | 784 A | 727 B | 744 AB | 674 C | 709 BC | 0.003 | 38.161 |
Shannon | 7.835 A | 7.733 A | 7.563 B | 7.756 A | 7.415 C | 7.721 A | <0.001 | 0.117 |
Simpson | 0.986 A | 0.983 B | 0.979 C | 0.985 AB | 0.978 C | 0.985 AB | <0.001 | 0.002 |
Bacterial Genera | |||||||
---|---|---|---|---|---|---|---|
Genus | CON | ENTO | EPI | ISO | OPH | MIX | Pooled SEM |
Streptococcus | 5.047 BC | 7.846 AB | 9.477 A | 5.863 BC | 9.629 A | 4.500 C | 1.265 |
Ruminococcaceae unclassified | 0.068 B | 0.147 A | 0.134 A | 0.068 B | 0.076 B | 0.096 B | 0.029 |
Lachnoclostridium | 0 C | 0.127 B | 0.206 A | 0.004 C | 0.132 B | 0.109 B | 0.032 |
Basfia | 0.004 C | 0 C | 0 C | 0.196 A | 0 C | 0.065 B | 0.012 |
Megasphaera | 0 C | 0 C | 0 C | 0.410 A | 0 C | 0.205 B | 0.007 |
Parabacteroides | 0 B | 0 B | 0 B | 0.020 A | 0 B | 0.001 B | 0.003 |
Fusobacterium | 0.019 C | 0.054 BC | 0.023 C | 0.209 A | 0.013 C | 0.077 B | 0.024 |
Bacteroides | 0 C | 0 C | 0 C | 0.477 A | 0 C | 0.102 B | 0.019 |
KEGG pathways | |||||||
Pathway | CON | ENTO | EPI | ISO | OPH | MIX | Pooled SEM |
ko00561 (Glycerolipid metabolism) | 0 B | 0 B | 0 B | 0.497 A | 0 B | 0.491 A | 0.012 |
Sample | CON | ENTO | EPI | ISO | OPH | MIX | p-Value | Pooled SEM |
---|---|---|---|---|---|---|---|---|
Total bacteria | 10.00 B | 10.11 B | 10.01 B | 10.02 B | 10.74 A | 10.86 A | 0.006 | 0.41 |
Total ciliates | - | 6.14 C | 7.02 B | 5.76 D | 6.29 C | 7.45 A | <0.001 | 0.19 |
Total methanogens | 6.73 B | 6.73 B | 6.82 B | 6.92 B | 7.43 A | 7.39 A | <0.001 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Lee, W.; Park, T. Preliminary Study on the Impact of Ruminal Ciliate Inoculation in Fauna-Free Conditions on the Ruminal Fermentation and Ciliate–Prokaryote Association In Vitro. Fermentation 2025, 11, 28. https://doi.org/10.3390/fermentation11010028
Kim G, Lee W, Park T. Preliminary Study on the Impact of Ruminal Ciliate Inoculation in Fauna-Free Conditions on the Ruminal Fermentation and Ciliate–Prokaryote Association In Vitro. Fermentation. 2025; 11(1):28. https://doi.org/10.3390/fermentation11010028
Chicago/Turabian StyleKim, Geonwoo, Woohyung Lee, and Tansol Park. 2025. "Preliminary Study on the Impact of Ruminal Ciliate Inoculation in Fauna-Free Conditions on the Ruminal Fermentation and Ciliate–Prokaryote Association In Vitro" Fermentation 11, no. 1: 28. https://doi.org/10.3390/fermentation11010028
APA StyleKim, G., Lee, W., & Park, T. (2025). Preliminary Study on the Impact of Ruminal Ciliate Inoculation in Fauna-Free Conditions on the Ruminal Fermentation and Ciliate–Prokaryote Association In Vitro. Fermentation, 11(1), 28. https://doi.org/10.3390/fermentation11010028