Effects of Artemisia argyi Aqueous Extract on Rumen Fermentation Parameters and Microbiota in Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of AAE
2.2. Animals and Experiment Design
2.3. Sample Collection and Preparation
2.4. Rumen Fermentation Index Measurement
2.5. Rumen Microbiota Diversity Analysis
2.6. Statistical Analysis
3. Results
3.1. Rumen Fermentation Characteristics
3.2. Rumen Microbiota Diversity
3.2.1. Sampling Depth
3.2.2. Rectal Microbiota Diversity Indices
3.2.3. Taxonomic Classification Levels of the Bacterial Communities
3.2.4. Spearman Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Chen, H.; Liu, Y.; Luo, Y.; He, B.; Wang, S.; Wang, J. Alfalfa intervention alters the colonization of rumen epithelial bacteria to promote rumen development and lamb health during early life. Anim. Feed. Sci. Technol. 2023, 306, 115797. [Google Scholar] [CrossRef]
- Lv, X.; Chai, J.; Diao, Q.; Huang, W.; Zhuang, Y.; Zhang, N. The signature microbiota drive rumen function shifts in goat kids introduced to solid diet regimes. Microorganisms 2019, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Lin, L.; Hu, F.; Zhu, W.; Mao, S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome 2020, 8, 138. [Google Scholar] [CrossRef]
- Trabi, E.B.; Seddik, H.; Xie, F.; Wang, X.F.; Liu, J.H.; Mao, S.Y. Effect of pelleted high-grain total mixed ration on rumen morphology, epithelium-associated microbiota and gene expression of proinflammatory cytokines and tight junction proteins in Hu sheep. Anim. Feed Sci. Technol. 2020, 263, 114453. [Google Scholar] [CrossRef]
- Liu, J.H.; Xu, T.T.; Liu, Y.J.; Zhu, W.Y.; Mao, S.Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R232–R241. [Google Scholar] [CrossRef]
- Liu, J.H.; Bian, G.R.; Zhu, W.Y.; Mao, S.Y. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front. Microbiol 2015, 6, 167. [Google Scholar] [CrossRef]
- Redoy, M.R.A.; Shuvo, A.A.S.; Cheng, L.; AI-Mamun, M. Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal 2020, 14, 2433–2441. [Google Scholar] [CrossRef]
- Zhou, F.; Qin, L.P.; Lian, J.F.; Zhen, Q.M. Chemical constituents, biological activities and plant resources of Folium Artemisia argyi. J. Pharm. Pract. 2000, 2, 96–98. [Google Scholar]
- Kim, J.K.; Shin, E.C.; Lim, H.J.; Choi, S.J.; Kim, C.R.; Suh, S.H.; Kim, C.J.; Park, G.G.; Park, C.S.; Kim, H.K.; et al. Characterization of nutritional composition, antioxidative capacity, and sensory attributes of seomae mugwort, a native Korean variety of Artemisia argyi H. Lév. & Vaniot. J. Anal. Methods Chem. 2015, 2015, 916346. [Google Scholar]
- Faryabi, R.; Mousaie, A.; Bahrampour, J.; Barazandeh, A. The effect of dietary inclusion of Artemisia sieberi leaves on growth performance, feeding behaviors, ruminal fermentation, feed digestibility, and blood hemato-biochemical profile of growing male lambs. Trop. Anim. Health Prod. 2023, 55, 41. [Google Scholar] [CrossRef]
- Bhat, A.R.; Ganai, A.M.; Ishfaq, A.; Beigh, Y.A.; Sheikh, G.G.; Masood, D. In-vitro effect of Artemisia absinthium (Titween) on digestibility and rumen parameters of small ruminants. Indian J. Anim. Res. 2018, 52, 579–582. [Google Scholar]
- Briggs, P.; Hogan, J.; Reid, R. Effect of volatile fatty acids, lactic acid and ammonia on rumen pH in sheep. Aust. J. Agric. Res. 1957, 8, 674–690. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Wang, F.X.; He, J.Y.; Zhang, H.L. Determination of polysaccharides content of Gentiana farreri from different producing areas based on anthrone-sulfuric acid method. China J. Chin. Mater. Medica 2014, 39, 2774–2776. [Google Scholar]
- Boukezzoula, A.; Boudemagh, D.; Palko, N.; Grishina, M.; Bensouici, C.; Bounekhel, M.; AlShamaileh, E.; Dahamna, S. Corrigendum to “Quantification, phytochemical evaluation, and identification of pomegranate yellow peel constituents using LC-MS/MS, the effect of the solvent extract on the antioxidant, in vitro anti-inflammatory, and antibacterial activities”. Ind. Crops Prod. 2024, 222, 119757. [Google Scholar] [CrossRef]
- Li, R.Z.; Hong, L.; Zhao, H.R.C.; Gao, R.H.; Gang, G.; Yu, P.; Zhao, Y.; Shi, B.L. Effects of Artemisia argyi Aqueous Extract on Growth Performance, Nutrient Apparent Digestibility and Intestinal Related Indices of Dorper×Thin-Tailed Han Crossbred Sheep. Chin. J. Anim. Nutr. 2024, 36, 7854–7865. [Google Scholar]
- Li, S.; Guo, Y.; Guo, X.; Shi, B.; Ma, G.; Yan, S.; Zhao, Y. Effects of Artemisia ordosica crude polysaccharide on antioxidant and immunity response, nutrient digestibility, rumen fermentation, and microbiota in cashmere goats. Animals 2023, 13, 3575. [Google Scholar] [CrossRef]
- GB/T 6435–2014; National Technical Committee of Feed Industry Standardization. General Administration of Quality Supervision, inspection and quarantine of the People’s Republic of China; Standardization Administration of China. Standards Press of China: Beijing, China, 2014.
- GB/T 6432–2018; Determination of Crude Protein in Feeds—Kjeldahl Method. Standards Press of China: Beijing, China, 2018.
- GB/T 20806–2006; Determination of Neutral Detergent Fiber in Feedstuffs. Standards Press of China: Beijing, China, 2006.
- NY/T 1459–2007; Determination of Acid Detergent Fiber in Feedstuff (ADF). Standards Press of China: Beijing, China, 2007.
- GB/T 6436–2018; Determination of Calcium in Feeds. Standards Press of China: Beijing, China, 2018.
- GB/T 6437–2018; Determination of Phosphorus in Feeds—Spectrophotometry. Standards Press of China: Beijing, China, 2018.
- GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare. National Laboratory Animal Standardization Technical Committee: Beijing, China, 2018.
- Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing butyrate production, ruminal fermentation and microbial population through supplementation with clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [Google Scholar] [CrossRef]
- Chanjula, P.; Cherdthong, A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J. Anim. Sci. 2018, 96, 1150–1158. [Google Scholar] [CrossRef]
- Seo, J.; Jung, K.J.; Seo, S. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation. PeerJ 2015, 3, e1343. [Google Scholar] [CrossRef]
- Soest, P.J.V. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; Volume 44, pp. 2552–2561. [Google Scholar]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Martín-Tereso, J.; Ter Wijlen, H. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol. 2008, 145, 259–270. [Google Scholar] [CrossRef]
- Berra, G.; Finster, L.; Valtorta, S. Use of tannins to mitigate methane emission in grazing dairy cows. In Proceedings of the Livestock Environment VIII, Iguassu Falls, Brazil, 31 August–4 September 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009; p. 41. [Google Scholar]
- Cone, J.; Becker, P. Fermentation kinetics and production of volatile fattyacids and microbial protein by starchy feedstuffs. Anim. Feed Sci. Technol. 2012, 172, 34–41. [Google Scholar] [CrossRef]
- Cardozo, P.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Geraci, J.I.; Garciarena, A.; Gagliostro, G.A.; Beauchemin, K.A.; Colombatto, D. Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: Ruminal environment, short term intake pattern and animal performance. Anim. Feed Sci. Technol. 2012, 176, 123–130. [Google Scholar] [CrossRef]
- Malhi, M.; Gui, H.; Yao, L.; Aschenbach, J.R.; Gäbel, G.; Shen, Z. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. J. Dairy Sci. 2013, 96, 7603–7616. [Google Scholar] [CrossRef]
- Chen, H.; Guo, B.; Yang, M.; Luo, J.; Hu, Y.; Qu, M.; Song, X. Response of growth performance, blood biochemistry indices, and rumen bacterial diversity in lambs to diets containing supplemental probiotics and Chinese medicine polysaccharides. Front. Vet. Sci. 2021, 8, 681389. [Google Scholar] [CrossRef]
- Razo Ortiz, P.B.; Mendoza Martinéz, G.D.; Silva, G.V.; Osorio Teran, A.I.; Gonzalez Sanchez, J.F.; Hernandez Garcia, P.A.; de la Torre Hérnandez, M.E.; Espinosa Ayala, E. Polyherbal feed additive for lambs: Effects on performance, blood biochemistry and biometry. J. Appl. Anim. Res. 2020, 48, 419–424. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Chen, J.; Duan, C.; Guo, Y.; Liu, Y.; Zhang, Y.; Ji, S. Correlation of ruminal fermentation parameters and rumen bacterial community by comparing those of the goat, sheep, and cow in vitro. Fermentation 2022, 8, 427. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, D.H.; Paradhipta, D.H.V.; Lee, H.J.; Yoon, H.; Joo, Y.H.; Adesogan, A.T.; Kim, S.C. Effects of Wormwood (Artemisia montana) Essential Oils on Digestibility, Fermentation Indices, and Microbial Diversity in the Rumen. Microorganisms 2020, 8, 1605. [Google Scholar] [CrossRef]
- Yu, S.; Xiong, A.; Pan, Y.; Zhang, Y.J.; Wang, Y.; Jiang, L.S.; Xiong, B.H. Effects of Artemisia annua L. Extract on lactation performance, plasma immune and antioxidant indexes of dairy cows. Chin. J. Anim. Nutr. 2021, 33, 3896–3903. [Google Scholar]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, E.; Kenny, D.A.; McGovern, E.; Byrne, C.J.; McCabe, M.S.; Guan, L.L.; Waters, S.M. Investigating temporal microbial dynamics in the rumen of beef calves raised on two farms during early life. FEMS Microbiol. Ecol. 2020, 96, 203. [Google Scholar] [CrossRef]
- Jami, E.; White, B.A.; Mizrahi, I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE 2014, 9, e85423. [Google Scholar] [CrossRef]
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 2016, 32, 1031. [Google Scholar] [CrossRef]
- Beuria, T.K.; Santra, M.K.; Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 2005, 44, 16584. [Google Scholar] [CrossRef]
- Warrier, M.; Shih, D.M.; Burrows, A.C.; Ferguson, D.; Gromovsky, A.D.; Brown, A.L.; Marshall, S.; McDaniel, A.; Schugar, R.C.; Wang, Z.; et al. The TMAO-Generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015, 10, 326–338. [Google Scholar] [CrossRef]
- Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga–Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012, 143, 913–916. [Google Scholar] [CrossRef]
- Dai, H.; Huang, Q.; Li, S.; Du, D.; Yu, W.; Guo, J.; Zhao, Z.; Yu, X.; Ma, F.; Sun, P. Effect of dietary benzoic acid supplementation on growth performance, rumen fermentation, and rumen microbiota in weaned holstein dairy calves. Animals 2024, 14, 2823. [Google Scholar] [CrossRef]
- Mcloughlin, S.; Spillane, C.; Campion, F.P.; Claffey, N.; Sosa, C.C.; McNicholas, Y.; Smith, P.E.; Diskin, M.G.; Waters, S.M. Breed and ruminal fraction effects on bacterial and archaeal community composition in sheep. Sci. Rep. 2023, 13, 3336. [Google Scholar] [CrossRef]
- Thoetkiattikul, H.; Mhuantong, W.; Laothanachareon, T.; Tangphatsornruang, S.; Pattarajinda, V.; Eurwilaichitr, L.; Champreda, V. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr. Microbiol. 2013, 67, 130–137. [Google Scholar] [CrossRef]
Items | Proportion (%) |
---|---|
Diet Composition (as-fed basis) | |
Alfalfa hay | 16.25 |
Corn straw | 14.00 |
Oat hay | 24.75 |
Corn | 23.25 |
Soybean meal | 10.95 |
Wheat bran | 4.25 |
Corn germ meal | 1.95 |
Soybean oil | 1.10 |
Premix 1 | 0.50 |
Limestone | 1.10 |
Calcium hydrogen phosphate | 0.70 |
Salt | 0.40 |
Sodium bicarbonate | 0.80 |
Total | 100.00 |
Nutrient levels 2 (as dry matter basis) | |
Digestible energy (MJ/kg) | 12.01 |
Crude protein | 15.80 |
Neutral detergent fiber | 40.80 |
Acid detergent fiber | 26.24 |
Calcium | 1.08 |
Phosphorus | 0.40 |
Items | CON | AAE-L | AAE-M | AAE-H | SEM | p-Value |
---|---|---|---|---|---|---|
pH | 6.87 | 6.82 | 6.72 | 6.77 | 0.04 | 0.468 |
NH3-N, mg/100 mL | 22.74 | 20.65 | 18.54 | 18.87 | 0.79 | 0.213 |
MCP, mg/100 mL | 22.88 b | 27.75 b | 37.63 a | 34.34 a | 1.42 | <0.001 |
Acetate, mmol/L | 55.28 | 53.47 | 49.79 | 54.81 | 1.06 | 0.152 |
Propionate, mmol/L | 12.58 b | 14.65 ab | 16.18 a | 15.92 a | 0.61 | 0.046 |
Butyrate, mmol/L | 12.24 | 13.50 | 14.32 | 14.23 | 0.35 | 0.132 |
Iso-butyrate, mmol/L | 0.62 | 0.66 | 0.67 | 0.64 | 0.02 | 0.932 |
Valerate, mmol/L | 1.33 | 1.45 | 1.50 | 1.45 | 0.04 | 0.404 |
Iso-valerate, mmol/L | 0.72 | 0.78 | 0.82 | 0.80 | 0.04 | 0.751 |
A/P | 4.43 a | 3.78 b | 3.13 b | 3.66 b | 0.14 | 0.003 |
TVFA, mmol/L | 82.78 | 84.50 | 83.27 | 87.87 | 1.46 | 0.570 |
Items | CON | AAE-L | AAE-M | AAE-H | SEM | p-Value |
---|---|---|---|---|---|---|
Bacteroidota | 52.31 | 48.15 | 54.03 | 54.46 | 3.53 | 0.511 |
Firmicutes | 43.16 | 47.12 | 40.01 | 39.42 | 3.57 | 0.487 |
Spirochaetota | 1.99 | 2.23 | 2.43 | 2.23 | 0.36 | 0.276 |
Fibrobacterota | 0.68 | 0.80 | 1.67 | 1.04 | 0.39 | 0.746 |
Actinobacteriota | 0.49 b | 0.54 b | 0.80 ab | 1.09 a | 0.14 | 0.017 |
Proteobacteria | 0.25 | 0.22 | 0.23 | 0.11 | 0.09 | 0.759 |
Patescibacteria | 0.47 | 0.29 | 0.25 | 0.26 | 0.04 | 0.273 |
Desulfobacterota | 0.23 | 0.14 | 0.11 | 0.11 | 0.03 | 0.558 |
Verrucomicrobiota | 0.18 | 0.14 | 0.10 | 0.15 | 0.02 | 0.372 |
Chloroflexi | 0.02 | 0.03 | 0.04 | 0.03 | 0.01 | 0.246 |
Others | 0.21 | 0.19 | 0.21 | 0.24 | 0.02 | 0.840 |
Items | CON | AAE-L | AAE-M | AAE-H | SEM | p-Value |
---|---|---|---|---|---|---|
Prevotella | 28.59 | 22.40 | 31.26 | 29.71 | 2.46 | 0.599 |
Rikenellaceae | 6.53 | 6.68 | 6.05 | 7.09 | 0.71 | 0.639 |
Christensenellaceae | 6.05 | 8.28 | 4.73 | 5.04 | 0.55 | 0.412 |
Muribaculaceae | 5.58 | 6.13 | 6.24 | 6.53 | 0.69 | 0.141 |
NK4A214 | 5.01 | 4.62 | 4.26 | 3.90 | 0.33 | 0.681 |
F082 | 3.63 | 5.08 | 4.46 | 4.42 | 0.54 | 0.862 |
Succiniclasticum | 4.17 | 3.17 | 4.16 | 3.92 | 0.48 | 0.766 |
Lachnospiraceae | 3.14 | 2.89 | 2.57 | 2.88 | 0.27 | 0.901 |
UCG-001 | 3.45 | 2.99 | 2.84 | 2.19 | 0.48 | 0.829 |
Treponema | 1.95 | 2.20 | 2.38 | 2.20 | 0.18 | 0.564 |
Others | 33.39 | 35.55 | 35.27 | 32.12 | 1.42 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Du, J.; Gang, G.; Jin, X.; Xing, Y.; Xu, Y.; Hong, L.; Yan, S.; Shi, B. Effects of Artemisia argyi Aqueous Extract on Rumen Fermentation Parameters and Microbiota in Lambs. Fermentation 2025, 11, 53. https://doi.org/10.3390/fermentation11020053
Gao R, Du J, Gang G, Jin X, Xing Y, Xu Y, Hong L, Yan S, Shi B. Effects of Artemisia argyi Aqueous Extract on Rumen Fermentation Parameters and Microbiota in Lambs. Fermentation. 2025; 11(2):53. https://doi.org/10.3390/fermentation11020053
Chicago/Turabian StyleGao, Ruiheng, Juan Du, Gen Gang, Xiao Jin, Yuanyuan Xing, Yuanqing Xu, Lei Hong, Sumei Yan, and Binlin Shi. 2025. "Effects of Artemisia argyi Aqueous Extract on Rumen Fermentation Parameters and Microbiota in Lambs" Fermentation 11, no. 2: 53. https://doi.org/10.3390/fermentation11020053
APA StyleGao, R., Du, J., Gang, G., Jin, X., Xing, Y., Xu, Y., Hong, L., Yan, S., & Shi, B. (2025). Effects of Artemisia argyi Aqueous Extract on Rumen Fermentation Parameters and Microbiota in Lambs. Fermentation, 11(2), 53. https://doi.org/10.3390/fermentation11020053