The Production of an Economical Culture Medium from Apple Pomace for the Propagation of Non-Conventional Cidermaking Yeast Starters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Pomace
2.2. Experimental Design for the Acid and Alkaline Treatment
2.3. Physicochemical Characterization
2.4. Yeast Growth Assays
2.5. Statistical Analysis
3. Results
3.1. Optimization of Acid and Alkaline Treatment Conditions for Apple Pomace
3.1.1. Acid Treatment
3.1.2. Alkaline Treatment
3.1.3. Physicochemical Characterization of Apple Pomace
3.2. Yeasts Growth Assays Using Treated Apple Pomace as Substrate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cámara Argentina de Fruticultores Integrados (CAFI). 2024. Available online: https://www.cafi.org.ar/ (accessed on 30 October 2024).
- La ruta de la sidra. 2024. Available online: https://revistaaire.com/rutadelasidra/ (accessed on 30 October 2024).
- Sidra. Revista Alimentos Argentinos. 2011. Available online: https://www.argentina.gob.ar/buscar/magyp (accessed on 30 October 2024).
- Martău, G.A.; Teleky, B.-E.; Ranga, F.; Pop, I.D.; Vodnar, D.C. Apple pomace as a sustainable substrate in sourdough fermentation. Front. Microbiol. 2021, 12, 742020. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple pomace as potential source of natural active compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef] [PubMed]
- ANUARIO. Complejo Manzana y Pera. Ministerio de Hacienda y de Finanzas. 2014. Available online: http://www.economia.gob.ar (accessed on 30 October 2024).
- Feng, X.; Wang, H.; Wang, Y.; Wang, X.; Huang, J. Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int. J. Hydrogen Energy 2009, 35, 3058–3064. [Google Scholar] [CrossRef]
- Gullón, B.; Garrote, G.; Alonso, J.L.; Parajó, J.C. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: A response surface methodology assessment. J. Agric. Food Chem. 2007, 55, 5580–5587. [Google Scholar] [CrossRef] [PubMed]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of apple pomace by extraction of valuable compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Babrzadeh, F.; Jalili, R.; Wang, C.; Shokralla, S.; Pierce, S.; Robinson-Mosher, A.; Nyren, P.; Shafer, R.W.; Basso, L.C.; de Amorim, H.V.; et al. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol. Genet. Genom. 2012, 287, 485–494. [Google Scholar] [CrossRef]
- Braide, W.; Kanu, I.A.; Oranusi, U.S.; Adeleye, S.A. Production of bioethanol from agricultural waste. J. Fundam. Appl. Sci. 2016, 8, 372–386. [Google Scholar] [CrossRef]
- Magyar, M.; da Costa Sousa, L.; Jin, M.; Sarks, C.; Balan, V. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl. Microbiol. Biotechnol. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Lucero, V.; Carrillo-Lopez, L.; Janacua, H. Use of apple pomace in animal feed as an antioxidant of meat. S. Afr. J. Anim. Sci. 2019, 49, 131–139. [Google Scholar] [CrossRef]
- Maslovarić, M.; Vukmirović, Đ.; Pezo, L.; Čolović, R.; Jovanović, R.; Spasevski, N.; Tolimir, N. Influence of apple pomace inclusion on the process of animal feed pelleting. In Food Additives & Contaminants: Part A; Gilbert, J., Anklam, E., Chung, S., Phillips, T., Stadler, R., Eds.; Taylor and Francis Group: London, UK, 2017; Volume 34, pp. 1353–1363. [Google Scholar]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of food waste as animal feed: A step towards sustainable food waste management and circular bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef]
- Berovič, M.; Ostroveršnik, H. Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace. J. Biotech. 1997, 53, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Josh, V.K.; Parmar, M.; Rana, N. Purification, characterization of pectinase produced from apple pomace and its evaluation in the fruit juice extraction and clarification. J. Biotech. 2008, 136, S294. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, H.; Renc, S. Antioxidant activity and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace. J. Sci. Food Agric. 2013, 93, 2502–2506. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Biobutanol production from apple pomace: The importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl. Microbiol. Biotechnol. 2017, 21, 8041–8052. [Google Scholar] [CrossRef]
- Liu, L.; You, Y.; Deng, H.; Guo, Y.; Meng, Y. Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass Bioenergy 2019, 126, 62–69. [Google Scholar] [CrossRef]
- Paniagua-García, A.I.; Garita-Cambronero, J.; González-Rojo, S.; Díez-Antolínez, R. Optimization of lactic acid production from apple and tomato pomaces by thermotolerant bacteria. J. Environ. Manag. 2024, 366, 121806. [Google Scholar] [CrossRef]
- Bhushan, S.; Joshi, V.K. Baker’s yeast production under fed batch culture from apple pomace. J. Sci. Ind. Res. 2006, 65, 72–76. [Google Scholar]
- Almeida, J.R.M.; Karhumaa, K.; Bengtsson, O.; Gorwa-Grauslund, M.F. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour. Technol. 2009, 100, 3674–3677. [Google Scholar] [CrossRef] [PubMed]
- González Flores, M.; Rodríguez, M.E.; Oteiza, J.M.; Barbagelata, R.J.; Lopes, C.A. Physiological characterization of Saccharomyces uvarum and Saccharomyces eubayanus from Patagonia and their potential for cidermaking. Int. J. Food Microbiol. 2017, 249, 9–17. [Google Scholar] [CrossRef]
- González Flores, M.; Rodríguez, M.E.; Origone, A.C.; Oteiza, J.M.; Querol, A.; Lopes, C.A. Saccharomyces uvarum isolated from patagonian ciders shows excellent fermentative performance for low temperature cidermaking. Food Res. Int. 2019, 126, 108656. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.; Boopathy, R. Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. BioResources 2008, 3, 452–460. [Google Scholar] [CrossRef]
- Aita, G.A.; Salvi, D.A.; Walker, M.S. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour. Technol. 2011, 102, 4444–4448. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Ucuncu, C.; Tari, C.; Demir, H.; Buyukkileci, A.O.; Ozen, B. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production. J. Biobased Mater. Bioenergy 2013, 7, 376–389. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Remzi Becer, C. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman1, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef]
- Valdés, G.; Mendonça, R.T.; Aggelis, G. Lignocellulosic biomass as a substrate for oleaginous microorganisms: A Review. Appl. Sci. 2020, 10, 7698. [Google Scholar] [CrossRef]
- da Costa Correia, J.A.; Marques Júnior, J.E.; Rocha, B.; Gonçalves, L.; Valderez Ponte Rocha, M. Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: Study of parameters. Bioresour. Technol. 2013, 139, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Karagöz, P.; Rocha, I.; Özkan, M.; Angelidaki, I. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation. Bioresour. Technol. 2012, 104, 349–357. [Google Scholar] [CrossRef]
- McIntosh, S.; Vancov, T. Optimization of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 2011, 35, 3094–3103. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Fang, Z.; Wang, X.; Bu, H. Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis. Int. J. Hydrogen Energy 2010, 35, 8303–8309. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Pejó, E.; Alvira, P.; Ballesteros, M.; Negro, M. Pretreatment technologies for lignocellulose-to-bioethanol conversion. In Biofuels; Academic Press: Cambridge, MA, USA, 2011; pp. 149–176. [Google Scholar]
- Aguilar, R.; Ramírez, J.A.; Garrote, G.; Vázquez, M. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 2002, 55, 309–318. [Google Scholar] [CrossRef]
- Kim, I.; Lee, B.; Park, J.-Y.; Choi, S.-A.; Han, J.-I. Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr. Polym. 2014, 99, 563–567. [Google Scholar] [CrossRef]
- Parmar, I.; Vasantha Rupasinghe, H.P. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation. Bioresour. Technol. 2013, 130, 613–620. [Google Scholar] [CrossRef]
- Skiba, E.A.; Budaeva, V.V.; Baibakova, O.V.; Zolotukhin, V.N.; Sakovich, G.V. Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem. Eng. J. 2017, 126, 118–125. [Google Scholar] [CrossRef]
- Toquero, C.; Bolado, S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 2014, 157, 68–76. [Google Scholar] [CrossRef]
- Geddes, C.C.; Peterson, J.J.; Roslander, C.; Zacchi, G.; Mullinnix, M.T.; Shanmugam, K.T.; Ingram, L.O. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour. Technol. 2010, 101, 1851–1857. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, J. Lignocellulose Pretreatment Using Acid as Catalyst. In Handbook of Biorefinery Research and Technology; Bisaria, V., Ed.; Springer: Dordrecht, The Netherlands, 2018; pp. 1–14. [Google Scholar]
- Larsson, S.; Palmqvist, E.; Hahn-Hägerdal, B.; Tengborg, C.; Stenberg, K.; Zacchi, G.; Nilvebrant, N.O. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym. Microb. Technol. 1999, 24, 151–159. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Lewkowski, J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc 2001, 1, 17–57. [Google Scholar] [CrossRef]
- Keating, J.D.; Panganiban, C.; Mansfield, S.D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 2006, 93, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.P.C.; Verheijen, P.J.T.; Straathof, A.J.J. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products. Appl. Microbiol. Biotechnol. 2016, 100, 9069–9080. [Google Scholar] [CrossRef] [PubMed]
- Lopes da Silva, T.; Santo, R.; Reis, A.; Passarinho, P.C. Effect of furfural on Saccharomyces carlsbergensis growth, physiology and ethanol production. Appl. Biochem. Biotechnol. 2016, 182, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Qureshi, N.; Wang, H.; Huang, H. Acetone-buthanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. Fuel 2019, 244, 536–544. [Google Scholar] [CrossRef]
- Modig, T.; Liden, G.; Taherzadeh, M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769–776. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef]
- Quintero, J.A.; Rincón, L.E.; Cardona, C.A. Production of bioethanol from agroindustrial residues as feedstocks. In Biofuels. Alternative Feedstocks and Conversion Processes; Pandey, A., Ricke, S.C., Gnansounou, E., Larroche, C., Dussap, C.-G., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 251–285. [Google Scholar]
- Tu, W.-C.; Hallet, J.P. Recent advances in the pretreatment of lignocellulosic biomass. Curr. Opin. Green Sustain. Chem. 2019, 20, 11–17. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Eklund, R.; Gustafsson, L.; Niklasson, C.; Lidén, G. Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind. Eng. Chem. Res. 1997, 36, 4659–4665. [Google Scholar] [CrossRef]
- Tan, Z.; Li, X.; Yang, C.; Liu, H.; Cheng, J.J. Inhibition and disinhibition of 5-hydroxymethylfurfural in anaerobic fermentation: A review. Chem. Eng. J. 2021, 424, 130560. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Myers, R.H.; Carter, W.H., Jr.; Vining, G.G. The hierarchy principle in designed industrial experiments. Qual. Reliab. Eng. Int. 2005, 21, 197–201. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Andrés-Lacueva, C.; Medina-Remon, A.; Llorach, R.; Urpi-Sarda, M.; Khan, N.; Chiva-Blanch, G.; Zamora-Ros, R.; Rotches-Ribalta, M.; Lamuela-Raventós, R.M. Phenolic compounds: Chemistry and occurrence in fruits and vegetables. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability; de la Rosa, L.A., Alvarez-Parrilla, E., González-Aguilar, G.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2010; pp. 53–88. [Google Scholar]
- Saffe, A.; Fernandez, A.; Mazza, G.; Rodriguez, R. Prediction of regional agro-industrial wastes characteristics by thermogravimetric analysis to obtain bioenergy using thermal process. Energy Explor. Exploit. 2019, 37, 544–557. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of extractives in biomass. Lab. Anal. Proced. 2005, 1617, 1–16. [Google Scholar]
- Riveros-Gomez, M.; Zalazar-García, D.; Mut, I.; Torres-Sciancalepore, R.; Fabani, M.P.; Rodriguez, R.; Mazza, G. Multiobjective optimization and implementation of a biorefinery production scheme for sustainable extraction of pectin from quince biowaste. ACS Eng. Au 2022, 2, 496–506. [Google Scholar] [CrossRef]
- Sörensen, S.P.L. Enzymstudien I: Über die quantitative messung proteolytischer spaltungen, die formoltitrierung. Biochem. Z. 1907, 7, 45–101. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Evcan, E.; Tari, C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy 2015, 88, 775–782. [Google Scholar] [CrossRef]
- Fang, J.; Liu, Y.; Huan, C.C.; Xu, L.; Ji, G.; Yan, Z. Comparison of poly-γ-glutamic acid production between sterilized and non-sterilized solid-state fermentation using agricultural waste as substrates. J. Clean. Prod. 2020, 255, 120248. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Niu, D.; Zhao, Y. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst. Eng. 2015, 38, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Baysal, Z.; Uyar, F.; Aytekin, C. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 2003, 38, 1665–1668. [Google Scholar] [CrossRef]
- Bravo, S.M.E.; Morales, M.; del Monaco, S.M.; Caballero, A.C. Apple bagasse as a substrate for the propagation of Patagonian wine yeast biomass. Appl. Microbiol. 2019, 126, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Langellotti, A.L.; Sacchi, R.; Masi, P. Techno-economic assessment of DHA-rich Aurantiochytrium sp. production using food industry by-products and waste streams as alternative growth media. Bioresour. Technol. Rep. 2022, 18, 100997. [Google Scholar] [CrossRef]
- Rocha, M.V.R.; Rodrigues, T.H.S.; de Albuquerque, T.L.; Gonçalves, L.R.B.; de Macedo, G.R. Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem. Eng. J. 2014, 243, 234–243. [Google Scholar] [CrossRef]
- Parmar, I.; Rupasinghe, H.P.V. Optimization of dilute acid-based pretreatment and application of laccase on apple pomace. Bioresour. Technol. 2012, 124, 433–439. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Kemsawasd, V.; Viana, T.; Ardö, Y.; Arneborg, N. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 10191–10207. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M. Metals in yeast fermentation processes. Adv. Appl. Microbiol. 2004, 54, 197–229. [Google Scholar]
- Tengborg, C.; Galbe, M.; Zacchi, G. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 2001, 17, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, M.L.M.; Prata, A.M.R.; Felipe, M.G.A.; Almeida E Silva, J.B. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzym. Microb. Technol. 2006, 40, 17–24. [Google Scholar] [CrossRef]
- Banerjee, N.; Bhatnagar, R.; Viswanathan, L. Development of resistance in Saccharomyces cerevisiae against inhibitory effects of browning reaction products. Enzym. Microb. Technol. 1981, 3, 24–28. [Google Scholar] [CrossRef]
- Pfeifer, P.A.; Bonn, G.; Bobleter, O. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 1984, 6, 541–546. [Google Scholar] [CrossRef]
- de Vasconcelos, S.M.; Pinheiro Santos, A.M.; Moraes Rocha, G.J.; Souto-Maior, A.M. Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresour. Technol. 2013, 135, 46–52. [Google Scholar] [CrossRef]
- Garrett, E.R.; Dvorchik, B.H. Kinetics and mechanisms of the acid degradation of the aldopentoses to furfural. J. Pharm. Sci. 1969, 58, 813–820. [Google Scholar] [CrossRef]
- Oshoma, C.E.; Greetham, D.; Louis, E.J.; Smart, K.A.; Phister, T.G.; Powell, C.; Du, C. Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation. PLoS ONE 2015, 10, e0135626. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.M.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- Hasunuma, T.; Sung, K.; Sanda, T.; Yoshimura, K.; Matsuda, F.; Kondo, A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2011, 90, 997–1004. [Google Scholar] [CrossRef]
- Sanchez, B.; Bautista, J. Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzym. Microb. Technol. 1988, 10, 315–318. [Google Scholar] [CrossRef]
- Parawira, W.; Tekere, M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review. Crit. Rev. Biotechnol. 2011, 31, 20–31. [Google Scholar] [CrossRef]
- Larsson, S.; Quintana-Sáinz, A.; Reimann, A.; Nilvebrant, N.O.; Jönsson, L.J. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2000, 84–86, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Pienkos, P.T.; Zhang, M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 2009, 16, 743–762. [Google Scholar] [CrossRef]
- Van der Pol, E.C.; Bakker, R.R.; Baets, P.; Eggink, G. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl. Microbiol. Biotechnol. 2014, 98, 9579–9593. [Google Scholar] [CrossRef] [PubMed]
- Wierckx, N.; Koopman, F. Microbial degradation of furanic compounds: Biochemistry, genetics, and impact. Appl. Microbiol. Biotechnol. 2011, 92, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.E.; Bergmann, J.C.; de Almeida, J.R.M. Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Braz. J. Microbiol. 2021, 52, 575–586. [Google Scholar] [CrossRef]
STD | Temperature | Phosphoric Acid Concentration | Solid/Liquid Ratio | TRS | GLU |
---|---|---|---|---|---|
(°C) | (%v/v) | (g/mL) | (g/100 g Dry Apple Pomace) | ||
1 | −1 (121) | −1 (0.2) | −1 (1:20) | 39.43 | 5.64 |
2 | +1 (131) | −1 (0.2) | −1 (1:20) | 51.29 | 7.85 |
3 | −1 (121) | +1 (1) | −1 (1:20) | 48.72 | 12.57 |
4 | +1 (131) | +1 (1) | −1 (1:20) | 49.56 | 12.27 |
5 | −1 (121) | −1 (0.2) | +1 (1:30) | 40.47 | 6.27 |
6 | +1 (131) | −1 (0.2) | +1 (1:30) | 78.82 * | 11.98 * |
7 | −1 (121) | +1 (1) | +1 (1:30) | 54.66 | 14.02 |
8 | +1 (131) | +1 (1) | +1 (1:30) | 47.63 | 13.06 |
9 | −1 (121) | 0 (0.6) | 0 (1:25) | 52.72 | 11.65 |
10 | +1 (131) | 0 (0.6) | 0 (1:25) | 44.74 | 10.02 |
11 | 0 (126) | −1 (0.2) | 0 (1:25) | 46.73 * | 8.95 |
12 | 0 (126) | +1 (1) | 0 (1:25) | 66.06 | 12.54 |
13 | 0 (126) | 0 (0.6) | −1 (1:20) | 66.86 | 11.42 |
14 | 0 (126) | 0 (0.6) | +1 (1:30) | 57.73 | 10.86 |
15(C) | 0 (126) | 0 (0.6) | 0 (1:25) | 55.99 | 11.06 |
16(C) | 0 (126) | 0 (0.6) | 0 (1:25) | 57.14 | 11.59 |
STD | Temperature | Time | Ammonium Hydroxide Concentration | TRS | GLU |
---|---|---|---|---|---|
(°C) | (h) | (%v/v) | g/100 g Dry Pomace | ||
1 | +1 (20) | +1 (18) | −1 (1) | 43.71 | 16.57 |
2 | +1 (20) | −1 (2) | +1 (6) | 52.03 | 15.81 |
3 | −1 (4) | +1 (18) | +1 (6) | 45.92 | 14.49 |
4 | −1 (4) | −1 (2) | −1 (1) | 43.71 | 15.11 |
5 | −1 (4) | 0 (10) | 0 (3.5) | 47.67 | 15.70 |
6 | +1 (20) | 0 (10) | 0 (3.5) | 45.95 | 15.50 |
7 | 0 (12) | −1 (2) | 0 (3.5) | 49.73 | 15.92 |
8 | 0 (12) | +1 (18) | 0 (3.5) | 46.52 | 14.16 |
9 | 0 (12) | 0 (10) | −1 (1) | 45.64 | 13.46 |
10 | 0 (12) | 0 (10) | +1 (6) | 47.81 | 11.75 |
11(C) | 0 (12) | 0 (10) | 0 (3.5) | 48.02 | 12.13 |
12(C) | 0 (12) | 0 (10) | 0 (3.5) | 47.24 | 13.21 |
Factors | Level | Coefficients 1 | ||
---|---|---|---|---|
(−1) | (+1) | TRS | GLU | |
Temperature (°C) | 80 | 126 | 4.46 | 0.59 |
Time (min) | 5 | 40 | ns | 0.50 |
Solid/liquid ratio (g/mL) | 1/7 | 1/11 | 1.91 | ns |
Phosphoric acid concentration (%v/v) | 1 | 4 | −9.10 | −0.61 |
Temperature * acid phosphoric conc. | −1.87 | −0.64 |
Constituents | Apple Pomace | ||
---|---|---|---|
Untreated | Acid Treatment | Alkaline Treatment | |
General Composition | |||
Total polyphenols | 2.75 ± 0.06 b | 6.22 ± 0.11 c | 2.1 ± 0.08 a |
pH | 3.86 ± 0.15 b | 2.26 ± 0.33 a | 11.36 ± 1.90 c |
Moisture * | 79.30 ± 0.03 | nd | nd |
Easily assimilable nitrogen | 339.81 a | 771.46 b | nd |
Ash * | 2.38 ± 0.07 c | 0.40 ± 0.14 a | 1.34 ± 0.08 b |
Extractives | 65.34 ± 3.11 b | 5 ± 0.76 a | 5.25 ± 0.62 a |
Alcohol-insoluble fraction of carbohydrate | |||
Lignin | 9 ± 1.23 a | 8 ± 0.93 a | 7.5 ± 0.74 a |
Cellulose | 17 ± 0.60 b | 11 ± 0.83 a | 13.4 ± 0.43 ab |
Hemicellulose | 7 ± 1.06 a | 5 ± 0.70 a | 6.4 ± 0.52 a |
Alcohol-soluble fraction of carbohydrate | |||
Glucose | 7.91 ± 0.33 a | 14.02 ± 0.63 b | 10.00 ± 0.02 b |
Fructose | 17.08 + 0.07 a | 26.02 ± 0.08 b | 7.38 ± 0.05 a |
Sucrose | ND | ND | ND |
Xylose | 0.17 ± 0.01 a | 0.99 ± 0.30 b | ND |
Galactose | ND | 0.87 ± 0.22 | ND |
Arabinose Potential growth inhibitors | ND | 2.95 ± 0.06 | ND |
Formic acid | ND | ND | 0.71 ± 0.082 |
Acetic acid | 0.13 ± 0.003 a | 1.73 ± 0.100 c | 0.59 ± 0.030 b |
Levulinic Acid | 1.04 ± 0.026 | ND | ND |
HMF | 0.14 ± 0.001 a | 1.09 ± 0.027 b | 0.09 ± 0.002 a |
Furfural | 0.004 ± 0.000 | ND | ND |
Minerals | |||
Sodium | <LDM | <LDM | <LDM |
Phosphorus | 64 ± 5 a | 11800 ± 72 b | 52 ± 5 a |
Magnesium | 14.40 ± 0.89 a | 60 ± 1 b | <LDM |
Potassium | 340 ± 1 a | 480 ± 2 c | 360 ± 3 b |
Calcium | <LDM | 104 ± 6 | <LDM |
Manganese | 0.07 ± 0.02 a | 0.48 ± 0.02 b | <LDM |
Iron | <LDM | 4.8 ± 0.01 | <LDM |
Copper | 0.38 ± 0.04 b | 0.82 ± 0.01 c | 0.14 ± 0.03 a |
Zinc | <LDM | 2.6 ± 0.01 | <LDM |
Growth Parameters | NPCC 1292 | NPCC 1420 | ||
---|---|---|---|---|
Acid Treatment | Alkaline Treatment | Acid Treatment | Alkaline Treatment | |
A | 6.32(0.08) bB | 4.79(0.08) aB | 4.63(0.07) bA | 4.01(0.03) aA |
λ (h) | 5.73(0.10) aA | 6.74(0.07) bA | 5.26(0.89) aA | 7.28(1.34) bA |
µmax (h−1) | 0.20(0.003) bA | 0.12(0.003) aA | 0.19(0.002) bA | 0.14(0.001) aB |
Td (h) | 3.46(0.10) aA | 5.78(0.12) bB | 3.65(0.03) aA | 5.13(0.00) bA |
Growth Parameters | NPCC 1292 | NPCC 1420 | ||||
---|---|---|---|---|---|---|
Untreated | Acid Treatment 2% | Acid Treatment 3% | Untreated | Acid Treatment 2% | Acid Treatment 3% | |
A | 5.87(0.08) bB | 4.97(0.00) aA | 6.21(0.04) cB | 5.05(0.00) aA | 6.28(0.03) bB | 5.28(0.10) aA |
µmax (h−1) | 0.27(0.006) bB | 0.17(0.002) aB | 0.17(0.000) aB | 0.23(0.000) bA | 0.15(0.005) aA | 0.14(0.004) aA |
ΔX (g L−1) | 1.90(0.01) aA | 2.32(0.16) aB | 3.04(0.10) bB | 1.61(0.03) aA | 1.79(0.01) bA | 1.75(0.01) bA |
ΔS (g L−1) | 18.46(0.2) bA | 16.16(0.24) aA | 24.07(0.33) cA | 18.42(0.04) bA | 15.9(0.19) aA | 23.91(0.12) cA |
Y (ΔX/ΔS) | 0.10(0.001) aB | 0.14(0.009) bB | 0.13(0.001) bA | 0.09(0.002) aA | 0.11(0.001) cA | 0.10(0.001) bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanini, J.M.; Origone, A.C.; Sangorrín, M.P.; Maturano, C.R.; Lopes, C.A.; Rodríguez, M.E. The Production of an Economical Culture Medium from Apple Pomace for the Propagation of Non-Conventional Cidermaking Yeast Starters. Fermentation 2025, 11, 33. https://doi.org/10.3390/fermentation11010033
Fontanini JM, Origone AC, Sangorrín MP, Maturano CR, Lopes CA, Rodríguez ME. The Production of an Economical Culture Medium from Apple Pomace for the Propagation of Non-Conventional Cidermaking Yeast Starters. Fermentation. 2025; 11(1):33. https://doi.org/10.3390/fermentation11010033
Chicago/Turabian StyleFontanini, Josefina M., Andrea C. Origone, Marcela P. Sangorrín, Carmen R. Maturano, Christian A. Lopes, and M. Eugenia Rodríguez. 2025. "The Production of an Economical Culture Medium from Apple Pomace for the Propagation of Non-Conventional Cidermaking Yeast Starters" Fermentation 11, no. 1: 33. https://doi.org/10.3390/fermentation11010033
APA StyleFontanini, J. M., Origone, A. C., Sangorrín, M. P., Maturano, C. R., Lopes, C. A., & Rodríguez, M. E. (2025). The Production of an Economical Culture Medium from Apple Pomace for the Propagation of Non-Conventional Cidermaking Yeast Starters. Fermentation, 11(1), 33. https://doi.org/10.3390/fermentation11010033