Production of an Extract with β-1,4-Xylanase Activity by Fusarium oxysporum f. sp. melonis on a Sonicated Brewer’s Spent Grain Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. BSG Composition
2.3. Pretreatment of BSG
2.4. Origin and Growth of the Microorganism
2.5. Preparation of Mineral Medium with BSG
2.6. Enriched Inoculum Preparation
2.7. Production of the Enzyme Extract and Xylanase Activity
2.8. Statical Analyses
3. Results and Discussion
3.1. Chemical Composition of BSG
3.2. Antioxidant Capacity of BSG
3.3. Monitoring of the Enzyme Extract
3.4. Ferulic Acid Content in the Enriched Inoculum and Enzymatic Extract
3.5. Lignocellulosic Composition in the Solid Fraction of the Enzyme Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; John Wiley & Sons: Ames, IA, USA, 2006; p. 388. [Google Scholar]
- Garcés de Granada, E.; Orozco de Amézquita, M.; Bautista, G.R.; Valencia, H. Fusarium oxysporum el hongo que nos falta conocer. Acta Biol. Colomb. 2001, 6, 7–25. [Google Scholar]
- Polizeli, M.L.T.M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Xiros, C.; Topakas, E.; Katapodis, P.; Chistakopoulos, P. Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind. Crops Prod. 2008, 28, 213–224. [Google Scholar] [CrossRef]
- Kim, D.H.; Martyn, R.D.; Magill, C.W. Mitochondrial DNA (mtDNA)-relatedness among formae speciales of Fusarium oxysporum in the Cucurbitaceae. Phytopathol 1993, 83, 91–97. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol. Biofuels 2009, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Fazenda, M.L.; Seviour, R.; McNeil, B.; Harvey, L.M. Submerged culture fermentation of ’higher fungi’: The macrofungi. Adv. Appl. Microbiol. 2008, 63, 33–103. [Google Scholar]
- Doriya, K.; Jose, N.; Gowda, M.; Kumar, D.S. Solid-state fermentation vs submerged fermentation for the production of L-asparaginase. Adv. Food Nutr. Res. 2016, 78, 115–135. [Google Scholar]
- Bekatorou, A.; Plessas, S.; Mantzourani, I. Biotecnological exploitation of brewery solid wastes for recovery or production of value-added products. In Advances in Food Biotechnology, 1st ed.; Ravishankar, R.V., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2016; pp. 395–413. ISBN 978-1-118-86455-5. [Google Scholar]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Jaeger, A.; Zannini, E.; Sahin, A.W.; Arendt, E.K. Batrleyprotein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods 2021, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Conway, J. Beer-Production Worldwide From 1998 to 2022. 2023. Available online: https://www.statista.com/statistics/270275/worldwide-beer-production/ (accessed on 1 August 2024).
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewers’ spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Teixeira, J.A.; Pintado, M. Current extraction techniques towards bioactive compounds from brewer’s spent grain: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2730–2741. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Strain, C.R.; Johnson, C.; Patangia, D.; Stanton, C.; Koc, F.; Gil-Martinez, J.; O’Riordan, P.; Sahin, A.W.; Ross, R.P.; et al. Extraction and characterization of arabinoxylan from brewers spent grain and investigation of microbiome Modulation Potential. Eur. J. Nutr. 2021, 60, 4393–4411. [Google Scholar] [CrossRef]
- Reis, S.F.; Gullón, B.; Gullón, P.; Ferreira, S.; Maia, C.J.; Alonso, J.L.; Domingues, F.C.; Abu-Ghannam, N. Evaluation of the prebiotic potential of arabinoxylans from brewer’s spent grain. Appl. Microbiol. Biotechnol. 2014, 98, 9365–9373. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.L.; Otto, B.; Reich, S.C.; Weickert, M.O.; Steiniger, J.; Machowetz, A.; Rudovich, N.N.; Möhlig, M.; Katz, N.; Speth, M.; et al. Arabinoxylan consumption decreases postpandrial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur. J. Clin. Nutr. 2007, 61, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Z.; Fu, Y.; Liu, J.; Lin, S.; Zhang, Q.; Liu, Y.; Wu, D.; Lin, D.; Han, G.; et al. Structure, antioxidant, and hypoglycemic activities of arabinoxylans extracted by multiple methods from triticale. Antioxidants 2019, 8, 584. [Google Scholar] [CrossRef]
- Izydorczyk, M.S. Arabinoxylans. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Series in Food Science and Nutrition; Woodhead Publishing: Swaston, UK, 2021; pp. 339–461. [Google Scholar]
- Bianco, A.; Budroni, M.; Zara, S.; Mannazzu, I.; Fancello, F.; Zara, G. The role of microorganisms on biotransformation of brewers spent grain. Appl. Microbiol. Biotechnol. 2020, 104, 8661–8678. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C. Lignocellulosic residues: Biodegration and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Faulds, C.B.; Williamson, G. Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Appl. Microbiol. Biotechnol. 1995, 43, 1082–1087. [Google Scholar] [CrossRef]
- Xiros, C.; Moukouli, M.; Topakas, E.; Christakopoulos, P. Factors affecting ferulic acid release from Brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresour. Technol. 2009, 100, 5917–5921. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.F.; Coelho, E.; Coimbra, M.A.; Abu-Ghannam, N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound assisted extraction. Ultrason. Sonochemistry 2015, 24, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Smith, C.; Li, W. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res. Int. 2014, 65, 423–436. [Google Scholar] [CrossRef]
- Heredia-Olea, E.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Effect of extrusion conditions and hydrolysis with fiber-degrating enzymes on the production of C5 and C6 sugars from brewers spent grain for bioethanol production. Biofuel Res. J. 2015, 2, 203–208. [Google Scholar] [CrossRef]
- Severini, C.; Azzollini, D.; Jouppila, K.; Jussi, L.; Derossi, A.; De Pilli, T. Effect of enzymatic and technological treatments on solubilization of arabinoxylans from brewer’s spent grain. J. Cereal Sci. 2015, 65, 162–166. [Google Scholar] [CrossRef]
- Cervantes-Ramírez, J.G.; Vásquez-Lara, F.; Sánchez-Estrada, A.; Troncoso-Rojas, R.; Heredia-Olea, E.; Islas-Rubio, A.R. Arabinoxylans reléase from brewers’spent grain using extrusión and solid-state fermentation with Fusarium oxysporum and the antioxidant capacity of the extracts. Foods 2022, 11, 1415. [Google Scholar] [CrossRef] [PubMed]
- Al-Shawafy, K.W.A.; Chadni, M.; Zamari, M.H.H.A.; Ioannou, I. Enzymatic extraction of ferulic acid from brewer’s spent grain: Effect of physical pretreatments and optimization using design of experiments. Biocatal. Agric. Biotechnol. 2023, 51, 102779. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.T. Solid state fermentation and its applications. In Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications; Yang, S.-T., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 465–489. ISBN 978-0-4444-321149. [Google Scholar]
- AACC International. Approved Methods of the American Association of Cereal Chemists. Methods 44-15.01, 08-21.01, 46-13.01, 30-25.01, 32-07.01, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Zobel, B.; McElvee, R. Variation of cellulose in loblolly pine. Tappi J. 1966, 49, 383–387. [Google Scholar]
- Martínez-Encinas, E.G.; Carvajal-Millan, E.; Calderón de la Barca, A.M.; Rascón-Chu, A.; Martínez-Porchas, M.; Marquez-Escalante, J.A.; Islas-Rubio, A.R. Extraction and characterization of arabinoxylans obtained from nixtamalized brewers’ spent grain. Food Sci. Technol. Int. 2021, 29, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Jay, A.J.; Parker, M.L.; Faulks, R.; Husband, F.; Wilde, P.; Smith, A.C.; Faulds, C.B.; Waldron, K.W. A systematic microdissection of brewers’ spent grain. J. Cereal Sci. 2008, 47, 357–364. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, X.; Gu, Z.; Beta, T. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chem. 2016, 194, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Mradu, G.; Saumyakanti, S.; Sohini, M.; Arup, M. HPLC profiles of standard phenolic compounds present in medicinal plants. Int. J. Pharmacog Phytochem. Res. 2012, 4, 162–167. [Google Scholar]
- Ramos, R.; López, G.; Molina, A. Development of a Fusarium oxysporum f. sp. melonis functional GFP fluorescence tool to assist melon resistance breeding programmes. Plant Pathol. 2015, 64, 1349–1357. [Google Scholar]
- Troncoso-Rojas, R.; Carvallo, T.; González-León, A.; Ojeda-Contreras, J.; Aguilar-Valenzuela, A.; Tiznado-Hernández, M.E. A fungal elicitor enhances the resistance of tomato fruit to Fusarium oxysporum infection by activating the phenylpropanoid metabolic pathway. Phytoparasitica 2013, 41, 133–142. [Google Scholar] [CrossRef]
- French, E.; Hebert, T. Métodos de Investigación Fitopatológica; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 1982; 135p. [Google Scholar]
- Bartolomé, B.; Gómez-Cordovés, C.; Sancho, A.I.; Díez, N.; Ferreira, P.; Soliveri, J.; Copa-Patiño, J.L. Growth and release of hydroxycinnamic acids from brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme Microb. Technol. 2003, 32, 140–144. [Google Scholar] [CrossRef]
- Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotech. 1992, 23, 257–270. [Google Scholar] [CrossRef]
- Whealan, W.J. Hydrolysis with α-amylase. Methods Carbohydr. Chem. 1969, 4, 252–260. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.F.; Gallagher, E. Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; Del Nozal, M.J. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Del Nobile, M.A. Microencapsulation of extracted bioactive compounds from brewer’s spent grain to enrich fish-burgers. Food Bioprod. Process 2016, 100, 450–456. [Google Scholar] [CrossRef]
- Serna-Saldívar, S.R.O. Química, Almacenamiento e Industrialización de los Cereales, 1st ed.; AGT Editor, S.A.: Mexico City, Mexico, 1996; 474p. [Google Scholar]
- Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.; Eijsink, V.G.; Treimo, J.; Buchert, J. Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J. Inst. Brew. 2008, 114, 306–314. [Google Scholar] [CrossRef]
- Niemi, P.; Tamminen, T.; Smeds, A.; Viljanen, K.; Ohra-aho, T.; Holopainen-Mantila, U.; Faulds, C.B.; Poutanen, K.; Buchert, J. Characterization of lipids and lignans in brewer’s spent grain and its enzymatically extracted fraction. J. Agric. Food Chem. 2012, 60, 9910–9917. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Roberto, I.C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 268–274. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; O’Shea, N.; Gallagher, E. Rheological properties of wheat dough supplemented with functional by-products of food processing: Brewer’s spent grain and apple pomace. J. Food Eng. 2013, 116, 362–368. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Meneses, N.G.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
- Stefanello, F.S.; dos Santos, C.O.; Bochi, V.C.; Fruet, A.P.B.; Soquetta, M.B.; Dörr, A.C.; Nörnberg, J.L. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem. 2018, 239, 385–401. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Alvarez-Jubete, L.; Smyth, T.J.; Kilcawley, K.; Rai, D.K.; Gallagher, E. Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer’s spent grain breads. Food Res. Int. 2015, 73, 107–116. [Google Scholar] [CrossRef]
- Szwajgier, D.; Waśko, A.; Targoński, Z.; Niedźwiadek, M.; Bancarzewska, M. The use of a novel ferulic acid esterase from Lactobacillus acidophilus K1 for the release of phenolic acids from brewer’s spent grain. J. Inst. Brew. 2010, 116, 293–303. [Google Scholar] [CrossRef]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, J.; Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). J. Agric. Food Chem. 2006, 54, 7277–7286. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Faulds, C.B.; DeVries, R.P.; Kroon, P.A.; Visser, J.; Williamson, G. Influence of ferulic acid on the production of feruloyl esterases by Aspergillus niger. FEMS Microbiol. Lett. 1997, 157, 239–244. [Google Scholar] [CrossRef]
- Gutiérrez-Rojas, I.; Moreno-Sarmiento, N.; Montoya, D. Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: Casos clásicos y nuevos modelos. Rev. Iberoamer Micol. 2015, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, M.J.; Werle, L.B.; Mainardi, M.A.; Foletto, E.L.; Kuhn, R.C.; Jahn, S.L.; Mazutti, M.A. Ultrasound-assisted hydrolysis of sugarcane bagasse using cellulotic enzymes by direct and indirect sonication. Biocatal. Agric. Biotechnol. 2015, 4, 480–485. [Google Scholar] [CrossRef]
- Duarah, P.; Haldar, D.; Purkait, M.K. Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agroindustrial waste residues: A review. Int. J. Biol. Macromol. 2020, 163C, 1828–1843. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Bhagia, S.; Wang, Y.; Zhou, Y.; Pu, Y.; Dunlap, J.R.; Shual, L.; Ragauskas, A.J.; Yoo, C.G. Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind. Crop Prod. 2020, 146, 112144. [Google Scholar] [CrossRef]
- Padilla-Rascón, C.; Ruiz, E.; Romero, I.; Castro, E.; Oliva, J.M.; Ballesteros, I.; Manzanares, P. Valorisation of olive Stone by-product for sugar production using a sequential acid/steam explotion pretreatment. Ind. Crop Prod. 2020, 148, 112279. [Google Scholar] [CrossRef]
- Haldar, D.; Purkuit, M.K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 2020, 264, 128523. [Google Scholar] [CrossRef] [PubMed]
Reagent | Weight (g) |
---|---|
KH2PO4 | 1.0 |
CaCl2.2H2O | 0.3 |
MgSO4.7H2O | 0.3 |
(NH4)2HPO4 | 10.0 |
NaH2PO4.2H2O | 6.94 |
Na2HPO4.2H2O | 9.52 |
BSG | 20.0 |
Compound | % |
Moisture | 4.8 ± 0.4 |
Protein | 24.3 ± 0.0 |
Fat | 8.7 ± 0.2 |
Ash | 4.1 ± 0.0 |
Total dietary fiber | 60.8 ± 0.8 |
Insoluble dietary fiber | 59.9 ± 0.7 |
Soluble dietary fiber | 0.9 ± 0.1 |
Total Phenolics | mg GAE/g d.b. |
Total | 4.6 ± 0.1 |
Free | 0.1 ± 0.0 |
Bound | 4.5 ± 0.1 |
Hydroxycinnamic Acids | mg/g d.b. |
Total | 4.7 ± 0.1 |
Ferulic | 3.1 ± 0.0 |
Sinapic | 1.5 ± 0.0 |
p-Coumaric | 0. 1 ± 0.0 |
Caffeic | 0.02 ± 0.0 |
Sample | DPPH | ABTS | ||
---|---|---|---|---|
mg TE/g | % Inhibition | mg TE/g | % Inhibition | |
Free phenolics | 14.7 ± 0.8 | 38.4 ± 2.0 | 0.9 ± 0.0 | 59.9 ± 0.8 |
Bound phenolics | 56.3 ± 1.2 | 72.3 ± 1.5 | 69.1 ± 0.9 | 97.2 ± 1.5 |
Ferulic Acid (mg/g) | |||||
---|---|---|---|---|---|
Cultivation Time (h) | |||||
Residual Sonicated BSG | 72 | 96 | 120 | 144 | 240 |
Ferulic acid, enriched inoculum | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | ND | --- |
Ferulic acid, enzyme extract production | --- | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | ND |
Lignocellulosic Material | % |
---|---|
Hemicellulose | 19.7 ± 0.5 |
Cellulose | 21.6 ± 0.5 |
Lignin | 19.5 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arreola-Cruz, I.A.; Troncoso-Rojas, R.; Vásquez-Lara, F.; Heredia-Sandoval, N.G.; Islas-Rubio, A.R. Production of an Extract with β-1,4-Xylanase Activity by Fusarium oxysporum f. sp. melonis on a Sonicated Brewer’s Spent Grain Substrate. Fermentation 2025, 11, 42. https://doi.org/10.3390/fermentation11010042
Arreola-Cruz IA, Troncoso-Rojas R, Vásquez-Lara F, Heredia-Sandoval NG, Islas-Rubio AR. Production of an Extract with β-1,4-Xylanase Activity by Fusarium oxysporum f. sp. melonis on a Sonicated Brewer’s Spent Grain Substrate. Fermentation. 2025; 11(1):42. https://doi.org/10.3390/fermentation11010042
Chicago/Turabian StyleArreola-Cruz, Irma A., Rosalba Troncoso-Rojas, Francisco Vásquez-Lara, Nina G. Heredia-Sandoval, and Alma R. Islas-Rubio. 2025. "Production of an Extract with β-1,4-Xylanase Activity by Fusarium oxysporum f. sp. melonis on a Sonicated Brewer’s Spent Grain Substrate" Fermentation 11, no. 1: 42. https://doi.org/10.3390/fermentation11010042
APA StyleArreola-Cruz, I. A., Troncoso-Rojas, R., Vásquez-Lara, F., Heredia-Sandoval, N. G., & Islas-Rubio, A. R. (2025). Production of an Extract with β-1,4-Xylanase Activity by Fusarium oxysporum f. sp. melonis on a Sonicated Brewer’s Spent Grain Substrate. Fermentation, 11(1), 42. https://doi.org/10.3390/fermentation11010042