Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starter Culture of Lactic Acid Bacteria
2.2. Preparation of Kimchi Beverage Base
2.3. Measurement of pH, Titratable Acidity, and Viable Cell Count
2.4. Analysis of Free Sugars and Organic Acids
2.5. Measurement of Dextran and Viscosity
2.6. Qualitative Analysis of GABA and Glutamic Acid
2.7. Quantitative Analysis of Free Amino Acids
2.8. Measurement of Color
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Vegetable Mixture with Different Sucrose Contents
3.2. Physicochemical Properties of Kimchi Beverage Base Co-Fermented with Different MSG Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, C.H.; Hwang, H.Y.; Lee, H.J.; Kim, T.W.; Ko, H.I.; Jang, D.E.; Sim, J.G.; Park, B.G.; Hong, S.W. Enhancement of the functional properties of vegetable sponge beverage fermented with Lactobacillus plantarum isolated from Korean dongchimi. LWT-Food Sci. Technol. 2022, 165, 113721. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods. Compr. Rev. Food. Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Salmerón, I. Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017, 65, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.H.; Ko, H.I.; Lee, M.E.; Min, S.G.; Lee, M.A.; Kim, T.W. Combination approach of paired starter culture and lactic acid on inhibiting autochthonous lactic acid bacteria for extending kimchi shelf life. Food Control 2024, 157, 110167. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Chang, J.Y.; Chang, H.C. Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. J. Food Sci. 2010, 75, M103–M110. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Kim, C.R.; Chang, H.C. Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. LWT-Food Sci. Technol. 2018, 88, 181–188. [Google Scholar] [CrossRef]
- Mirzaei, S.; Moradi, S.; Karimi, M.; Esmaeili, S.; Gruda, N.S.; Aliniaeifard, S. Gamma-aminobutyric acid-Mediated alkalinity stress alleviation in lollo rosso lettuce under diverse light spectra. Agronomy 2024, 14, 313. [Google Scholar] [CrossRef]
- Kim, K.Y.; Yoon, H.J. Gamma-aminobutyric acid signaling in damage response, metabolism, and disease. Int. J. Mol. Sci. 2023, 24, 4584. [Google Scholar] [CrossRef]
- Banerjee, S.; Poore, M.; Gerdes, S.; Nedveck, D.; Lauridsen, L.; Kristensen, H.T.; Jensen, H.M.; Byrd, P.M.; Ouwehand, A.C.; Patterson, E.; et al. Transcriptomics reveal different metabolic strategies for acid resistance and gamma-aminobutyric acid (GABA) production in select Levilactobacillus brevis strains. Microb. Cell. Fact. 2021, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of gaba (γ-aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Zarei, F.; Nateghi, L.; Eshaghi, M.R.; Abadi, M.E.T. Production of gamma-aminobutyric acid (GABA) in whey protein drink during fermentation by Lactobacillus plantarum. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1087–1092. [Google Scholar] [CrossRef]
- Pavlenko, R.; Berzina, Z.; Reinholds, I.; Bartkiene, E.; Bartkevics, V. An occurrence study of mycotoxins in plant-based beverages using liquid chromatography–Mass spectrometry. Toxins 2024, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Thomas, S.; Fogler, H.S. Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides. Appl. Environ. Microbiol. 2000, 66, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Artés, F.; Minguez, M.I.; Hornero, D. Analysing changes in fruit pigments. In Colour in Food; Woodhead: Cambridge, UK, 2002; pp. 248–282. [Google Scholar]
- Park, S.Y.; Kang, M.R.; Yun, S.M.; Eun, J.B.; Shin, B.S.; Chun, H.H. Changes and machine learning-based prediction in quality characteristics of sliced Korean cabbage (Brassica rapa L. pekinensis) kimchi: Combined effect of nano-foamed structure film packaging and subcooled storage. LWT-Food Sci. Technol. 2022, 171, 114122. [Google Scholar] [CrossRef]
- Tkesheliadze, E.; Gagelidze, N.; Sadunishvili, T.; Herzig, C. Fermentation of apple juice using selected autochthonous lactic acid bacteria. Ukr. Food J. 2022, 11, 52–63. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, S.H.; Jung, J.Y.; Choi, E.J.; Jeon, C.O. Microbial succession and metabolite changes during long-term storage of kimchi. J. Food Sci. 2013, 78, M763–M769. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules 2018, 24, 51. [Google Scholar] [CrossRef] [PubMed]
- Grobben, G.J.; Peters, S.W.P.G.; Wisselink, H.W.; Weusthuis, R.A.; Hoefnagel, M.H.N.; Hugenholtz, J.; Eggink, G. Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroies grown in the presence of fructose. Appl. Environ. Microbiol. 2001, 67, 2867–2870. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, M. Metabolism of mannitol and induction of mannitol 1-phosphate dehydrogenase in Lactobacillus plantarum. J. Bacteriol. 1964, 87, 1246–1248. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Lee, H.J.; Seo, H.Y.; Park, W.S.; Jeon, C.O. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. [Google Scholar] [CrossRef]
- Lee, J.J.; Choi, Y.J.; Lee, M.J.; Park, S.J.; Oh, S.J.; Yun, Y.R.; Min, S.G.; Seo, H.Y.; Park, S.H.; Lee, M.A. Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Res. Int. 2020, 136, 109591. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.F.; Feitosa, W.S.C.; Abreu, V.K.G.; De Oliveira Lemos, T.; Gomes, W.F.; Narain, N.; Rodrigues, S. Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Res. Int. 2017, 100, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Sarwat, F.; Qader, S.A.U.; Aman, A.; Ahmed, N. Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int. J. Biol. Sci. 2008, 4, 379. [Google Scholar] [CrossRef]
- Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 2006, 72, 421–429. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Wang, H.; Zhang, H.; Chen, W.; Lu, W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol. Res. 2023, 274, 127432. [Google Scholar] [CrossRef] [PubMed]
- Ma’unatin, A.; Harijono, H.; Zubaidah, E.; Rifa’i, M. Dextran production using Leuconostoc mesenteroides strains isolated from Borassus flabellifer sap. Biodiversitas. 2022, 23, 1154–1158. [Google Scholar] [CrossRef]
- Du, B.; Yang, Y.; Bian, Z.; Xu, B. Molecular weight and helix conformation determine intestinal anti-inflammatory effects of exopolysaccharide from schizophyllum commune. Carbohydr. Polym. 2017, 172, 68–77. [Google Scholar] [CrossRef]
- Farinazzo, F.S.; Fernandes, M.T.C.; Mauro, C.S.I.; Moraes Filho, M.L.D.; Prudêncio, S.H.; Garcia, S. Technofunctional properties of dextran produced by Leuconostoc pseudomesenteroides isolated from juçara palm fruit. Cienc. Agrotec. 2024, 48, e004324. [Google Scholar] [CrossRef]
- Zhou, Q.; Feng, F.; Yang, Y.; Zhao, F.; Du, R.; Zhou, Z.; Han, Y. Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Int. J. Biol. Macromol. 2018, 107, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Zioga, E.; Holdt, S.L.; Gröndahl, F.; Bang-Berthelsen, C.H. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol. 2025, 25, 2. [Google Scholar] [CrossRef]
- Laroute, V.; Aubry, N.; Audonnet, M.; Mercier-Bonin, M.; Daveran-Mingot, M.; Cocaign-Bousquet, M. Natural diversity of lactococci in γ-aminobutyric acid (GABA) production and genetic and phenotypic determinants. Microb. Cell. Fact. 2023, 22. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, C.P.; Karatzas, K.A.G. The role of sigma B (σB) in the stress adaptations of Listeria monocytogenes: Overlaps between stress adaptation and virulence. Adv. Appl. Microbiol. 2008, 65, 11. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J. Funct. Food. 2021, 86, 104710. [Google Scholar] [CrossRef]
- Gharehyakheh, S. Gamma aminobutyric acid (GABA) production using Lactobacillus sp. Makhdzir Naser-1 (GQ451633) in the cherry-kefir beverage. J. Food Process Preserv. 2021, 45, e15521. [Google Scholar] [CrossRef]
- Park, Y.H.; Kwon, M.J.; Shin, D.M.; Lee, S.P. Production of functional vinegar enriched with γ-aminobutyric acid through serial co-fermentation of lactic acid and acetic acid bacteria using rice wine lees. Appl. Microbiol. 2024, 4, 1203–1214. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Yao, Z.; Kim, J.A.; Kim, J.H. Properties of kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol. 2018, 28, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.J.; Baek, K.A.; Sung, C.K. Characterization of biological chemistry from over ripened kimchi. Korean J. Food Nutr. 2001, 14, 512–520. [Google Scholar]
- John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of Lactobacilli. Biotechnol. Lett. 2006, 28, 1823–1826. [Google Scholar] [CrossRef] [PubMed]
- Engmann, F.N.; Ma, Y.; Tchabo, W.; Ma, H. Ultrasonication treatment effect on anthocyanins, color, microorganisms and enzyme inactivation of mulberry (Moraceae nigra) juice. J. Food Process Preserv. 2015, 39, 854–862. [Google Scholar] [CrossRef]
- Park, J.; Heo, S.; Lee, G.; Kim, T.; Oh, S.E.; Kwak, M.S.; Jeong, D.W. The addition of jogi, Micropogonias undulates, affects amino acid content in kimchi fermentation. PLoS One 2024, 19, e0300249. [Google Scholar] [CrossRef] [PubMed]
Sample | Viable Cell Count (log CFU/mL) | pH | Titratable Acidity (%) | |||
---|---|---|---|---|---|---|
0 Day | 1 Day | 0 Day | 1 Day | 0 Day | 1 Day | |
S0 (1) | 6.96 ± 0.07 (2) | 9.11 ± 0.07 b(3) | 6.43 ± 0.03 | 5.20 ± 0.01 a | 0.19 ± 0.01 | 0.80 ± 0.05 b |
S1 | 9.31 ± 0.09 a | 6.46 ± 0.00 | 5.14 ± 0.01 d | 0.19 ± 0.02 | 0.87 ± 0.05 ab | |
S3 | 9.37 ± 0.06 a | 6.45 ± 0.01 | 5.17 ± 0.01 c | 0.18 ± 0.02 | 0.89 ± 0.04 ab | |
S5 | 9.42 ± 0.04 a | 6.47 ± 0.02 | 5.18 ± 0.00 b | 0.19 ± 0.03 | 0.94 ± 0.05 a |
Second Co-Fermentation (1) | GABA (mg/g) | Glutamic Acid (mg/g) |
---|---|---|
M5 (2) | 26.38 ± 0.84 (3) | 1.49 ± 0.05 |
Organic Acids (mg/g) | First Fermentation Time | Second Fermentation Time | |
---|---|---|---|
0 Day | 1 Day | 5 Days | |
Acetic acid | N.D. (1)b | 2.29 ± 0.54 (2)a | N.D.b(3) |
Lactic acid | 1.39 ± 0.02 c | 4.70 ± 0.03 b | 22.83 ± 0.30 a |
Oxalic acid | 0.76 ± 0.01 c | 4.80 ± 0.01 b | 5.04 ± 0.02 a |
Citric acid | 1.64 ± 0.04 a | 0.61 ± 0.03 b | N.D. c |
Malic acid | 0.90 ± 0.01 a | 0.66 ± 0.02 b | 0.18 ± 0.01 c |
Color Value | First Fermentation Time | Second Fermentation Time | |
---|---|---|---|
0 Day | 1 Day | 5 Days | |
CIE L* | 26.12 ± 0.16 (1)c | 29.83 ± 0.15 a(2) | 29.32 ± 0.04 b |
CIE a* | 14.83 ± 0.06 b | 16.09 ± 0.10 a | 14.78 ± 0.03 b |
CIE b* | 17.82 ± 0.21 c | 21.76 ± 0.09 b | 21.99 ± 0.05 a |
C* | 23.18 ± 0.18 c | 27.06 ± 0.13 a | 26.49 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.-J.; Kim, J.-E.; Lee, S.-P. Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020. Fermentation 2025, 11, 44. https://doi.org/10.3390/fermentation11010044
Kwon M-J, Kim J-E, Lee S-P. Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020. Fermentation. 2025; 11(1):44. https://doi.org/10.3390/fermentation11010044
Chicago/Turabian StyleKwon, Min-Jeong, Ji-Eun Kim, and Sam-Pin Lee. 2025. "Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020" Fermentation 11, no. 1: 44. https://doi.org/10.3390/fermentation11010044
APA StyleKwon, M.-J., Kim, J.-E., & Lee, S.-P. (2025). Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020. Fermentation, 11(1), 44. https://doi.org/10.3390/fermentation11010044