Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medium, Bacterial Strains and Maintenance
2.2. Cultivation
2.3. Dry Cell Weight Measurement
2.4. Lipid Contents
2.5. Fatty Acid Methyl Ester (FAME) Analysis
2.6. Bodipy Staining for Qualifying Lipid Inside the Cells
2.7. qPCR Analysis of Gene Transcript Levels in S. jeddahensis Strain
3. Results and Discussion
3.1. Effect of Temperature and Carbon Source on S. jeddahensis Growth
3.2. Lipid Accumulation in S. jeddahensis
3.3. Total Fatty Acid in S. jeddahensis
3.4. Gene Expression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dávila Costa, J.S.; Leichert, L.; Alvarez, H.M.; Herrero, O.M. Label-Free and Redox Proteomic Analyses of the Triacylglycerol-Accumulating Rhodococcus Jostii RHA1. Microbiology 2015, 161, 593–610. [Google Scholar] [CrossRef] [PubMed]
- Wältermann, M.; Luftmann, H.; Baumeister, D.; Kalscheuer, R.; Steinbüchel, A. Rhodococcus Opacus Strain PD630 as a New Source of High-Value Single-Cell Oil? Isolation and Characterization of Triacylglycerols and Other Storage Lipids. Microbiology 2000, 146, 1143–1149. [Google Scholar] [CrossRef]
- Röttig, A.; Atasayar, E.; Meier-Kolthoff, J.P.; Spröer, C.; Schumann, P.; Schauer, J.; Steinbüchel, A. Streptomyces Jeddahensis Sp. Nov., an Oleaginous Bacterium Isolated from Desert Soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Seghezzi, N.; Otani, H.; Diaz-Salazar, C.; Liu, J.; Eltis, L.D. Characterization of Key Triacylglycerol Biosynthesis Processes in Rhodococci. Sci. Rep. 2016, 6, 24985. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, X.; Zhu, X.-L.; Li, Y.; Xu, H.-P.; Zhao, B.-F.; Chen, L.; Zhang, X.-D. Microbial Lipid Production by the Oleaginous Yeast Cryptococcus Curvatus O3 Grown in Fed-Batch Culture. Biomass Bioenergy 2011, 35, 1906–1911. [Google Scholar] [CrossRef]
- Hernández, M.A.; Alvarez, H.M.; Lanfranconi, M.P.; Silva, R.A.; Herrero, O.M.; Villalba, M.S. Central Metabolism of Species of the Genus Rhodococcus. In Biology of Rhodococcus; Springer: Cham, Switzerland, 2019; pp. 61–85. [Google Scholar]
- Kim, H.M.; Chae, T.U.; Choi, S.Y.; Kim, W.J.; Lee, S.Y. Engineering of an Oleaginous Bacterium for the Production of Fatty Acids and Fuels. Nat. Chem. Biol. 2019, 15, 721–729. [Google Scholar] [CrossRef]
- Yang, X.; Jin, G.; Wang, Y.; Shen, H.; Zhao, Z.K. Lipid Production on Free Fatty Acids by Oleaginous Yeasts under Non-Growth Conditions. Bioresour. Technol. 2015, 193, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Röttig, A.; Hauschild, P.; Madkour, M.H.; Al-Ansari, A.M.; Almakishah, N.H.; Steinbüchel, A. Analysis and Optimization of Triacylglycerol Synthesis in Novel Oleaginous Rhodococcus and Streptomyces Strains Isolated from Desert Soil. J. Biotechnol. 2016, 225, 48–56. [Google Scholar] [CrossRef]
- Peacock, L.; Ward, J.; Ratledge, C.; Dickinson, F.M.; Ison, A. How Streptomyces Lividans Uses Oils and Sugars as Mixed Substrates. Enzym. Microb. Technol. 2003, 32, 157–166. [Google Scholar] [CrossRef]
- Berry, E.D.; Foegeding, P.M. Cold Temperature Adaptation and Growth of Microorganisms. J. Food Prot. 1997, 60, 1583–1594. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low PH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Chávez, A.; Forero, A.; García-Huante, Y.; Romero, A.; Sánchez, M.; Rocha, D.; Sánchez, B.; Ávalos, M.; Guzmán-Trampe, S.; et al. Carbon Source Regulation of Antibiotic Production. J. Antibiot. 2010, 63, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L. Carbon Source Regulation of Idiolite Biosynthesis in Actinomycetes. In Regulation of Secondary Metabolism in Actinomycetes; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003068600. [Google Scholar]
- O-Thong, S.; Zhu, X.; Angelidaki, I.; Zhang, S.; Luo, G. Medium Chain Fatty Acids Production by Microbial Chain Elongation: Recent Advances. Adv. Bioenergy 2020, 5, 63–99. [Google Scholar]
- Lin, J.; Shen, H.; Tan, H.; Zhao, X.; Wu, S.; Hu, C.; Zhao, Z.K. Lipid Production by Lipomyces Starkeyi Cells in Glucose Solution without Auxiliary Nutrients. J. Biotechnol. 2011, 152, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.J.; Lee, I.Y.; Yoon, S.C.; Shin, Y.C.; Park, Y.H. Enhanced Yield and a High Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates) in a Two-Step Fed-Batch Cultivation of Pseudomonas Putida by Combined Use of Glucose and Octanoate. Enzym. Microb. Technol. 1997, 20, 500–505. [Google Scholar] [CrossRef]
- Fei, Q.; Wewetzer, S.J.; Kurosawa, K.; Rha, C.; Sinskey, A.J. High-Cell-Density Cultivation of an Engineered Rhodococcus Opacus Strain for Lipid Production via Co-Fermentation of Glucose and Xylose. Process Biochem. 2015, 50, 500–506. [Google Scholar] [CrossRef]
- Cabecas Segura, P.; Onderwater, R.; Deutschbauer, A.; Dewasme, L.; Wattiez, R.; Leroy, B. Study of the Production of Poly(Hydroxybutyrate-Co-Hydroxyhexanoate) and Poly(Hydroxybutyrate-Co-Hydroxyvalerate-Co-Hydroxyhexanoate) in Rhodospirillum Rubrum. Appl. Environ. Microbiol. 2022, 88, e0158621. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wu, S.; Wang, Q.; Jin, G.; Shen, H.; Zhao, Z.K. Simultaneous Utilization of Glucose and Xylose for Lipid Production by Trichosporon Cutaneum. Biotechnol. Biofuels 2011, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, P.; Mosrati, R.; Corroler, D. Medium Chain Length Polyhydroxyalkanoates Biosynthesis in Pseudomonas Putida Mt-2 Is Enhanced by Co-Metabolism of Glycerol/Octanoate or Fatty Acids Mixtures. Int. J. Biol. Macromol. 2017, 98, 430–435. [Google Scholar] [CrossRef]
- Sass, P. (Ed.) Antibiotics: Methods and Protocols, 2nd ed.; Methods in Molecular Biology; Humana: New York, NY, USA, 2022. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bosdriesz, E.; Wortel, M.T.; Haanstra, J.R.; Wagner, M.J.; de la Torre Cortés, P.; Teusink, B. Low Affinity Uniporter Carrier Proteins Can Increase Net Substrate Uptake Rate by Reducing Efflux. Sci. Rep. 2018, 8, 5576. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Phulara, S.C. Impact of Culture Condition Modulation on the High-Yield, High-Specificity, and Cost-Effective Production of Terpenoids from Microbial Sources: A Review. Appl. Environ. Microbiol. 2021, 87, e02369-20. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Fan, C.; Zheng, X.; Wu, D.; Wang, X.; Kong, H. Isolation and Thermo-Acclimation of Thermophilic Bacteria in Hyperthermophilic Fermentation System. Bioprocess. Biosyst. Eng. 2022, 45, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Demirjian, D.C.; Morís-Varas, F.; Cassidy, C.S. Enzymes from Extremophiles. Curr. Opin. Chem. Biol. 2001, 5, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Schilling, O. A Protein-Dependent Riboswitch Controlling PtsGHI Operon Expression in Bacillus Subtilis: RNA Structure Rather than Sequence Provides Interaction Specificity. Nucleic Acids Res. 2004, 32, 2853–2864. [Google Scholar] [CrossRef]
- Trakunjae, C.; Boondaeng, A.; Apiwatanapiwat, W.; Janchai, P.; Neoh, S.Z.; Sudesh, K.; Vaithanomsat, P. Statistical Optimization of P(3HB-Co-3HHx) Copolymers Production by Cupriavidus Necator PHB−4/PBBR_CnPro-PhaCRp and Its Properties Characterization. Sci. Rep. 2023, 13, 9005. [Google Scholar] [CrossRef]
- Lindenkamp, N.; Volodina, E.; Steinbüchel, A. Genetically Modified Strains of Ralstonia Eutropha H16 with β-Ketothiolase Gene Deletions for Production of Copolyesters with Defined 3-Hydroxyvaleric Acid Contents. Appl. Environ. Microbiol. 2012, 78, 5375–5383. [Google Scholar] [CrossRef]
- Iram, S.H.; Cronan, J.E. The β-Oxidation Systems of Escherichia coli and Salmonella enterica Are Not Functionally Equivalent. J. Bacteriol. 2006, 188, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Schroda, M.; deVitry, C. Molecular Chaperones, Proteases, and Unfolded Protein Responses. In The Chlamydomonas Sourcebook; Elsevier: Amsterdam, The Netherlands, 2023; pp. 647–689. [Google Scholar]
- Russell, A.D. Lethal Effects of Heat on Bacterial Physiology and Structure. Sci. Prog. 2003, 86, 115–137. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Steinbüchel, A. Physiology, Biochemistry, and Molecular Biology of Triacylglycerol Accumulation by Rhodococcus. In Biology of Rhodococcus; Springer: Berlin/Heidelberg, Germany, 2010; pp. 263–290. [Google Scholar]
- Yang, Y.; Jalalah, M.; Alsareii, S.A.; Harraz, F.A.; Thakur, N.; Zheng, Y.; Alalawy, A.I.; Koutb, M.; Salama, E.-S. Potential of Oleaginous Microbes for Lipid Accumulation and Renewable Energy Generation. World J. Microbiol. Biotechnol. 2024, 40, 337. [Google Scholar] [CrossRef] [PubMed]
- Koreti, D.; Kosre, A.; Jadhav, S.K.; Chandrawanshi, N.K. A Comprehensive Review on Oleaginous Bacteria: An Alternative Source for Biodiesel Production. Bioresour. Bioprocess. 2022, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Antonopoulou, I.; Enman, J.; Rova, U.; Christakopoulos, P.; Matsakas, L. Lipids Detection and Quantification in Oleaginous Microorganisms: An Overview of the Current State of the Art. BMC Chem. Eng. 2019, 1, 13. [Google Scholar] [CrossRef]
- Gorte, O.; Kugel, M.; Ochsenreither, K. Optimization of Carbon Source Efficiency for Lipid Production with the Oleaginous Yeast Saitozyma Podzolica DSM 27192 Applying Automated Continuous Feeding. Biotechnol. Biofuels 2020, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Röttig, A.; Strittmatter, C.S.; Schauer, J.; Hiessl, S.; Poehlein, A.; Daniel, R.; Steinbüchel, A. Role of Wax Ester Synthase/Acyl Coenzyme A: Diacylglycerol Acyltransferase in Oleaginous Streptomyces Sp. Strain G25. Appl. Environ. Microbiol. 2016, 82, 5969–5981. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Ham, S.; Jeong, J.; Ku, H.; Kim, H.; Lee, C. Temperature Matters: Bacterial Response to Temperature Change. J. Microbiol. 2023, 61, 343–357. [Google Scholar] [CrossRef]
- Zhu, L.; Cheng, J.; Luo, B.; Feng, S.; Lin, J.; Wang, S.; Cronan, J.E.; Wang, H. Functions of the Clostridium Acetobutylicium FabF and FabZ Proteins in Unsaturated Fatty Acid Biosynthesis. BMC Microbiol. 2009, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Tanaka, A.; Kawamoto, J.; Kurihara, T. Purification and Characterization of 1-Acyl-Sn-Glycerol-3-Phosphate Acyltransferase with a Substrate Preference for Polyunsaturated Fatty Acyl Donors from the Eicosapentaenoic Acid-Producing Bacterium Shewanella Livingstonensis Ac10. J. Biochem. 2018, 164, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Gao, Z.; Shi, T.-Q.; Song, P.; Ren, L.-J.; Huang, H.; Ji, X.-J. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Front. Microbiol. 2017, 8, 793. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, I.T. Carbon Metabolism and Its Regulation in Streptomyces and Other High GC Gram-Positive Bacteria. Res. Microbiol. 1996, 147, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Bucca, G.; Pothi, R.; Hesketh, A.; Möller-Levet, C.; Hodgson, D.A.; Laing, E.E.; Stewart, G.R.; Smith, C.P. Translational Control Plays an Important Role in the Adaptive Heat-Shock Response of Streptomyces Coelicolor. Nucleic Acids Res. 2018, 46, 5692–5703. [Google Scholar] [CrossRef] [PubMed]
- Narberhaus, F.; Waldminghaus, T.; Chowdhury, S. RNA Thermometers. FEMS Microbiol. Rev. 2006, 30, 3–16. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Steinbüchel, A. A Novel Bifunctional Wax Ester Synthase/Acyl-CoA:Diacylglycerol Acyltransferase Mediates Wax Ester and Triacylglycerol Biosynthesis InAcinetobacter Calcoaceticus ADP1. J. Biol. Chem. 2003, 278, 8075–8082. [Google Scholar] [CrossRef] [PubMed]
- Wältermann, M.; Stöveken, T.; Steinbüchel, A. Key Enzymes for Biosynthesis of Neutral Lipid Storage Compounds in Prokaryotes: Properties, Function and Occurrence of Wax Ester Synthases/Acyl-CoA:Diacylglycerol Acyltransferases. Biochimie 2007, 89, 230–242. [Google Scholar] [CrossRef]
- Santos, C.A.; Morais, M.A.B.; Terrett, O.M.; Lyczakowski, J.J.; Zanphorlin, L.M.; Ferreira-Filho, J.A.; Tonoli, C.C.C.; Murakami, M.T.; Dupree, P.; Souza, A.P. An Engineered GH1 β-Glucosidase Displays Enhanced Glucose Tolerance and Increased Sugar Release from Lignocellulosic Materials. Sci. Rep. 2019, 9, 4903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Li, S.; Bello, A.; Liu, J.; Gao, L.; Fan, Z.; Wang, S.; Liu, L.; Ma, B.; et al. Mechanism of Differential Expression of β-Glucosidase Genes in Functional Microbial Communities in Response to Carbon Catabolite Repression. Biotechnol. Biofuels Bioprod. 2022, 15, 3. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
STSP_00760 (plsC_1) | CCGTGAACCACTCCCACAA | ACCTTCAGCTGGCCGATTC |
STSP_00850 | GCCAGTGCGTACCGAGATAG | CTCGCCTATATGGCCTCGAC |
STSP_01000 (inhA_1) | CAGGTTGCAGCGGATGTTCT | CGCAGTACGACTGGATGGG |
STSP_01010 (fabG1_1) | CTCCAGTGATGTACGAGGCG | TCGACACCGACATGACCAAG |
STSP_03080 (DGAT) | GATCGACGGGGTCCATCAC | TTCGCCGTGCTGTTCAAGTT |
STSP_12530 | TAGCCCCACTCGAAGTTGTC | CGGACCGTATCGCGTATCTG |
STSP_17580 (bkdA_1) | GTTGACACCACGGAACATGC | GACGACTACGTCTTCCCGAC |
STSP_19060 (gpsA) | GATGGTCTCCTCCAGGGTCA | CATGACCTTCTCCGGACTCG |
STSP_28680 (accD5_1) | CATCAAGCAGCTCCTGTCGT | CTCGATGACCTCGTGCATGT |
STSP_45110 (tesB_2) | GTACTTCGGCAGTGACTCGG | GCAGCCGATCTTCCATCTGT |
STSP_45150 (accA1_2) | CGGAGAGCTATCTGTCGGTG | CTCGGCGAGGAATCCGTATC |
STSP_50580 (FabZ) | CCGACCTCTTTGGCGAACTT | GCCCAGACCTTCAACGTGAC |
STSP_61390 (ilvE) | TGACGATCAAGTGGACGGAG | CGAAGATCTCCTGGGCGTAG |
STSP_67970 (fabD) | GCGTACGTCTCGAACAAGGA | TCTGGAACGTCTCCATGCAC |
STSP_67980 (fabH_2) | AGCTGATCAAGCAGACCGTG | GGAACTTGATGTCGCCGTTG |
STSP_68010 (fabF) | CGATCGAGATGATCCGCACC | TGTTCTTGGACATCGCCATCA |
STSP_72400 (lcfB-5) | CACGAGACGGTCTACATCGG | ATCGTCACAGCTCAACTCGG |
STSP_74190 | TACCTGGTCCGTCAGGTTGA | AAGTGGACGATCCAGTTCGG |
rpoB 1 | GTAGTTGTGACCCTCCCACG | GACTACATCACCACCGCCAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apriliana, P.; Kahar, P.; Rachmadona, N.; Restu, W.K.; Kondo, A.; Ogino, C. Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis. Fermentation 2025, 11, 45. https://doi.org/10.3390/fermentation11020045
Apriliana P, Kahar P, Rachmadona N, Restu WK, Kondo A, Ogino C. Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis. Fermentation. 2025; 11(2):45. https://doi.org/10.3390/fermentation11020045
Chicago/Turabian StyleApriliana, Pamella, Prihardi Kahar, Nova Rachmadona, Witta Kartika Restu, Akihiko Kondo, and Chiaki Ogino. 2025. "Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis" Fermentation 11, no. 2: 45. https://doi.org/10.3390/fermentation11020045
APA StyleApriliana, P., Kahar, P., Rachmadona, N., Restu, W. K., Kondo, A., & Ogino, C. (2025). Lipid Production in Streptomyces jeddahensis Is Enhanced by Glucose and Fatty Acid Derivatives, with Temperature Variations Influencing Gene Expression and Biosynthesis. Fermentation, 11(2), 45. https://doi.org/10.3390/fermentation11020045