Advances in Biological Production of D-Tagatose: A Comprehensive Overview
Abstract
:1. Introduction
2. Overview of D-Tagatose
2.1. Structure and Physicochemical Properties of D-Tagatose
2.2. Physiological Function and Applications of D-Tagatose
3. Production of D-Tagatose by Biological Methods
3.1. Synthesis of D-Tagatose by Enzymatic Transformation In Vitro
3.1.1. Synthesis of D-Tagatose by a Single Enzyme
3.1.2. Synthesis of D-Tagatose by Dual Enzymes
3.1.3. Synthesis of D-Tagatose by Multi-Enzyme
3.2. Whole-Cell Catalytic Synthesis of D-Tagatose
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Wu, Y.; Liu, Y.; Li, J.; Du, G.; Chen, J.; Liu, L. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci. Technol. 2022, 129, 512–527. [Google Scholar] [CrossRef]
- Evbuomwan, S.A. Sugar Substitutes/Artificial Sweeteners: Benefits Vs Health Issues, and Alternatives. World News Nat. Sci. 2023, 50, 86–97. [Google Scholar]
- Arshad, S.; Rehman, T.; Saif, S.; Rajoka, M.S.; Ranjha, M.M.; Hassoun, A.; Cropotova, J.; Trif, M.; Younas, A.; Aadil, R.M. Replacement of refined sugar by natural sweeteners: Focus on potential health benefits. Heliyon 2022, 8, e10711. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Chen, H.; Ma, J.; Fang, Y.; Qu, L.; Yang, Q.; Sun, D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front. Nutr. 2022, 9, 952147. [Google Scholar] [CrossRef] [PubMed]
- Bober, J.R.; Nair, N.U. Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity. Nat. Commun. 2019, 10, 4548. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, M.; Liu, X.; Zhai, Y.; Liu, X.W.; Zhang, H.; Xiao, M.; Wang, P. Bioconversion of D-galactose to D-tagatose: Continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation. Appl. Microbiol. Biotechnol. 2012, 93, 1469–1474. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Jin, Y.; Clark, E.J.; Welsh, J.A.; Rother, K.I.; Talegawkar, S.A. Consumption of low-calorie sweeteners among children and adults in the United States. J. Acad. Nutr. Diet. 2017, 117, 441–448. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef]
- Tandel, K.R. Sugar substitutes: Health controversy over perceived benefits. J. Pharmacol. Pharmacother. 2011, 2, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Ban, Y.G.; Kashyap, L.; Siraree, A.; Singh, J. Sugar and sugar substitutes: Recent developments and future prospects. In Sugar and Sugar Derivatives: Changing Consumer Preferences; Springer: Singapore, 2020; pp. 39–75. [Google Scholar]
- Muñoz-Labrador, A.; Hernandez-Hernandez, O.; Moreno, F.J. A review of the state of sweeteners science: The natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight. Crit. Rev. Biotechnol. 2024, 44, 1080–1102. [Google Scholar]
- Hu, M.; Li, M.; Jiang, B.; Zhang, T. Bioproduction of D-allulose: Properties, applications, purification, and future perspective. Compr. Rev. Food Sci. Food Saf. 2021, 20, 6012–6026. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Zabed, H.M.; Yun, J.H.; Yuan, J.; Zhang, Y.F.; Wang, Y.; Qi, X.H. Two-stage biosynthesis of D-tagatose from milk whey powder by an engineered Escherichia coli strain expressing L-arabinose isomerase from Lactobacillus plantarum. Bioresour. Technol. 2020, 305, 123010. [Google Scholar] [CrossRef] [PubMed]
- Assadi-Porter, F.M.; Aceti, D.J.; Cheng, H.; Markley, J.L. Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch. Biochem. Biophys. 2000, 376, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, M.; Naveen, P.; Pal, P.K. Agronomical and biotechnological strategies for modulating biosynthesis of steviol glycosides of Stevia rebaudiana Bertoni. J. Appl. Res. Med. Aromat. Plants 2024, 43, 100580. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, S.; Zhang, T.; Jiang, B.; Mu, W. Recent advances in D-allulose: Physiological functionalities, applications, and biological production. Trends Food Sci. Technol. 2016, 54, 127–137. [Google Scholar] [CrossRef]
- Chung, J.H.; Kong, J.N.; Choi, H.E.; Kong, K.H. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chem. 2018, 267, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Karabinos, J.V. Psicose, sorbose and tagatose. Adv. Carbohydr. Chem. 1952, 7, 99–136. [Google Scholar] [PubMed]
- Adachi, S. Formation of lactulose and tagatose from lactose in strongly heated milk. Nature 1958, 181, 840–841. [Google Scholar] [CrossRef]
- Miao, P.; Wang, Q.; Ren, K.; Zhang, Z.; Xu, T.; Xu, M.; Rao, Z. Advances and Prospects of d-Tagatose Production Based on a Biocatalytic Isomerization Pathway. Catalysts 2023, 13, 1437. [Google Scholar] [CrossRef]
- Mayumi, S.; Kuboniwa, M.; Sakanaka, A.; Hashino, E.; Ishikawa, A.; Ijima, Y.; Amano, A. Potential of prebiotic D-tagatose for prevention of oral disease. Front. Cell. Infect. Microbiol. 2021, 11, 767944. [Google Scholar] [CrossRef]
- Donner, T.W.; Magder, L.S.; Zarbalian, K. Dietary supplementation with d-tagatose in subjects with type 2 diabetes leads to weight loss and raises high-density lipoprotein cholesterol. Nutr. Res. 2010, 30, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, Y.; Ponpandian, L.N.; Zhang, G.; Yun, J.; Qi, X. Harnessing L-arabinose isomerase for biological production of D-tagatose: Recent advances and its applications. Trends Food Sci. Tech. 2021, 107, 16–30. [Google Scholar] [CrossRef]
- Ortiz, A.D.; Fideles, S.O.; Reis, C.H.; Pagani, B.T.; Bueno, L.M.; Moscatel, M.B.; Buchaim, R.L.; Buchaim, D.V. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients 2024, 16, 1943. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.J.; Patel, A.T.; Akhani, R.; Dedania, S.; Patel, D.H. Bioproduction of D-tagatose from D-galactose using phosphoglucose isomerase from Pseudomonas aeruginosa PAO1. Appl. Biochem. Biotech. 2016, 179, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chikkerur, J.; Roy, S.C.; Dhali, A.; Kolte, A.P.; Sridhar, M.; Samanta, A.K. Tagatose as a potential nutraceutical: Production, properties, biological roles, and applications. J. Food Sci. 2018, 83, 2699–2709. [Google Scholar] [CrossRef]
- Venema, K.; Vermunt, S.H.F.; Brink, E.J. D-Tagatose increases butyrate production by the colonic microbiota in healthy men and women. Microb. Ecol. Health Dis. 2005, 17, 47–57. [Google Scholar]
- Kim, B.J.; Hong, S.H.; Shin, K.C.; Jo, Y.S.; Oh, D.K. Characterization of a F280N variant of l-arabinose isomerase from Geobacillus thermodenitrificans identified as a d-galactose isomerase. Appl. Microbiol. Biotechnol. 2014, 98, 9271–9281. [Google Scholar] [CrossRef] [PubMed]
- Donner, T.W.; Wilber, J.F.; Ostrowski, D. D-tagatose, a novel hexose: Acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes Obes. Metab. 1999, 1, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; An, Y.; Yun, J.; Yang, M.; Magocha, T.A.; Zhu, J.; Qi, X. Enhanced D-tagatose production by spore surface-displayed L-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresour. Technol. 2018, 247, 940–946. [Google Scholar] [CrossRef]
- Levin, G.V. Tagatose, the new GRAS sweetener and health product. J. Med. Food 2002, 5, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.P.; Donner, T.W.; Sadler, J.H.; Levin, G.V.; Makris, N.G. Effects of acute and repeated oral doses of D-tagatose on plasma uric acid in normal and diabetic humans. Regul. Toxicol. Pharm. 1999, 29, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Kruger, C.L.; Whittaker, M.H.; Frankos, V.H.; Trimmer, G.W. 90-day oral toxicity study of d-tagatose in rats. Regul. Toxicol. Pharm. 1999, 29, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Levin, G.V.; Zehner, L.R.; Saunders, J.P.; Beadle, J.R. Sugar substitutes: Their energy values, bulk characteristics, and potential health benefits. Am. J. Clin. Nutr. 1995, 62, 1161S–1168S. [Google Scholar] [CrossRef] [PubMed]
- Wong, D. Sweetener determined safe in drugs, mouthwashes, and toothpastes. Dent. Today 2000, 19, 32–34. [Google Scholar]
- Yu, P.L.; Limsowtin, G.K.; Crow, V.L.; Pearce, L.E. In vivo and in vitro expression of a Streptococcus lactis tagatose 1, 6-bisphosphate aldolase gene in Escherichia coli. Appl. Microbiol. Biotechnol. 1988, 28, 471–473. [Google Scholar] [CrossRef]
- Bertelsen, H.; Andersen, H.; Tvede, M. Fermentation of D-tagatose by human intestinal bacteria and dairy lactic acid bacteria. Microb. Ecol. Health Dis. 2001, 13, 87–95. [Google Scholar] [CrossRef]
- Patra, F.; Tomar, S.K.; Arora, S. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J. Food Sci. 2009, 74, R16–R23. [Google Scholar] [CrossRef] [PubMed]
- Deok, K.O. Tagatose: Properties, applications, and biotechnological processes. Appl. Microbiol. Biotechnol. 2007, 76, 1–8. [Google Scholar]
- Jayamuthunagai, J.; Gautam, P.; Srisowmeya, G.; Chakravarthy, M. Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 3430–3437. [Google Scholar] [CrossRef]
- Bertelsen, H.; Jensen, B.B.; Buemann, B. D-Tagatose-a novel low-calorie bulk sweetener with prebiotic properties. Low-Calor. Sweeten. Present. Future 1999, 85, 98–109. [Google Scholar]
- Chahed, A.; Nesler, A.; Aziz, A. A review of knowledge on the mechanisms of action of the rare sugar d-tagatose against phytopathogenic oomycetes. Plant Pathol. 2021, 70, 1979–1986. [Google Scholar] [CrossRef]
- Mei, W.; Wang, L.; Zang, Y.; Zheng, Z.; Ouyang, J. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production. BMC Biotechnol. 2016, 16, 55. [Google Scholar] [CrossRef]
- Torres, P.; Batista-Viera, F. Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules 2017, 22, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Jin, Q.; Feng, D.; Lee, J. Isomerization of galactose to tagatose: Recent advances in non-enzymatic isomerization. J. Agric. Food Chem. 2023, 71, 4228–4234. [Google Scholar] [CrossRef] [PubMed]
- Drabo, P.; Delidovich, I. Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catal. Commun. 2018, 107, 24–28. [Google Scholar] [CrossRef]
- Kim, P. Current studies on biological tagatose production using L-arabinose isomerase: A review and future perspective. Appl. Microbiol. Biotechnol. 2004, 65, 243–249. [Google Scholar] [CrossRef]
- Gao, D.M.; Kobayashi, T.; Adachi, S. Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chem. 2015, 175, 465–470. [Google Scholar] [CrossRef]
- Milasing, N.; Khuwijitjaru, P.; Adachi, S. Isomerization of galactose to tagatose using arginine as a green catalyst. Food Chem. 2023, 398, 133858. [Google Scholar] [CrossRef] [PubMed]
- Murzin, D.Y.; Murzina, E.V.; Aho, A.; Kazakova, M.A.; Selyutin, A.G.; Kubicka, D.; Kuznetsov, V.L.; Simakova, I.L. Aldose to ketose interconversion: Galactose and arabinose isomerization over heterogeneous catalysts. Catal. Sci. Technol. 2017, 7, 5321–5331. [Google Scholar] [CrossRef]
- Zhang, H.; Yun, J.; Zabed, H.; Yang, M.; Zhang, G.; Qi, Y.; Qi, X. Production of xylitol by expressing xylitol dehydrogenase and alcohol dehydrogenase from Gluconobacter thailandicus and co-biotransformation of whole cells. Bioresour. Technol. 2018, 257, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y. Humectancies of d-tagatose and d-sorbitol. Int. J. Cosmet. Sci. 2001, 23, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Helanto, M.; Kiviharju, K.; Leisola, M.; Nyyssölä, A. Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Appl. Environ. Microbiol. 2007, 73, 7083–7091. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Kim, P.; Oh, D.K. Properties of L-arabinose isomerase from Escherichia coli as biocatalyst for tagatose production. World J. Microb. Biot. 2003, 19, 47–51. [Google Scholar] [CrossRef]
- Lim, B.C.; Kim, H.J.; Oh, D.K. High production of D-tagatose by the addition of boric acid. Biotechnol. Progr. 2007, 23, 824–828. [Google Scholar] [CrossRef]
- Kim, B.C.; Lee, Y.H.; Lee, H.S.; Lee, D.W.; Choe, E.A.; Pyun, Y.R. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: Bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol. Lett. 2002, 212, 121–126. [Google Scholar] [PubMed]
- Rhimi, M.; Bejar, S. Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive L-arabinose isomerase from the Bacillus stearothermophilus US100 strain. BBA-Gen. Subj. 2006, 1760, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Mu, W.; Zhang, T.; Jiang, B. An L-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: Cloning, expression, purification, and characterization. Appl. Microbiol. Biotechnol. 2010, 86, 1089–1097. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, B.; Pan, B. Purification and characterization of L-arabinose isomerase from Lactobacillus plantarum producing D-tagatose. World J. Microb. Biot. 2007, 23, 641–646. [Google Scholar] [CrossRef]
- Li, S.; Chen, Z.; Zhang, W.; Guang, C.; Mu, W. Characterization of a D-tagatose 3-epimerase from Caballeronia fortuita and its application in rare sugar production. Int. J. Biol. Macromol. 2019, 138, 536–545. [Google Scholar] [CrossRef]
- Kim, H.J.; Hyun, E.K.; Kim, Y.S.; Lee, Y.J.; Oh, D.K. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Appl. Environ. Microbiol. 2006, 72, 981–985. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Singh, R.; Kang, Y.C.; Zhao, H.; Lee, J.K. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production. Enzym. Microb. Technol. 2014, 58, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Izumori, K.; Miyoshi, T.; Tokuda, S.; Yamabe, K. Production of D-tagatose from dulcitol by Arthrobacter globiformis. Appl. Environ. Microbiol. 1984, 48, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Patrick, J.W.; Lee, N. Subunit structure of L-arabinose isomerase from Escherichia coli. J. Biol. Chem. 1969, 244, 4277–4283. [Google Scholar] [CrossRef]
- Manjasetty, B.A.; Chance, M.R. Crystal structure of Escherichia coli L-arabinose isomerase(ECAI), the pu-tative target of biological tagatose production. J. Mol. Biol. 2006, 360, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Oh, D.K. Purification and characterization of an L-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing D-tagatose. J. Biotechnol. 2005, 120, 162–173. [Google Scholar] [CrossRef]
- Heath, E.C.; Horecker, B.L.; Smyrniotis, P.Z.; Takagi, Y. Pentose fermentation by Lactobacillus plantarum: II. L-arabinose isomerase. J. Biol. Chem. 1958, 231, 1031–1037. [Google Scholar] [CrossRef]
- Izumori, K.; Ueda, Y.O.; Yamanaka, K. Pentose metabolism in Mycobacterium smegmatis: Comparison of L-arabinose isomerases induced by L-arabinose and D-galactose. J. Bacteriol. 1978, 133, 413–414. [Google Scholar] [CrossRef]
- Cheetham, P.S.J.; Wootton, A.N. Bioconversion of D-galactose into D-tagatose. Enzym. Microb. Technol. 1993, 15, 105–108. [Google Scholar] [CrossRef]
- Xu, Z.; Qing, Y.; Li, S.; Feng, X.; Xu, H.; Ouyang, P. A novel L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for D-tagatose production: Gene cloning, purification and characterization. J. Mol. Catal. B-Enzym. 2011, 70, 1–7. [Google Scholar] [CrossRef]
- Men, Y.; Zhu, Y.; Zhang, L.; Kang, Z.; Izumori, K.; Sun, Y.; Ma, Y. Enzymatic conversion of D-galactose to D-tagatose: Cloning, over expression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiol. Res. 2014, 169, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Chouayekh, H.; Bejar, W.; Rhimi, M.; Jelleli, K.; Mseddi, M.; Bejar, S. Characterization of an L-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pH. FEMS Microbiol. Lett. 2007, 277, 260–267. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, J.; Liu, P.; Li, X.; Ouyang, J. Elegant and efficient biotransformation for dual production of D-tagatose and bioethanol from cheese whey powder. J. Agric. Food Chem. 2019, 67, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Laksmi, F.A.; Arai, S.; Tsurumaru, H.; Nakamura, Y.; Saksono, B.; Tokunaga, M.; Ishibashi, M. Improved substrate specificity for D-galactose of L-arabinose isomerase for industrial application. Biochim. Biophys. Acta-Proteins Proteom. 2018, 1866, 1084–1091. [Google Scholar] [CrossRef]
- Laksmi, F.A.; Arai, S.; Arakawa, T.; Tsurumaru, H.; Nakamura, Y.; Saksono, B.; Ishibashi, M. Expression and characterization of l-arabinose isomerase from Geobacillus stearothermophilus for improved activity under acidic condition. Protein Expr. Purif. 2020, 175, 105692. [Google Scholar] [CrossRef]
- Shin, K.C.; Sim, D.H.; Seo, M.J.; Oh, D.K. Increased production of food-grade d-tagatose from d-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificans. J. Agric. Food Chem. 2016, 64, 8146–8153. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Mu, W.; Jiang, B. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: Gene cloning, purification and characterisation. J. Sci. Food Agric. 2010, 90, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, M.; Aghajari, N.; Juy, M.; Chouayekh, H.; Maguin, E.; Haser, R.; Bejar, S. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: Potential applications for D-tagatose production. Biochimie 2009, 91, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Nirwantono, R.; Laksmi, F.A.; Nuryana, I.; Firdausa, S.; Herawan, D.; Giyandini, R.; Hidayat, A.A. Exploring an l-arabinose isomerase from cryophile bacteria Arthrobacter psychrolactophilus B7 for d-tagatose production. Int. J. Biol. Macromol. 2024, 254, 127781. [Google Scholar] [CrossRef]
- Lim, B.C.; Kim, H.J.; Oh, D.K. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose isomerase from Thermotoga neapolitana. Appl. Biochem. Biotechnol. 2008, 149, 245–253. [Google Scholar] [CrossRef]
- Lee, D.W.; Jang, H.J.; Choe, E.A.; Kim, B.C.; Lee, S.J.; Kim, S.B.; Pyun, Y.R. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl. Environ. Microbiol. 2004, 70, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Bortone, N.; Fidaleo, M. Stabilization of immobilized l-arabinose isomerase for the production of d-tagatose from d-galactose. Biotechnol. Prog. 2020, 36, e3033. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, F.; Hansen, O.C.; Stougaard, P. Enzymatic conversion of D-galactose to D-tagatose: Heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol. 2004, 64, 816–822. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, Y.W.; Roh, H.J.; Kim, H.Y.; Cha, J.H.; Park, K.H.; Park, C.S. Production of tagatose by a recombinant thermostable L-arabinose isomerase from Thermus sp. IM6501. Biotechnol. Lett. 2003, 25, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Wanarska, M.; Kur, J. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting beta-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c. Microb. Cell Fact. 2012, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.; Hong, M.G.; Chang, P.S.; Lee, B.H.; Yoo, S.H. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener. PLoS ONE 2018, 13, e0196099. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Yoon, S.H.; Roh, H.J.; Choi, J.H. High production of d-tagatose, a potential sugar substitute, using immobilized l-arabinose isomerase. Biotechnol. Progr. 2001, 17, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ryu, S.A.; Kim, P.; Oh, D.K. A feasible enzymatic process for d-tagatose production by an immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnol. Progr. 2003, 19, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.C.; Lee, T.E.; Seo, M.J.; Kim, D.W.; Kang, L.W.; Oh, D.K. Development of tagaturonate 3-epimerase into tagatose 4-epimerase with a biocatalytic route from fructose to tagatose. ACS Catal. 2020, 10, 12212–12222. [Google Scholar] [CrossRef]
- Freimund, S.; Huwig, A.; Giffhorn, F.; Köpper, S. Convenient chemo-enzymatic synthesis of D-tagatose. J. Carbohydr. Chem. 1996, 15, 115–120. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.; Zhang, T.; Chen, J.; Hassanin, H.A.; Jiang, B. Characteristics of a fructose 6-phosphate 4-epimerase from Caldilinea aerophila DSM 14535 and its application for biosynthesis of tagatose. Enzym. Microb. Technol. 2020, 139, 109594. [Google Scholar] [CrossRef]
- Izumori, K. Izumoring: A strategy for bioproduction of all hexoses. J. Biotechnol. 2006, 124, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hong, S.H.; Kim, K.R.; Oh, D.K. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol. Lett. 2017, 39, 1141–1148. [Google Scholar] [CrossRef]
- Wichelecki, D.J.; Zhang, Y. Enzymatic Synthesis of D-Tagatose. U.S. Patent 20180216146A1, 2 August 2018. [Google Scholar]
- Han, P.; Wang, X.; Li, Y.; Wu, H.; Shi, T.; Shi, J. Synthesis of a healthy sweetener D-tagatose from starch catalyzed by semiartificial cell factories. J. Agric. Food Chem. 2023, 71, 3813–3820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, Y.; Jiang, B.; Zhang, T.; Chen, J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem. Eng. J. 2020, 161, 107654. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, X.; Cheng, H.; Xu, N.; Liu, J.; Ma, Y. Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce α-ketoglutaric acid by whole-cell biocatalyst. Biotechnol. Lett. 2017, 39, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Xu, H.; Yu, H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl. Microbiol. Biotechnol. 2013, 97, 2357–2365. [Google Scholar] [CrossRef]
- Hou, Y.; Gao, B.; Cui, J.; Tan, Z.; Qiao, C.; Jia, S. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst. Bioresour. Technol. 2019, 287, 121423. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, J.; Yang, T.; Zhang, X.; Xu, M.; Rao, Z. Efficient biosynthesis of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system. Appl. Microbiol. Biotechnol. 2018, 102, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Ošlaj, M.; Cluzeau, J.; Orkić, D.; Kopitar, G.; Mrak, P.; Časar, Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. PLoS ONE 2013, 8, e62250. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Shin, H.D.; Du, G.; Liu, L.; Chen, J. One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris. Sci. Rep. 2015, 5, 12614. [Google Scholar] [CrossRef]
- Zhang, G.; Zabed, H.M.; An, Y.; Yun, J.; Huang, J.; Zhang, Y.; Qi, X. Biocatalytic conversion of a lactose-rich dairy waste into D-tagatose, D-arabitol and galactitol using sequential whole cell and fermentation technologies. Bioresour. Technol. 2022, 358, 127422. [Google Scholar] [CrossRef]
- Yuan, J.; Ravikumar, Y.; Zhang, G.; Yun, J.; Zhang, Y.; Zabed, H.M.; Qi, X. L-arabinose isomerase from Lactobacillus parabuchneri and its whole cell biocatalytic application in D-tagatose biosynthesis from D-galactose. Food Bios. 2021, 41, 101034. [Google Scholar] [CrossRef]
- Du, M.; Zhao, D.; Cheng, S.; Sun, D.; Chen, M.; Gao, Z.; Zhang, C. Towards efficient enzymatic conversion of D-galactose to D-tagatose: Purification and characterization of L-arabinose isomerase from Lactobacillus brevis. Bioprocess Biosyst. Eng. 2019, 42, 107–116. [Google Scholar] [CrossRef]
- Muniruzzaman, S.; Tokunaga, H.; Izumori, K. Isolation of Enterobacter agglomerans strain 221e from soil, a potent D-tagatose producer from galactitol. J. Ferment. Bioeng. 1994, 78, 145–148. [Google Scholar] [CrossRef]
- Shimonishi, T.; Okumura, Y.; Izumori, K. Production of L-tagatose from galactitol by Klebsiella pneumoniae strain 40b. J. Ferment. Bioeng. 1995, 79, 620–622. [Google Scholar] [CrossRef]
- Sudto, C.; Moonmangmee, D.; Moonmangmee, S.; Adachi, O.; Matsushita, K. Production of D-tagatose, a novel low calories sweetener by a new acetic acid bacterium, Asaia bogorensis NRIC 0311T. Biochem. Eng. 2012, 76, 60–69. [Google Scholar]
- Jayaraman, J.; Gautam, P. Evaluation of production & kinetics parameters of rare sugar (D-tagatose) using biocatalyst Arthrobacter globiformis. Manag. Environ. Qual. 2016, 27, 71–78. [Google Scholar]
- Dai, Y.; Li, M.; Jiang, B.; Zhang, T.; Chen, J. Whole-cell biosynthesis of d-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzym. Microb. Technol. 2021, 145, 109747. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; You, C. Permeabilized Escherichia coli Whole Cells Containing Co-Expressed Two Thermophilic Enzymes Facilitate the Synthesis of Scyllo-Inositol from Myo-Inositol. Biotechnol. J. 2020, 15, 1900191. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Tian, C.; Zhu, Y.; Zeng, Y.; Men, Y.; Ma, Y. Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol. Adv. 2019, 37, 107406. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Liu, H.; Luo, Y. Recent Advances in the Biosynthesis of Natural Sugar Substitutes in Yeast. J. Fungi 2023, 9, 907. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kang, S.Y.; Park, J.J.; Kim, P. Novel activity of UDP-galactose-4-epimerase for free monosaccharide and activity improvement by active site-saturation mutagenesis. Appl. Biochem. Biotechnol. 2011, 163, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Beerens, K.; Soetaert, W.; Desmet, T. UDP-hexose 4-epimerases: A view on structure, mechanism and substrate specificity. Carbohydr. Res. 2015, 414, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, C.; Zheng, L.; Jiang, B.; Zhang, T.; Chen, J. Enhanced biosynthesis of D-tagatose from maltodextrin through modular pathway engineering of recombinant Escherichia coli. Biochem. Eng. J. 2022, 178, 108303. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, G.C.; Kwak, S.; Oh, E.J.; Yun, E.J.; Chomvong, K.; Jin, Y.S. Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat. Commun. 2019, 10, 1356. [Google Scholar] [CrossRef]
- Rhimi, M.; Messaoud, E.B.; Borgi, M.A.; Bejar, S. Co-expression of L-arabinose isomerase and D-glucose isomerase in E. coli and development of an efficient process producing simultaneously D-tagatose and D-fructose. Enzym. Microb. Tech. 2007, 40, 1531–1537. [Google Scholar] [CrossRef]
- Tanase, T.; Takei, T.; Hidai, M.; Yano, S. Substrate-dependent chemoselective aldose–aldose and aldose–ketose isomerizations of carbohydrates promoted by a combination of calcium ion and monoamine. Carbohydr. Res. 2001, 333, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Dijkmans, J.; Gabriëls, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green. Chem. 2013, 15, 2777–2785. [Google Scholar] [CrossRef]
- Aburto, C.; Vera, C.; Arenas, F.; Illanes, A.; Guerrero, C. One-pot production of tagatose using l-arabinose isomerase from Thermotoga maritima and β-galactosidase from Aspergillus oryzae. Lebensm. Wiss. Technol. 2024, 194, 115. [Google Scholar] [CrossRef]
Characteristic | Health Functions | Applications |
---|---|---|
1/3 of the caloric value of sucrose | Low energy | Low-sugar foods, diet foods, and grain foods |
Low calorie, difficult to metabolize | Reduces blood sugar | Exclusive food for type II diabetic patients |
Can be fermented by intestinal flora in the colon | Improves intestinal flora | Dairy products, juice drinks, and effervescent tablets |
Difficult to be utilized by microorganisms in the oral cavity | Anti-caries | Gum, toothpaste, and mouthwash |
Easy to caramelize, heat and moisture absorption resistant | Adds flavor | Bread, beverages, and sweets |
Medical field | Cough syrup and denture adhesive | |
Wettability and stability | Improves and prevents skin roughness | Cosmetic moisturizers |
Inhibits the growth of some phytopathogens | Protects plants | Plant protection products |
Microbial Source | Substrate | Optimum Temperature (°C) | Optimum pH | Metal Ion Requirement | References |
---|---|---|---|---|---|
Thermoanaerobacterium brockii | D-galactose | 65 | 6.9 | Co2+ | [83] |
Thermotoga neapolitana 5068 | D-galactose | 80 | 7.0 | Mn2+, Co2+ | [56] |
Thermotoga maritima | D-galactose | 90 | 7.5 | Mn2+, Co2+ | [81] |
Lactobacillus plantarum NC8 | D-galactose | 60 | 7.5 | Mn2+, Co2+ | [72] |
Thermophilic bacterium IM6501 | D-galactose | 60 | 8.0 | Zn2+, Ni2+ | [84] |
Lactobacillus plantarum CY6 | D-galactose | 50 | 6.5 | Mn2+ | [13] |
Bifidobacterium adolescentis | D-galactose | 55 | 6.5 | Mn2+, Fe2+, Zn2+, Ca2+ | [65] |
Arthrobacter species 22c | D-galactose | 52 | 8.0 | Mg2+, Mn2+, Ca2+ | [85] |
Clostridium hylemonae | D-galactose | 50 | 7.5 | Mg2+ | [86] |
G. thermodenitrificans | D-galactose | 60 | 9.0 | None | [55] |
Bacillus coagulans NL01 | D-galactose | 60 | 7.5 | Mn2+, Co2+ | [43] |
Pediococcus pentosaceus PC-5 | D-galactose | 50 | 6.0 | Mn2+, Co2+ | [71] |
Bifidobacterium longum NRRL B-41409 | D-galactose | 55 | 6.0–6.5 | Ca2+, Mg2+ | [10] |
Anoxybacillus flavithermus | D-galactose | 95 | 9.5–10.5 | Ni2+ | [9] |
Production Method | Reagent/Enzyme | Optimum Temperature (°C) | Substrate | D-Tagatose (g/L) | Conversion Rate (%) | References |
---|---|---|---|---|---|---|
Chemical method | Supercritical ethanol | 180 | D-galactose | 80 | 24 | [48] |
CaCl2, triethylamine | 60 | 1 mmol/L of methanol, D-glucose | 38 | 32 | [119] | |
Sn/β zeolite | 110 | D-galactose | 29 | 24 | [46] | |
Magnesium aluminates | 110 | D-galactose | 16 | 18–27 | [46] | |
Sn/deAl-β zeolite | 110 | D-galactose | 89.5 | 28.3 | [120] | |
Enzyme catalysis | L-AI from E. coli | 30 | 100 g/L D-galactose | 28.8 | 28.8 | [85] |
L-AI from Lactobacillus plantarum | 35 | 100 g/L D-galactose | 39 | 39.0 | [55] | |
L-AI from G. stearothermophilus | 60 | 100 g/L D-galactose | 30.6 | 30.6 | [89] | |
L-AI from G. thermodenitrificans | 60 | 300 g/L D-galactose | 158 | 52.7 | [55] | |
L-AI from Thermus sp. | 60 | 1.0 g/L D-galactose | 0.54 | 54.0 | [84] | |
L-AI from Thermoanaerobacter mathranii | 65 | 300 g/L D-galactose | 126 | 42.0 | [82] | |
L-AI from B. stearothermophilus | 70 | 0.9 g/L D-galactose | 0.43 | 48.0 | [57] | |
L-AI from Thermotaga maritima | 80 | 1.8 g/L D-galactose | 1.0 | 56.0 | [81] | |
L-AI from Thermotoga neapolitana | 80 | 1.8 g/L D-galactose | 1.22 | 68.0 | [56] | |
Tagaturonate 3-epimerase from Thermotoga petrophila | 80 | 700 g/L D-fructose | 213 | 30.0 | [88] | |
Hexokinase from Saccharomyces cerevisiae | 50 | 180 g/L D-fructose | 144 | 80.0 | [93] | |
FbaA from E. coli | ||||||
Phytase from NR | ||||||
L-AI and β-galactosidase from E. coli BL21 | 50 | 100 g/L lactose | 23.5 | 23.5 | [73] | |
αGP, PGM, PGI, GatZ, and PGP from E. coli BL21 | 50 | 20 g/L maltodextrin | 9.2 | 46.0 | [94] | |
Whole-cell catalysis | E. coli BLT | 60 | 10 g/L maltodextrin | 1.88 | 18.8 | [109] |
L. brevis sp. D-tag 1 | 55 | 9 g/L D-galactose | 3.916 | 43.5 | [105] | |
L-AI from Lactobacillus parabuchneri | 45 | 140 g/L D-galactose | 54 | 39.0 | [104] | |
E. coli/pETDuet-αgp-pgm and pCDFDuet-pgi-gatz-pgp | 60 | 20 g/L maltodextrin | 3.2 | 16.0 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mao, X.; Lu, Z.; Gao, C.; Chen, Z.; Liu, J. Advances in Biological Production of D-Tagatose: A Comprehensive Overview. Fermentation 2025, 11, 46. https://doi.org/10.3390/fermentation11020046
Zhang H, Mao X, Lu Z, Gao C, Chen Z, Liu J. Advances in Biological Production of D-Tagatose: A Comprehensive Overview. Fermentation. 2025; 11(2):46. https://doi.org/10.3390/fermentation11020046
Chicago/Turabian StyleZhang, Hailin, Xinyu Mao, Zhengwu Lu, Cuijuan Gao, Zhiqun Chen, and Jingjing Liu. 2025. "Advances in Biological Production of D-Tagatose: A Comprehensive Overview" Fermentation 11, no. 2: 46. https://doi.org/10.3390/fermentation11020046
APA StyleZhang, H., Mao, X., Lu, Z., Gao, C., Chen, Z., & Liu, J. (2025). Advances in Biological Production of D-Tagatose: A Comprehensive Overview. Fermentation, 11(2), 46. https://doi.org/10.3390/fermentation11020046