Molecular Characterization of Propolis-Resistant Saccharomyces cerevisiae Obtained by Evolutionary Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains, Growth and Storage Conditions
2.2. Evolutionary Engineering Procedure
2.3. Estimation of Stress Resistance
2.4. Physiological Analyses
2.5. Determination of Intracellular Reactive Oxygen Species (ROS) Content
2.6. Lyticase Sensitivity Assay
2.7. Whole Genome Transcriptomic Analysis
2.8. Whole Genome Re-Sequencing Analysis
2.9. Statistical Analysis
3. Results
3.1. Selection of Propolis-Resistant Mutant Strains by Evolutionary Engineering
3.2. Cross-Resistance and Sensitivities of the Propolis-Resistant, Evolved Strain FD11 to Other Stress Factors
3.3. Growth Physiology and Metabolite Profiles of the Propolis-Resistant, Evolved Strain FD11
3.4. Intracellular ROS Levels
3.5. Cell Wall Integrity of FD11
3.6. Comparative Whole Genome Transcriptomic Analysis of FD11
3.7. Comparative Whole Genome Analysis of FD11
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). FCT 1998, 36, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Lotti, C.; Castro, G.M.; Sá, L.F.; Silva, B.D.A.F.S.D.; Tessis, A.C.; Piccinelli, A.L.; Rastrelli, L.; Ferreira-Pereira, A. Inhibition of Saccharomyces cerevisiae Pdr5p by a natural compound extracted from Brazilian Red Propolis. Rev. Bras. Farmacogn. 2011, 21, 901–907. [Google Scholar] [CrossRef]
- Crane, E. The past and present importance of bee products to man. In Bee Products: Properties, Applications, and Apitherapy; Springer: Boston, MA, USA, 1997; pp. 1–13. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacol. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Cigut, T.; Polak, T.; Gasperlin, L.; Raspor, P.; Jamnik, P. Antioxidative activity of propolis extract in yeast cells. J. Agric. Food Chem. 2011, 9, 11449–11455. [Google Scholar] [CrossRef]
- Attfield, P.V. Stress tolerance: The key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 1997, 15, 1351–1357. [Google Scholar] [CrossRef]
- Topaloğlu, A.; Esen, Ö.; Turanlı-Yıldız, B.; Arslan, M.; Çakar, Z.P. From Saccharomyces cerevisiae to ethanol: Unlocking the power of evolutionary engineering in metabolic engineering applications. J. Fungi 2023, 9, 984. [Google Scholar] [CrossRef]
- Botstein, D.; Chervitz, S.A.; Cherry, J.M. Yeast as a model organism. Science 1997, 27, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Ludovico, P.; Sousa, M.J.; Silva, M.T.; Leão, C.; Côrte-Real, M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 2001, 147, 409–2415. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, K.U.; Fussi, H.; Ruckenstuhl, C. Yeast apoptosis—From genes to pathways. Semin. Cancer Biol. 2007, 17, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.; Hofer, S.; Pendl, T.; Kainz, K.; Madeo, F.; Carmona-Gutierrez, D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res. 2018, 18, foy020. [Google Scholar] [CrossRef] [PubMed]
- de Sá, R.A.; de Castro, F.A.; Eleutherio, E.C.; de Souza, R.M.; da Silva, J.F.; Pereira, M.D. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz. J. Microbiol. 2013, 44, 993–1000. [Google Scholar] [CrossRef]
- De Castro, P.A.; Savoldi, M.; Bonatto, D.; Barros, M.H.; Goldman, M.H.; Berretta, A.A.; Goldman, G.H. Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot. Cell 2011, 10, 398–411. [Google Scholar] [CrossRef] [PubMed]
- De Castro, P.A.; Savoldi, M.; Bonatto, D.; Malavazi, I.; Goldman, M.H.S.; Berretta, A.A.; Goldman, G.H. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC Complement. Altern. Med. 2012, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, L.A.; Cibanal, I.L.; Paraluppi, A.L.; Freitas, C.; de Gallez, L.M.; Ceccato-Antonini, S.R. Propolis as a potential alternative for the control of Dekkera bruxellensis in bioethanol fermentation. Semin. Ciências Agrárias 2019, 40, 2071–2078. [Google Scholar] [CrossRef]
- Sauer, U. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 2001, 73, 130–166. [Google Scholar]
- Çakar, Z.P.; Turanlı-Yıldız, B.; Alkım, C.; Yılmaz, Ü. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 2012, 12, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Mavrommati, M.; Papanikolaou, S.; Aggelis, G. Improving ethanol tolerance of Saccharomyces cerevisiae through adaptive laboratory evolution using high ethanol concentrations as a selective pressure. Process Biochem. 2023, 124, 280–289. [Google Scholar] [CrossRef]
- Butler, P.R.; Brown, M.; Oliver, S.G. Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185–196. [Google Scholar] [CrossRef]
- Mans, R.; Daran, J.M.; Pronk, J.T. Under pressure: Evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 2018, 50, 47–56. [Google Scholar] [CrossRef]
- Hacısalihoğlu, B.; Holyavkin, C.; Topaloğlu, A.; Kısakesen, H.İ.; Çakar, Z.P. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. FEMS Yeast Res. 2019, 19, foz021. [Google Scholar] [CrossRef]
- Holyavkin, C.; Turanlı-Yıldız, B.; Yılmaz, Ü.; Alkım, C.; Arslan, M.; Topaloğlu, A.; Kısakesen, H.İ.; de Billerbeck, G.; François, J.M.; Çakar, Z.P. Genomic, transcriptomic, and metabolic characterization of 2-Phenylethanol-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Front. Microbiol. 2023, 14, 1148065. [Google Scholar] [CrossRef]
- Lawrence, C.W. Classical mutagenesis techniques. In Methods in Enzymology; Academic Press: San Diego, CA, USA, 1991; Volume 194, pp. 273–281. [Google Scholar] [CrossRef]
- Çelik, İ.; Seyhan, M.F.; Ceviz, A.B.; Aydoğan, Ç.; Aydoğan, H.Y.; Öztürk, O. The therapeutic approach to fibrocystic breast disease in the MCF-10A cell culture model: Striking efficacy of polyphenols. İstanbul J. Pharm. 2024, 54, 40–48. [Google Scholar] [CrossRef]
- Küçükgöze, G.; Alkım, C.; Yılmaz, Ü.; Kısakesen, H.İ.; Gündüz, S.; Akman, S.; Çakar, Z.P. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Russek, E.; Colwell, R.R. Computation of most probable numbers. Appl. Environ. Microbiol. 1983, 45, 1646–1650. [Google Scholar] [CrossRef]
- Parrou, J.L.; François, J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem. 1997, 248, 186–188. [Google Scholar] [CrossRef]
- Pereira, M.D.; Eleutherio, E.C.; Panek, A.D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 2001, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Kuranda, K.; Leberre, V.; Sokol, S.; Palamarczyk, G.; François, J. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signaling pathways. Mol. Microbiol. 2006, 61, 1147–1166. [Google Scholar] [CrossRef]
- Ruepp, A.; Zollner, A.; Maier, D.; Albermann, K.; Hani, J.; Mokrejs, M.; Tetko, I.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 2004, 32, 5539–5545. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Nijkamp, J.F.; van den Broek, M.; Datema, E.; de Kok, S.; Bosman, L.; Luttik, M.A.; Daran-Lapujade, P.; Vongsangnak, W.; Nielsen, J.; Heijne, W.H.; et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN. PK113-7D, a model for modern industrial biotechnology. Microb. Cell Factories 2012, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 10 December 2023).
- Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; et al. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2012, 40, D700–D705. [Google Scholar] [CrossRef]
- Prasad, R.; Goffeau, A. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu. Rev. Microbiol. 2012, 66, 39–63. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.; Wagner, M.; Du, D.; Raschka, S.; Nentwig, L.M.; Gohlke, H.; Smits, S.H.; Luisi, B.F.; Schmitt, L. Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nat. Commun. 2021, 12, 5254. [Google Scholar] [CrossRef] [PubMed]
- Wolfger, H.; Mahé, Y.; Parle-McDermott, A.; Delahodde, A.; Kuchler, K. The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett. 1997, 418, 269–274. [Google Scholar] [CrossRef]
- Sundström, L.; Larsson, S.; Jönsson, L.J. Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors. Appl. Biochem. Biotechnol. 2010, 161, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Sürmeli, Y.; Holyavkin, C.; Topaloğlu, A.; Arslan, M.; Kısakesen, H.İ. and Çakar, Z.P. Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain. World J. Microbiol. Biotechnol. 2019, 35, 183. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; MacPherson, S.; Sylvain, M.A.; Turcotte, B. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. JBC 2004, 279, 27855–27860. [Google Scholar] [CrossRef] [PubMed]
- Balzi, E.; Goffeau, A. Yeast multidrug resistance: The PDR network. J. Bioenerg. Biomembr. 1995, 27, 71–76. [Google Scholar] [CrossRef]
- Schüller, C.; Mamnun, Y.M.; Wolfger, H.; Rockwell, N.; Thorner, J.; Kuchler, K. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae. MBoC 2007, 18, 4932–4944. [Google Scholar] [CrossRef] [PubMed]
- Kushnareva, Y.; Newmeyer, D.D. Bioenergetics and cell death. Ann. N. Y. Acad. Sci. 2010, 1201, 50–57. [Google Scholar] [CrossRef]
- Byrne, K.P.; Wolfe, K.H. The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 2005, 15, 1456–1461. [Google Scholar] [CrossRef] [PubMed]
- Hodge, M.R.; Kim, G.; Singh, K.; Cumsky, M.G. Inverse regulation of the yeast COX5 genes by oxygen and heme. MCB 1989, 9, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.M.; Funes, S. Biogenesis of cytochrome oxidase-sophisticated assembly lines in the mitochondrial inner membrane. Gene 2005, 354, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.E.; Nicholls, P.; Freedman, J.A. Cytochrome c oxidase: Structure, function, and membrane topology of the polypeptide subunits. Biochem. Cell Biol. 1991, 69, 586–607. [Google Scholar] [CrossRef]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Samali, A.; Cotter, T.G. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res. 1996, 22, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Reed, J.C.; Homma, S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003, 22, 9041–9047. [Google Scholar] [CrossRef]
- Xie, Z.; Nair, U.; Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 2008, 19, 3290–3298. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Kubota, Y.; Sekito, T.; Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.F.; Alonso Morales, L.A.; Kassen, R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. GBE 2021, 13, evab141. [Google Scholar] [CrossRef]
Functional Category | Count a | % b | Fold Enrichment c | p-Value | |
---|---|---|---|---|---|
Metabolism | Oxidoreductase Activity | 25 | 14.2 | 3.0 | 2.74 × 10−4 |
Ion Binding | 6 | 3.4 | 1.6 | 1.10 × 10−11 | |
Cellular Transport | Transmembrane Transporter Activity | 15 | 8.5 | 1.6 | 2.56 × 10−10 |
Protein Fate | Unfolded Protein Binding | 9 | 5.1 | 4.7 | 7.10 × 10−11 |
Energy Metabolism | Kinase Activity | 7 | 4.0 | 1.3 | 2.92 × 10−10 |
Glycosyltransferase Activity | 6 | 3.4 | 2.3 | 7.00 × 10−12 | |
Transport and Catabolism | Enzyme Regulator Activity | 7 | 4.0 | 1.2 | 3.00 × 10−12 |
Cell Cycle | Transferase Activity | 6 | 3.4 | 1.2 | 7.90 × 10−11 |
Systematic Name | Gene Name | Fold Change | Description [40] | |
---|---|---|---|---|
Oxidoreductase activity | Q0045 | COX1 | 2.616 | Subunit of complex IV of the mitochondrial respiratory chain |
Q0105 | COB | 2.008 | Cytochrome B, mitochondrially encoded subunit of ubiquinol-Cytochrome C reductase | |
YAL061W | BDH2 | 6.207 | Putative oxidoreductase | |
YBL064C | PRX1 | 2.037 | Mitochondrial thioredoxin peroxidase | |
YBR026C | ETR1 | 2.349 | enoyl-[acyl-carrier-protein] reductase activity | |
YBR046C | ZTA1 | 2.318 | RNA-binding NADPH/quinone reductase | |
YCL033C | MXR2 | 2.393 | Mitochondrial methionine sulfoxide reductase | |
YCL035C | GRX1 | 2.696 | Bifunctional glutathione peroxidase and glutathione transferase | |
YDR453C | TSA2 | 2.436 | Stress-inducible cytoplasmic thioredoxin peroxidase | |
YEL039C | CYC7 | 5.632 | Electron carrier, facilitates electron transfer from ubiquinol to Cytochrome C | |
YEL070W | DSF1 | 2.021 | Mannitol dehydrogenase | |
YGR088W | CTT1 | 3.229 | Cytoplasmic catalase | |
YGR209C | TRX2 | 3.071 | Cytoplasmic thioredoxin isoenzyme | |
YHR053C | CUP1-1 | 3.532 | Copper- and cadmium-binding protein | |
YHR055C | CUP1-2 | 3.498 | Copper- and cadmium-binding protein | |
YHR104W | GRE3 | 2.887 | Aldose reductase | |
YIL111W | COX5B | 3.574 | Subunit Vb of Cytochrome C oxidase | |
YIL155C | GUT2 | 2.385 | Glycerol-3-phosphate dehydrogenase | |
YML054C | CYB2 | 2.955 | L-lactate dehydrogenase (Cytochrome B2) | |
YMR169C | ALD3 | 3.672 | Cytoplasmic aldehyde dehydrogenase | |
YMR256C | COX7 | 2.615 | Subunit VII of Cytochrome C oxidase (Complex IV) | |
YOR120W | GCY1 | 3.475 | Glycerol dehydrogenase [NAD(P)+] and aldose reductase | |
YOR374W | ALD4 | 4.244 | Mitochondrial aldehyde dehydrogenase | |
YPL061W | ALD6 | 2.887 | Cytosolic aldehyde dehydrogenase | |
YPL171C | OYE3 | 2.291 | NADPH dehydrogenase | |
Transmembrane transporter activity | Q0045 | COX1 | 2.616 | Subunit of complex IV of the mitochondrial respiratory chain |
Q0105 | COB | 2.008 | Cytochrome B, mitochondrially encoded subunit of ubiquinol-Cytochrome C reductase | |
YDR011W | SNQ2 | 2.859 | Plasma membrane ATP-binding cassette (ABC) transporter | |
YDR342C | HXT7 | 5.222 | Glucose transporter | |
YDR343C | HXT6 | 5.218 | Hexose transmembrane transporter | |
YDR406W | PDR15 | 2.723 | Plasma membrane ATP-binding cassette (ABC) transporter | |
YGR243W | MPC3 | 4.698 | Highly conserved subunit of the mitochondrial pyruvate carrier (MPC) | |
YGR281W | YOR1 | 2.011 | Plasma membrane ATP-binding cassette (ABC) transporter | |
YGR289C | MAL11 | 3.795 | High-affinity maltose transporter (alpha-glucoside transporter) | |
YIL111W | COX5B | 3.574 | Subunit Vb of Cytochrome C oxidase | |
YLL055W | YCT1 | 2.301 | High-affinity cysteine-specific transporter | |
YMR011W | HXT2 | 3.631 | Hexose transmembrane transporter | |
YMR256C | COX7 | 2.615 | Subunit VII of Cytochrome C oxidase (Complex IV) | |
YNR002C | ATO2 | 2.153 | Plasma membrane ammonium transporter | |
YDR011W | SNQ2 | 2.859 | Plasma membrane ATP-binding cassette (ABC) transporter | |
YOR153W | PDR5 | 3.497 | Plasma membrane ATP-binding cassette (ABC) transporter | |
Unfolded protein binding | YAL005C | SSA1 | 2.267 | ATPase involved in protein folding |
YBR072W | HSP26 | 5.664 | Small heat shock protein with chaperone activity | |
YDR171W | HSP42 | 3.145 | Compartment-specific sequestrase chaperone | |
YER103W | SSA4 | 3.895 | Heat shock protein that is highly induced upon stress | |
YLL026W | HSP104 | 2.796 | Adenosine-binding protein chaperone | |
YLR216C | CPR6 | 2.945 | Peptidyl-prolyl cis-trans isomerase | |
YNL077W | APJ1 | 2.718 | Chaperone and ATPase activator | |
YOR020C | HSP10 | 2.266 | Mitochondrial matrix co-chaperonin | |
YPL240C | HSP82 | 3.478 | Unfolded protein-binding ATPase (chaperone) | |
Enzyme regulator activity | YFR017C | IGD1 | 3.552 | Cytoplasmic enzyme inhibitor |
YLR178C | TFS1 | 2.398 | Phospholipid-binding peptidase inhibitor | |
YLR423C | ATG17 | 2.652 | Subunit of the Atg1 signaling complex | |
YNL015W | PBI2 | 2.900 | Cytosolic inhibitor of vacuolar proteinase B (PRB1) | |
YOR173W | DCS2 | 3.541 | A protein involved in the deadenylation-dependent decapping of nuclear-transcribed mRNA and cellular response to starvation | |
YOR178C | GAC1 | 3.209 | Regulatory subunit of the Glc7p protein phosphatase type 1 complex | |
YPL111W | CAR1 | 2.833 | Manganese- and zinc-binding arginase | |
Kinase activity | YCL040W | GLK1 | 2.624 | Glucokinase |
YCR091W | KIN82 | 2.149 | Putative serine/threonine protein kinase | |
YDL079C | MRK1 | 3.005 | Glycogen synthase kinase 3 (GSK-3) homolog | |
YDR516C | EMI2 | 4.018 | Cytoplasmic protein implicated in sporulation and transcription regulation | |
YFR053C | HXK1 | 6.549 | Hexokinase isoenzyme 1 | |
YGR194C | XKS1 | 2.156 | Cytoplasmic xylulokinase | |
YMR291W | TDA1 | 2.022 | Protein serine/threonine kinase | |
Ion binding | YGR205W | TDA10 | 2.346 | ATP-binding protein of unknown function |
YHR053C | CUP1-1 | 3.532 | Copper- and cadmium-binding protein | |
YHR055C | CUP1-2 | 3.498 | Copper- and cadmium-binding protein | |
YLL026W | HSP104 | 2.796 | Adenosine-binding protein chaperone | |
YMR017W | SPO20 | 2.072 | SNAP receptor subunit of the SNARE complex | |
YPL111W | CAR1 | 2.833 | Manganese- and zinc binding arginase | |
Transferase activity | YDL008W | APC11 | 2.050 | Ubiquitin transferase |
YGL087C | MMS2 | 2.315 | A subunit of the ubiquitin conjugating enzyme complex | |
YGR043C | NQM1 | 2.709 | Nuclear transaldolase | |
YIL097W | FYV10 | 2.190 | Subunit of GID complex | |
YOR285W | RDL1 | 2.160 | Thiosulfate sulfurtransferase | |
YOR347C | PYK2 | 2.225 | Pyruvate kinase |
Functional Category | Count a | % b | Fold Enrichment c | p-Value | |
---|---|---|---|---|---|
Genetic Information Processing | RNA Binding | 32 | 13.8 | 3.0 | 3.11 × 10−11 |
mRNA Binding | 30 | 12.9 | 4.6 | 3.21 × 10−11 | |
rRNA Binding | 19 | 8.2 | 4.4 | 1.40 × 10−11 | |
DNA Binding | 10 | 4.3 | 0.7 | 5.31 × 10−13 | |
Methyltransferase Activity | 22 | 9.5 | 6.8 | 1.72 × 10−10 | |
Helicase Activity | 15 | 6.5 | 4.9 | 4.32 × 10−14 | |
Signaling and Cellular Processes | Transmembrane Transporter Activity | 17 | 7.3 | 1.4 | 1.05 × 10−10 |
Transcription | Nucleotidyltransferase Activity | 11 | 4.7 | 2.5 | 2.75 × 10−12 |
Systematic Name | Gene Name | Fold Change | Description [40] | |
---|---|---|---|---|
RNA binding | YBR247C | ENP1 | −3.027 | Small nucleolar RNA (snoRNA)-binding protein |
YDL051W | LHP1 | −2.180 | RNA-binding protein | |
YDL148C | NOP14 | −2.259 | Nucleolar protein | |
YDR449C | UTP6 | −2.155 | Nucleolar U3-snoRNA-binding protein | |
YEL026W | SNU13 | −2.880 | RNA-binding protein | |
YER006W | NUG1 | −2.651 | GTPase that associates with nuclear 60S pre-ribosomes | |
YGR128C | UTP8 | −2.509 | Nucleolar protein | |
YGR159C | NSR1 | −4.794 | Nuclear localization sequence (NLS)-binding protein | |
YHR040W | BCD1 | −2.687 | Essential protein required for the accumulation of box C/D sno RNA | |
YHR148W | IMP3 | −2.772 | Component of the SSU processome | |
YHR196W | UTP9 | −2.299 | Nucleolar protein | |
YIL091C | UTP25 | −2.473 | Protein that binds both rRNA and U3 snoRNA | |
YJL010C | NOP9 | −2.400 | Essential subunit of U3-containing 90S preribosome | |
YJL033W | HCA4 | −3.048 | DEAD box RNA helicase | |
YJL050W | MTR4 | −2.710 | ATP-dependent 3′-5’ RNA helicase | |
YJL109C | UTP10 | −2.492 | Nucleolar protein | |
YKR081C | RPF2 | −3.273 | Protein involved in maturation of LSU-ribosomal RNA (rRNA) | |
YLR129W | DIP2 | −2.244 | Nucleolar snoRNA-binding protein | |
YLR222C | UTP13 | −2.452 | Nucleolar protein | |
YMR229C | RRP5 | −2.668 | RNA-binding protein | |
YMR290C | HAS1 | −3.365 | ATP-dependent RNA helicase | |
YNL075W | IMP4 | −3.464 | Component of the SSU processome | |
YNL112W | DBP2 | −5.448 | ATP-dependent RNA helicase of the DEAD-box protein family | |
YNL132W | KRE33 | −2.814 | rRNA cytidine N-acetyltransferase | |
YNL175C | NOP13 | −2.421 | Putative RNA-binding protein | |
YNR054C | ESF2 | −2.860 | Essential nucleolar protein | |
YOL041C | NOP12 | −2.453 | Putative RNA-binding protein | |
YOR359W | VTS1 | −2.280 | Flap-structured DNA-binding and RNA-binding protein | |
YPL126W | NAN1 | −2.033 | U3 snoRNA-binding protein | |
YPL217C | BMS1 | −2.479 | GTPase- and U3 snoRNA-binding protein | |
YPR137W | RRP9 | −2.698 | Subunit of small ribosomal subunit processome | |
mRNA binding | YBR079C | RPG1 | −3.514 | eIF3a subunit of the eukaryotic translation initiation factor 3 |
YCR057C | PWP2 | −2.707 | Nucleolar mRNA-binding protein | |
YDR496C | PUF6 | −2.999 | Pumilio-homology domain protein | |
YER006W | NUG1 | −2.651 | GTPase that associates with nuclear 60S pre-ribosomes | |
YFL023W | BUD27 | −2.047 | Cytoplasmic protein | |
YGL099W | LSG1 | −2.255 | Putative GTPase involved in 60S ribosomal subunit biogenesis | |
YGR103W | NOP7 | −2.748 | Component of several different pre-ribosomal particles | |
YGR159C | NSR1 | −4.794 | Nuclear localization sequence-binding protein | |
YHR216W | IMD2 | −2.186 | Inosine monophosphate dehydrogenase | |
YJL010C | NOP9 | −2.400 | Essential subunit of U3-containing 90S preribosome | |
YJL050W | MTR4 | −2.710 | ATP-dependent 3′-5′ RNA helicase | |
YKL172W | EBP2 | −2.768 | Protein required for 25S rRNA maturation and 60S ribosomal subunit assembly | |
YLL011W | SOF1 | −2.500 | Protein required for biogenesis of 40S (small) ribosomal subunit | |
YLR175W | CBF5 | −2.605 | Pseudouridine synthase catalytic subunit of box H/ACA snoRNPs | |
YLR197W | NOP56 | −2.500 | Essential evolutionarily conserved nucleolar protein | |
YLR276C | DBP9 | −3.084 | ATP-dependent DNA, RNA and DNA/RNA helicase | |
YLR401C | DUS3 | −2.610 | tRNA dihydrouridine synthase | |
YLR432W | IMD3 | −2.006 | Inosine monophosphate dehydrogenase | |
YML056C | IMD4 | −3.336 | Inosine monophosphate dehydrogenase | |
YMR229C | RRP5 | −2.668 | RNA-binding protein | |
YNL002C | RLP7 | −3.010 | Nucleolar protein similar to large ribosomal subunit L7 proteins | |
YNL112W | DBP2 | −5.448 | ATP-dependent RNA helicase | |
YOR091W | TMA46 | −2.374 | Protein of unknown function that associates with translating ribosomes | |
YOR310C | NOP58 | −2.490 | Protein involved in producing mature rRNAs and snoRNAs | |
YPL012W | RRP12 | −3.048 | Protein required for export of the ribosomal subunits | |
YPL043W | NOP4 | −2.670 | RNA-binding protein | |
YPL126W | NAN1 | −2.033 | U3 snoRNA-binding protein | |
YPL217C | BMS1 | −2.479 | GTPase- and U3 snoRNA-binding protein | |
YPL226W | NEW1 | −2.281 | Translation termination and ribosome biogenesis factor | |
YPR112C | MRD1 | −3.112 | Essential conserved small ribosomal subunit (40s) synthesis factor | |
Methyltransferase activity | YBR034C | HMT1 | −3.823 | Nuclear protein-arginine omega-N methyltransferase |
YBR061C | TRM7 | −2.125 | tRNA methyltransferase | |
YBR141C | BMT2 | −2.671 | Nucleolar S-adenosylmethionine-dependent rRNA methyltransferase | |
YBR271W | EFM2 | −2.714 | S-adenosylmethionine-dependent lysine methyltransferase | |
YCL054W | SPB1 | −2.447 | rRNA methyltransferase | |
YCR047C | BUD23 | −2.648 | rRNA (guanine) methyltransferase | |
YDL014W | NOP1 | −3.168 | A histone–glutamine methyltransferase | |
YDR083W | RRP8 | −3.097 | rRNA methyltransferase | |
YDR120C | TRM1 | −2.659 | tRNA methyltransferase | |
YDR165W | TRM82 | −2.028 | Noncatalytic subunit of a tRNA methyltransferase complex | |
YDR465C | RMT2 | −3.107 | Arginine N5 methyltransferase | |
YHR070W | TRM5 | −2.236 | tRNA methyltransferase | |
YIL064W | EFM4 | −2.400 | S-adenosylmethionine-dependent lysine methyltransferase | |
YIL096C | BMT5 | −3.240 | Nucleolar S-adenosylmethionine-dependent rRNA (uridine-N3-)-methyltransferase | |
YLR186W | EMG1 | −2.218 | Ribosomal RNA (rRNA) (pseudouridine) methyltransferase | |
YML014W | TRM9 | −2.083 | tRNA (uracil) methyltransferase | |
YNL024C | EFM6 | −2.044 | Putative S-adenosylmethionine-dependent methyltransferase | |
YNL061W | NOP2 | −2.765 | Ribosomal RNA (rRNA) (cytosine-C5-)-methyltransferase | |
YNL062C | GCD10 | −3.403 | Subunit of tRNA (1-methyladenosine) methyltransferase | |
YOL124C | TRM11 | −2.267 | tRNA (guanine-N2-)-methyltransferase subunit of cytoplasmic tRNA (m2G10) methyltransferase complex | |
YOL125W | TRM13 | −2.726 | 2′-O-methyltransferase | |
YPL030W | TRM44 | −2.648 | tRNA(Ser) Um(44) 2′-O-methyltransferase | |
rRNA binding | YGR103W | NOP7 | −2.748 | Component of several different pre-ribosomal particles |
YHR052W | CIC1 | −3.264 | Protein that binds to the rRNA of the large ribosomal subunit and proteasome | |
YHR170W | NMD3 | −3.065 | Protein involved in nuclear export of the large ribosomal subunit | |
YIL091C | UTP25 | −2.473 | Protein that binds both rRNA and U3 snoRNA | |
YKL009W | MRT4 | −2.350 | Protein involved in mRNA turnover and ribosome | |
YKR081C | RPF2 | −3.273 | Protein involved in maturation of LSU-ribosomal RNA (rRNA) | |
YMR049C | ERB1 | −2.861 | Constituent of 66S pre-ribosomal particles | |
YMR229C | RRP5 | −2.668 | RNA-binding protein involved in 18S and 5.8S rRNA synthesis | |
YNL002C | RLP7 | −3.010 | Nucleolar protein similar to large ribosomal subunit L7 proteins | |
YNL075W | IMP4 | −3.464 | Component of the SSU processome | |
YNR053C | NOG2 | −3.452 | Putative GTPase | |
YOL041C | NOP12 | −2.453 | Nucleolar protein involved in pre-25S rRNA processing | |
YOL077C | BRX1 | −3.224 | Nucleolar protein | |
YOR004W | UTP23 | −3.014 | Component of the small subunit processome | |
YOR056C | NOB1 | −2.231 | Small ribosomal subunit rRNA-binding endonuclease | |
YOR145C | PNO1 | −3.423 | Nucleolar unfolded protein-binding subunit of the 90S preribosome | |
YPL043W | NOP4 | −2.670 | Nucleolar protein | |
YPL146C | NOP53 | −2.236 | Nucleolar protein | |
YPR112C | MRD1 | −3.112 | Essential conserved small ribosomal subunit (40s) synthesis factor | |
Transmembrane transporter activity | YBR021W | FUR4 | −2.311 | Plasma membrane-localized uracil permease |
YBR291C | CTP1 | −2.103 | Mitochondrial tricarboxylic acid transporter | |
YER056C | FCY2 | −3.495 | Purine–cytosine permease | |
YER145C | FTR1 | −2.395 | High-affinity iron transporter of the plasma membrane | |
YGL255W | ZRT1 | −4.732 | High-affinity zinc uptake transmembrane transporter of the plasma membrane | |
YGR055W | MUP1 | −2.726 | High-affinity methionine permease | |
YGR065C | VHT1 | −2.547 | High-affinity plasma membrane H+-biotin (vitamin H) symporter | |
YJL198W | PHO90 | −2.001 | Low-affinity phosphate transporter | |
YML116W | ATR1 | −2.431 | Borate efflux transmembrane transporter | |
YML123C | PHO84 | −4.766 | Inorganic phosphate transmembrane transporter | |
YMR241W | YHM2 | −2.469 | DNA-binding tricarboxylate secondary active transmembrane transporter | |
YMR319C | FET4 | −2.122 | Low-affinity Fe(II) transporter of the plasma membrane | |
YNL065W | AQR1 | −3.280 | Drug and monocarboxylic acid transmembrane transporter | |
YNL142W | MEP2 | −2.054 | Ammonium transmembrane transporter | |
YNR017W | TIM23 | −2.025 | Mitochondrion targeting sequence-binding protein transmembrane transporter | |
YPL274W | SAM3 | −3.202 | High-affinity S-adenosylmethionine permease |
Gene Name | Genetic Change | Amino Acid Substitution | Description [40] |
---|---|---|---|
PHO11 | c.270 A>G | T90A | One of three repressible acid phosphatases; glycoprotein that is transported to the cell surface by the secretory pathway |
PHO11 | c.288 A>G | S96G | One of three repressible acid phosphatases; glycoprotein that is transported to the cell surface by the secretory pathway |
UTP20 | c.6385 G>A | M2129I | Component of the small-subunit (SSU) processome; the SSU processome is involved in the biogenesis of the 18S rRNA |
COX9 | c.77 C>A | G26V | Subunit VIIa of Cytochrome C oxidase (Complex IV); Complex IV is the terminal member of the mitochondrial inner membrane electron transport chain |
ENA5 | c.2950 C>T | R984K | Protein with similarity to P-type ATPase sodium pumps; member of the Na+ efflux ATPase family |
CPR5 | c.20 A>G | S7P | Peptidyl-prolyl cis-trans isomerase (cyclophilin) of the ER; catalyzes the cis–trans isomerization of peptide bonds |
TRS120 | c.397 G>A | T133I | Component of transport protein particle (TRAPP) complex II; TRAPPII is a multimeric guanine nucleotide-exchange factor for the GTPase Ypt1p, regulating intra-Golgi and endosome–Golgi traffic |
HXT13 | c.800 G>A | A267V | Putative transmembrane polyol transporter; supports growth on and uptake of mannitol and sorbitol |
FCY22 | c.1376 A>G | N459S | Putative purine–cytosine permease; very similar to Fcy2p but cannot substitute for its function |
PDR1 | c.3030 A>C | N1010K | Transcription factor that regulates the pleiotropic drug response |
SNF6 | c.941 G>A | E314K | Subunit of the SWI/SNF chromatin remodeling complex; involved in transcriptional regulation |
HSP150 | c.597 G>A | V199I | O-mannosylated heat shock protein |
SPT8 | c.205 C>A | E69D | Subunit of the SAGA transcriptional regulatory complex; not present in SAGA-like complex SLIK/SALSA |
SPT8 | c.202 C>A | Q68H | Subunit of the SAGA transcriptional regulatory complex; not present in SAGA-like complex SLIK/SALSA |
NOP56 | c.888 A>T | M296L | Essential evolutionarily conserved nucleolar protein; component of the box C/D snoRNP complexes that direct 2′-O-methylation of pre-rRNA during its maturation |
TMA23 | c.434 T>A | L145M | Nucleolar protein implicated in ribosome biogenesis; deletion extends chronological lifespan |
RRP6 | c.86 C>G | D29E | Nuclear exosome exonuclease component; has 3′-5′ exonuclease activity that is regulated by Lrp1p; involved in RNA processing, maturation, surveillance, degradation, tethering and export |
RRP6 | c.1904 C>T | T635I | Nuclear exosome exonuclease component; has 3′-5′ exonuclease activity that is regulated by Lrp1p; involved in RNA processing, maturation, surveillance, degradation, tethering and export |
MPC54 | c.1024 T>G | K342Q | Component of the meiotic outer plaque; a membrane-organizing center that is assembled on the cytoplasmic face of the spindle pole body during meiosis II and triggers the formation of the prospore membrane; potential Cdc28p substrate |
SNU66 | c.626 T>A | I209F | Component of the U4/U6.U5 snRNP complex; involved in pre-mRNA splicing via the spliceosome |
PDR10 | c.4679 A>C | K1560Q | ATP-binding cassette (ABC) transporter; multidrug transporter involved in the pleiotropic drug resistance network; regulated by Pdr1p and Pdr3p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir-Yılmaz, F.; Arslan, M.; Holyavkin, C.; Topaloğlu, A.; Kısakesen, H.İ.; Sürmeli, Y.; Çakar, Z.P. Molecular Characterization of Propolis-Resistant Saccharomyces cerevisiae Obtained by Evolutionary Engineering. Fermentation 2025, 11, 47. https://doi.org/10.3390/fermentation11020047
Demir-Yılmaz F, Arslan M, Holyavkin C, Topaloğlu A, Kısakesen Hİ, Sürmeli Y, Çakar ZP. Molecular Characterization of Propolis-Resistant Saccharomyces cerevisiae Obtained by Evolutionary Engineering. Fermentation. 2025; 11(2):47. https://doi.org/10.3390/fermentation11020047
Chicago/Turabian StyleDemir-Yılmaz, Filiz, Mevlüt Arslan, Can Holyavkin, Alican Topaloğlu, Halil İbrahim Kısakesen, Yusuf Sürmeli, and Zeynep Petek Çakar. 2025. "Molecular Characterization of Propolis-Resistant Saccharomyces cerevisiae Obtained by Evolutionary Engineering" Fermentation 11, no. 2: 47. https://doi.org/10.3390/fermentation11020047
APA StyleDemir-Yılmaz, F., Arslan, M., Holyavkin, C., Topaloğlu, A., Kısakesen, H. İ., Sürmeli, Y., & Çakar, Z. P. (2025). Molecular Characterization of Propolis-Resistant Saccharomyces cerevisiae Obtained by Evolutionary Engineering. Fermentation, 11(2), 47. https://doi.org/10.3390/fermentation11020047