Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Inoculum and Growth Conditions
2.2. Biological Capture of CO2 from Grape Must Fermentation by Microalgae at Lab Scale
2.3. Construction of a Pilot-Scale Tubular Photobioreactor and Integration with Fermentation Tank
- -
- Two vertical tubular photobioreactors, each measuring 400 mm in height and 150 mm in diameter (WP1: Winery Photobioreactor 1 and WP2: Winery Photobioreactor 2). The reactor body was fabricated from 1 mm thick polycarbonate sheets, while the top and bottom caps were made from 3 mm thick polycarbonate. For added structural integrity, 3 mm thick steel caps and threaded rods were incorporated. Each photobioreactor was equipped with: a sterile air/CO2 mixture inlet; an airlock for gas outlet; a valve for sample collection; and ports for loading and unloading.
- -
- The air distribution system comprised an air pump with a capacity of 110 L/min, a 50 mm diameter membrane filter (0.22 μm Teflon) for sterilizing the air/CO2 mixture, 3/8″ hose, a T-junction to mix ambient air with CO2 from the fermentation process, and valves to regulate the flow of the air/CO2 mixture to each photobioreactor.
- -
- The support structure consisted of 30 × 30 mm pipe frame and metal mesh, with an electrical panel and other electrical installations, loading/unloading pumps, and hoses with valves.
- -
- The lighting system consisted of six 9 Watt LED fluorescent lights positioned equidistantly around each photobioreactor to ensure homogeneous light distribution. A 12:12 (light/dark) photoperiod was programmed.
2.4. Kinetic Modeling and Parametric Identification of CO2 Biocapturing Microalgae
- -
- Logistic Model (LM): Also known as the logistic equation, this differential equation is used to describe population growth within a limited environment [27]. Equation (1) presents the standard form of the logistic equation:
- -
- FOPDT: This type of mathematical model describes the dynamic response of a system using a first-order linear differential equation combined with a delay term [31]. These models are widely employed to describe dynamic systems in engineering and process control, particularly in contexts involving system inertia or response delays. Equation (3) shows the differential equation for this [32]:
- -
- SOPDT: The general description is similar to FOPDT, with the difference that this model is represented by a second-order linear differential equation with a delay term [31]. The SOPDT general form is shown in Equation (5):
3. Results and Discussion
3.1. Experimental Data, Mathematical Modeling, and Parametric Identification of Biological Capture of CO2 at Laboratory Scale
- -
- As a biological process, alcoholic fermentation is not the sole metabolic reaction; it is often accompanied by other biological reactions leading to the production of various metabolites, including glycerol, acetaldehyde, acetate, higher alcohols, esters, and hydrogen sulfide [36];
- -
- Furthermore, the gaseous nature of CO2 makes it challenging to measure without experiencing some loss, leading to underestimations in the gravimetric measurement.
- -
- Finally, regarding the environmental conditions of the experiment, a constant room temperature of 25 °C was maintained, under which both wine fermentation and microalgal growth occurred. This temperature was chosen to prioritize optimal microalgal growth, as yeasts can function adequately at this temperature, although typical fermentation temperatures for white grape must range from 12 to 16 °C, which would result in a substantial reduction in microalgal growth rates. In larger installations, wine fermentation tanks are usually equipped with cooling jackets. This technology allows for independent thermal control of the must, unlike the photobioreactor, whose operation is directly influenced by environmental conditions (such as light and temperature).
3.2. Experimental Data, Mathematical Modeling, and Parametric Identification of Biological Capture of CO2 from Fermentation Tank at Pilot Scale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kikstra, J.S.; Nicholls, Z.R.J.; Smith, C.J.; Lewis, J.; Lamboll, R.D.; Byers, E.; Sandstad, M.; Meinshausen, M.; Gidden, M.J.; Rogelj, J.; et al. The IPCC Sixth Assessment Report WGIII Climate Assessment of Mitigation Pathways: From Emissions to Global Temperatures. Geosci. Model Dev. 2022, 15, 9075–9109. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 12 September 2024).
- Muñoz, R.; Fernandez Gonzalez, C. Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products; Elsevier Science: Amsterdam, The Netherlands, 2017; ISBN 9780081010273. [Google Scholar]
- Jacob-Lopes, E.; Maroneze, M.M.; Queiroz, M.I.; Zepka, L.Q. Handbook of Microalgae Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; Volume 11, ISBN 978-0-12-818536-0. [Google Scholar]
- Chagas, A.L.; Rios, A.O.; Jarenkow, A.; Marcílio, N.R.; Ayub, M.A.Z.; Rech, R. Production of Carotenoids and Lipids by Dunaliella Tertiolecta Using CO2 from Beer Fermentation. Process Biochem. 2015, 50, 981–988. [Google Scholar] [CrossRef]
- Murwanashyaka, T.; Shen, L.; Yang, Z.; Chang, J.S.; Manirafasha, E.; Ndikubwimana, T.; Chen, C.; Lu, Y. Kinetic Modelling of Heterotrophic Microalgae Culture in Wastewater: Storage Molecule Generation and Pollutants Mitigation. Biochem. Eng. J. 2020, 157, 107523. [Google Scholar] [CrossRef]
- Tang, D.Y.Y.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Ho, S.H.; Show, P.L. Potential Utilization of Bioproducts from Microalgae for the Quality Enhancement of Natural Products. Bioresour. Technol. 2020, 304, 122997. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Ashok, B. Potential of Amyl Alcohol Mixtures Derived from Scenedesmus Quadricauda Microalgae Biomass as Third Generation Bioenergy for Compression Ignition Engine Applications Using Multivariate-Desirability Analysis. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 4, 8542–8553. [Google Scholar] [CrossRef]
- Wang, S.; Mukhambet, Y.; Esakkimuthu, S.; Abomohra, A.E.F. Integrated Microalgal Biorefinery–Routes, Energy, Economic and Environmental Perspectives. J. Clean. Prod. 2022, 348, 131245. [Google Scholar] [CrossRef]
- Miguel Montenegro San Juan y Su Politica de Desarrollo de La Energia Fotovoltaica. Available online: https://sisanjuan.gob.ar/interes-general/2019-10-17/18102-san-juan-y-su-politica-de-desarrollo-de-la-energia-fotovoltaica (accessed on 10 December 2024).
- D’Alberti, V.; Cammalleri, I.; Bella, S.; Ragusa, M.; Pavan, M.; Ragusa, R. Production of Algae with CO2 from Wine Fermentation: An Important Way to Reduce Emissions. In Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1–4 June 2015; pp. 238–244. [Google Scholar] [CrossRef]
- INV. Informe Anual de Cosecha y Elaboración 2023; Instituto Nacional de Vitivinicultura: Mendoza, Argentina, 2023; pp. 1–81. [Google Scholar]
- Xu, S.; Jiang, Y.; Liu, Y.; Esakkimuthu, S.; Chen, H.; Wang, S. Impact of Constant Magnetic Field on Enhancing the Microalgal Biomass and Biomolecules Accumulations and Life Cycle Assessment of the Approach. Algal Res. 2024, 80, 103563. [Google Scholar] [CrossRef]
- Guzmán, J.L.; Acién, F.G.; Berenguel, M. Modelado y Control de La Producción de Microalgas En Fotobiorreactores Industriales. Rev. Iberoam. De Automática E Informática Ind. 2020, 18, 1. [Google Scholar] [CrossRef]
- Ochoa, S. A New Approach for Finding Smooth Optimal Feeding Profiles in Fed-Batch Fermentations. Biochem. Eng. J. 2016, 105, 177–188. [Google Scholar] [CrossRef]
- Allampalli, S.S.P.; Sivaprakasam, S. Unveiling the Potential of Specific Growth Rate Control in Fed-Batch Fermentation: Bridging the Gap between Product Quantity and Quality. World J. Microbiol. Biotechnol. 2024, 40, 196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Zhang, J.; Su, S.; Huang, L.; Ye, J. Kinetic Modelling of Microalgal Growth and Fucoxanthin Synthesis in Photobioreactor. Int. J. Chem. React. Eng. 2022, 20, 723–734. [Google Scholar] [CrossRef]
- Fernández, C.; Pantano, N.; Godoy, S.; Serrano, E.; Scaglia, G. Optimización de Parámetros Utilizando Los Métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a Un Controlador de Seguimiento de Trayectoria En Sistemas No Lineales. Rev. Iberoam. Automática E Informática Ind. 2018, 16, 89–99. [Google Scholar] [CrossRef]
- Pantano, M.N.; Fernández, M.C.; Ortiz, O.A.; Scaglia, G.J.E.; Vega, J.R. A Fourier-Based Control Vector Parameterization for the Optimization of Nonlinear Dynamic Processes with a Finite Terminal Time. Comput. Chem. Eng. 2020, 134, 106721. [Google Scholar] [CrossRef]
- Fernandez, C.; Pantano, N.; Rodriguez, L.; Scaglia, G. Additive Uncertainty Consideration for Nonlinear and Multivariable Bioprocess Control. IEEE Lat. Am. Trans. 2021, 19, 798–806. [Google Scholar] [CrossRef]
- Fernández, M.C.; Pantano, M.N.; Rodriguez, L.; Scaglia, G. State Estimation and Nonlinear Tracking Control Simulation Approach. Application to a Bioethanol Production System. Bioprocess Biosyst. Eng. 2021, 44, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- López-Rodríguez, M.; Cerón-García, M.C.; López-Rosales, L.; Navarro-López, E.; Sánchez-Mirón, A.; Molina-Miras, A.; Abreu, A.C.; Fernández, I.; García-Camacho, F. Improved Extraction of Bioactive Compounds from Biomass of the Marine Dinoflagellate Microalga Amphidinium Carterae. Bioresour. Technol. 2020, 313, 123518. [Google Scholar] [CrossRef] [PubMed]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1st ed.; Blackwell Science Ltd.: Oxford, UK, 2004; ISBN 0-632-05953-2. [Google Scholar]
- Andersen, R. Algal Culturing Techniques; Elsevier: Amsterdam, The Netherlands, 2005; Volume 4, ISBN 0120884267. [Google Scholar]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2021; ISBN 9782850380334. [Google Scholar]
- Olivia, B.; Vega, A. Determinación de Peso Seco y Contenido Orgánico e Inorgánico. In Métodos y Herramientas Analíticas en la Evaluación de la Biomasa Microalgal; Centro de Investigaciones Biológicas del Noroeste: La Paz, Mexico, 2017. [Google Scholar]
- Groff, M.C.; Scaglia, G.; Gaido, M.; Kassuha, D.; Ortiz, O.A.; Noriega, S.E. Kinetic Modeling of Fungal Biomass Growth and Lactic Acid Production in Rhizopus Oryzae Fermentation by Using Grape Stalk as a Solid Substrate. Biocatal. Agric. Biotechnol. 2022, 39, 102255. [Google Scholar] [CrossRef]
- Cante, R.C.; Gallo, M.; Nigro, F.; Passannanti, F.; Budelli, A.; Nigro, R. Mathematical Modeling of Lactobacillus Paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control. Appl. Sci. 2021, 11, 2921. [Google Scholar] [CrossRef]
- Germec, M.; Turhan, I. Enhanced Production of Aspergillus Niger Inulinase from Sugar Beet Molasses and Its Kinetic Modeling. Biotechnol. Lett. 2020, 42, 1939–1955. [Google Scholar] [CrossRef] [PubMed]
- Manthos, G.; Koutra, E.; Mastropetros, S.G.; Zagklis, D.; Kornaros, M. Mathematical Modeling of Microalgal Growth during Anaerobic Digestion Effluent Bioremediation. Water 2022, 14, 3938. [Google Scholar] [CrossRef]
- Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 1, ISBN 978-1-4419-7645-1. [Google Scholar]
- Groff, C.; Kuchen, B.; Gil, R.; Fernández, C. Scaglia Application of the Luedeking and Piret with Delay Time Model in Bioproductions with Non-Zero Kinetic Parameters. IEEE Lat. Am. Trans. 2023, 21, 882–888. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear Regression. In An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Tempo, R.; Ishii, H. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Conrol. Eur. J. Control 2007, 13, 189–203. [Google Scholar] [CrossRef]
- Troncoso, C.; Suárez, A. Control Del Nivel de Pulpa En Un Circuito de Flotación Utilizando Una Estrategia de Control Predictivo. Rev. Iberoam. De Automática E Informática Ind. 2017, 14, 234–245. [Google Scholar] [CrossRef]
- Aranda, A.; Matallana, E.; Del Olmo, M. Saccharomyces Yeasts I: Primary Fermentation; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780123750211. [Google Scholar]
- Ashour, M.; Mansour, A.T.; Alkhamis, Y.A.; Elshobary, M. Usage of Chlorella and Diverse Microalgae for CO2 Capture-towards a Bioenergy Revolution. Front. Bioeng. Biotechnol. 2024, 12, 1387519. [Google Scholar] [CrossRef] [PubMed]
- Prusova, B.; Humaj, J.; Kulhankova, M.; Kumsta, M.; Sochor, J.; Baron, M. Capture of Fermentation Gas from Fermentation of Grape Must. Foods 2023, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Ryndin, K.G.; Kumar, V.; Vlaskin, M.S. The Influence of Elevated CO2 Concentrations on the Growth of Various Microalgae Strains. Plants 2023, 12, 2470. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lou, Y.; Li, Y.; Zhao, Y.; Laaksonen, O.; Li, P.; Zhang, J.; Battino, M.; Yang, B.; Gu, Q. Aroma Characteristics of Volatile Compounds Brought by Variations in Microbes in Winemaking. Food Chem. 2023, 420, 136075. [Google Scholar] [CrossRef]
- Ren, H.; Liu, B.; Ma, C.; Zhao, L.; Ren, N. A New Lipid-Rich Microalga Scenedesmus sp. Strain R-16 Isolated Using Nile Red Staining: Effects of Carbon and Nitrogen Sources and Initial PH on the Biomass and Lipid Production. Biotechnol. Biofuels 2013, 6, 143. [Google Scholar] [CrossRef]
- Turon, V.; Baroukh, C.; Trably, E.; Latrille, E.; Fouilland, E.; Steyer, J.P. Use of Fermentative Metabolites for Heterotrophic Microalgae Growth: Yields and Kinetics. Bioresour. Technol. 2015, 175, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.L.; Chen, C.Y.; Chang, J.S. PH-Stat Photoheterotrophic Cultivation of Indigenous Chlorella Vulgaris ESP-31 for Biomass and Lipid Production Using Acetic Acid as the Carbon Source. Biochem. Eng. J. 2012, 64, 1–7. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Minillo, A.; Godoy, H.C.; Fonseca, G.G. Growth Performance of Microalgae Exposed to CO2. J. Clean Energy Technol. 2013, 1, 110–114. [Google Scholar] [CrossRef]
- Pourjamshidian, R.; Abolghasemi, H.; Esmaili, M.; Amrei, H.D.; Parsa, M.; Rezaei, S. Carbon Dioxide Biofixation by Chlorella sp. in a Bubble Column Reactor at Different Flow Rates and CO2 Concentrations. Braz. J. Chem. Eng. 2019, 36, 639–645. [Google Scholar] [CrossRef]
- Politaeva, N.; Ilin, I.; Velmozhina, K.; Shinkevich, P. Carbon Dioxide Utilization Using Chlorella Microalgae. Environments 2023, 10, 109. [Google Scholar] [CrossRef]
- Mora-Godínez, S.; Rodríguez-López, C.E.; Senés-Guerrero, C.; Treviño, V.; Díaz De La Garza, R.; Pacheco, A. Effect of High CO2 Concentrations on Desmodesmus abundans RSM Lipidome. J. CO2 Util. 2022, 65, 102183. [Google Scholar] [CrossRef]
- LAFFORT Medida De La Concentración De Azúcares En Mosto. Available online: https://laffort.com/wp-content/uploads/Protocols/ES_Table_Convertisseur.pdf (accessed on 18 December 2024).
- Eze, V.C.; Velasquez-Orta, S.B.; Hernández-García, A.; Monje-Ramírez, I.; Orta-Ledesma, M.T. Kinetic Modelling of Microalgae Cultivation for Wastewater Treatment and Carbon Dioxide Sequestration. Algal Res. 2018, 32, 131–141. [Google Scholar] [CrossRef]
- Shetty, P.; Gitau, M.M.; Maróti, G. Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells 2019, 8, 1657. [Google Scholar] [CrossRef]
- Abinandan, S.; Praveen, K.; Venkateswarlu, K.; Megharaj, M. Eco-Innovation Minimizes the Carbon Footprint of Wine Production. Commun. Earth Environ. 2024, 5, 618. [Google Scholar] [CrossRef]
- Spennati, E.; Casazza, A.A.; Converti, A.; Busca, G. Investigation on Thermal Pyrolysis of Microalgae Grown in Winery Wastewater: Biofuels and Chemicals Production. Biomass Convers. Biorefinery 2024, 14, 17647–17661. [Google Scholar] [CrossRef]
- Spennati, E.; Casazza, A.A.; Converti, A.; Padula, M.P.; Dehghani, F.; Perego, P.; Valtchev, P. Winery Waste Valorisation as Microalgae Culture Medium: A Step Forward for Food Circular Economy. Sep. Purif. Technol. 2022, 293, 121088. [Google Scholar] [CrossRef]
- Zkeri, E.; Mastori, M.; Xenaki, A.; Kritikou, E.; Kostakis, M.; Dasenaki, M.; Maragou, N.; Fountoulakis, M.; Thomaidis, N.; Stasinakis, A. Winery Wastewater Treatment by Microalgae Chlorella Sorokiniana and Characterization of the Produced Biomass for Value-Added Products. Environ. Sci. Pollut. Res. 2024, 36, 49244–49254. [Google Scholar] [CrossRef] [PubMed]
- Praveen, K.; Abinandan, S.; Venkateswarlu, K.; Megharaj, M. Emergy Analysis and Life Cycle Assessment for Evaluating the Sustainability of Solar-Integrated Ecotechnologies in Winery Wastewater Treatment. ACS Sustain. Chem. Eng. 2024, 12, 4676–4689. [Google Scholar] [CrossRef]
Scale | Culture | Mathematical Model’s Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Logistic Model | FOPDT Model | SOPDT Model | |||||||||||
Xmax | µmax | R2 | Xmax | Tp | T0 | R2 | Xmax | Tp1 | Tp2 | T0 | R2 | ||
LAB | MCA | 9.93 × 107 | 0.31 | 0.944 | 2.00 × 108 | 36.07 | 3.25 | 0.942 | 2.31 × 108 | 15.82 | 17.07 | 0.18 | 0.969 |
MCF | 7.37 × 107 | 0.40 | 0.963 | 1.55 × 108 | 26.79 | 3.36 | 0.963 | 1.17 × 108 | 4.48 | 14.52 | 1.12 | 0.972 | |
MDA | 6.01 × 107 | 0.25 | 0.974 | 1.08 × 108 | 29.36 | 6.79 | 0.940 | 1.31 × 108 | 21.57 | 14.69 | 0.61 | 0.961 | |
MDF | 3.37 × 107 | 0.43 | 0.942 | 5.31 × 107 | 17.27 | 1.46 | 0.983 | 4.81 × 107 | 13.04 | 2.11 | 0.29 | 0.983 | |
PILOT | WP1 | 1.08 × 107 | 0.56 | 0.921 | 1.30 × 107 | 7.83 | 0.70 | 0.982 | 1.00 × 107 | 1.81 | 2.42 | 0.74 | 0.983 |
WP2 | 1.07 × 107 | 0.56 | 0.988 | 1.51 × 107 | 10.32 | 1.61 | 0.953 | 1.20 × 107 | 5.47 | 1.61 | 1.13 | 0.972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groff, M.C.; Puchol, C.F.; Gil, R.; Pedrozo, L.P.; Albareti, S.; Manzanares, A.B.; Sánchez, E.; Scaglia, G. Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture. Fermentation 2025, 11, 58. https://doi.org/10.3390/fermentation11020058
Groff MC, Puchol CF, Gil R, Pedrozo LP, Albareti S, Manzanares AB, Sánchez E, Scaglia G. Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture. Fermentation. 2025; 11(2):58. https://doi.org/10.3390/fermentation11020058
Chicago/Turabian StyleGroff, María Carla, Cecilia Fernández Puchol, Rocío Gil, Lina Paula Pedrozo, Santiago Albareti, Ana Belén Manzanares, Emilia Sánchez, and Gustavo Scaglia. 2025. "Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture" Fermentation 11, no. 2: 58. https://doi.org/10.3390/fermentation11020058
APA StyleGroff, M. C., Puchol, C. F., Gil, R., Pedrozo, L. P., Albareti, S., Manzanares, A. B., Sánchez, E., & Scaglia, G. (2025). Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture. Fermentation, 11(2), 58. https://doi.org/10.3390/fermentation11020058