Effects of a Mountain Honeysuckle (Lonicerae flos) Extract on Fermentation Characteristics, Antioxidant Capacity and Microbial Community of Alfalfa Mixed Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fresh Materials and Silage
2.2. Analysis of Silage Quality
2.3. Analysis of Mixed Silage Aerobic Stability
2.4. Determination of Chlorogenic Acid, Total Phenols, Total Flavonoids and Antioxidant Ability
2.4.1. Extraction Solution Preparation
2.4.2. Determination of Chlorogenic Acid
2.4.3. Determination of Total Flavonoids
2.4.4. Determination of Total Phenols
2.4.5. Analysis of DPPH Radical Scavenging Activity
2.4.6. Analysis of ABTS Radical Scavenging Activity
2.4.7. Analysis of the Reducing Power (FRAP)
2.5. Microbial Diversity Analysis
2.6. Statistical Analyses
3. Results and Discussion
3.1. Characteristics of the Fresh Material Before Ensiling
3.2. Fermentation Characteristics
3.3. Chemical Composition
3.4. Aerobic Stability of Alfalfa Mixed Silage
3.5. Chlorogenic Acid, Total Flavonoids, Total Phenols, and Antioxidant Ability of Alfalfa Mixed Silage
3.6. Microbial Community of Alfalfa Mixed Silage
3.7. Correlation Between Bacterial Composition and Fermentation Quality and Antioxidant Capacity of Alfalfa Mixed Silage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Jiang, J.-G. Origin and Concept of Medicine Food Homology and Its Application in Modern Functional Foods. Food Funct. 2013, 4, 1727. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.R.K.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Yasaswini, D.; Reddy, P.P.R.; Reddy, A.N.; Hyder, I. Plant Secondary Metabolites as Feed Additives in Calves for Antimicrobial Stewardship. Anim. Feed. Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Chen, L.; Bao, X.; Guo, G.; Huo, W.; Xu, Q.; Wang, C.; Liu, Q. Treatment of Alfalfa Silage with Tannin Acid at Different Levels Modulates Ensiling Characteristics, Methane Mitigation, Ruminal Fermentation Patterns and Microbiota. Anim. Feed. Sci. Technol. 2021, 278, 114997. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS—Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: I. A Review of Enteric Methane Mitigation Options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Mertenat, D.; Cero, M.D.; Vogl, C.R.; Ivemeyer, S.; Meier, B.; Maeschli, A.; Hamburger, M.; Walkenhorst, M. Ethnoveterinary Knowledge of Farmers in Bilingual Regions of Switzerland—Is There Potential to Extend Veterinary Options to Reduce Antimicrobial Use? J. Ethnopharmacol. 2020, 246, 112184. [Google Scholar] [CrossRef]
- Lin, Z.; Ye, L.; Li, Z.; Huang, X.; Lu, Z.; Yang, Y.; Xing, H.; Bai, J.; Ying, Z. Chinese Herb Feed Additives Improved the Growth Performance, Meat Quality, and Nutrient Digestibility Parameters of Pigs. Animal Model. Exp. Med. 2020, 3, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.; Fu, C.; Song, Y.; Fu, Q. Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Review of Ethnopharmacology, Phytochemistry and Pharmacology. Phytochem. Rev. 2020, 19, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kum, S.; Wang, C.; Park, S.Y.; Kim, B.S.; Schuller-Levis, G. Anti-Inflammatory Activity of Herbal Medicines: Inhibition of Nitric Oxide Production and Tumor Necrosis Factor-α Secretion in an Activated Macrophage-like Cell Line. Am. J. Chin. Med. 2005, 33, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, K.; Fabiszewska, A.; Stefanska, I. Different Aspects of Lactobacillus Inoculants on the Improvement of Quality and Safety of Alfalfa Silage. Chil. J. Agric. Res. 2015, 75, 298–306. [Google Scholar] [CrossRef]
- Ni, K.; Wang, X.; Lu, Y.; Guo, L.; Li, X.; Yang, F. Exploring the Silage Quality of Alfalfa Ensiled with the Residues of Astragalus and Hawthorn. Bioresour. Technol. 2020, 297, 122249. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy. Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Effects of Wilting and Lactobacillus Plantarum Addition on the Fermentation Quality and Microbial Community of Moringa Oleifera Leaf Silage. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Fermentation Quality and Microbial Community of Alfalfa and Stylo Silage Mixed with Moringa Oleifera Leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Chemical and Functional Properties of Food Saccharides; AOAC: Washington, DC, USA, 1990; Volume 1. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Guan, H.; Ran, Q.; Li, H.; Zhang, X. Succession of Microbial Communities of Corn Silage Inoculated with Heterofermentative Lactic Acid Bacteria from Ensiling to Aerobic Exposure. Fermentation 2021, 7, 258. [Google Scholar] [CrossRef]
- Aloo, S.-O.; Ofosu, F.-K.; Oh, D.-H. Effect of Germination on Alfalfa and Buckwheat: Phytochemical Profiling by UHPLC-ESI-QTOF-MS/MS, Bioactive Compounds, and In-Vitro Studies of Their Diabetes and Obesity-Related Functions. Antioxidants 2021, 10, 1613. [Google Scholar] [CrossRef]
- Mangiapelo, L.; Blasi, F.; Ianni, F.; Barola, C.; Galarini, R.; Abualzulof, G.W.; Sardella, R.; Volpi, C.; Cossignani, L. Optimization of Ultrasound-Assisted Extraction of Chlorogenic Acid from Potato Sprout Waste and Enhancement of the In Vitro Total Antioxidant Capacity. Antioxidants 2023, 12, 348. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Ran, Y.; Huang, X.; Li, Y.; Zhang, M.; Ding, H.; Ma, Y.; Ma, H.; Jin, L.; Sun, D. Optimization of Ultrasonic-Assisted Extraction of Chlorogenic Acid from Tobacco Waste. Int. J. Environ. Res. Public. Health 2022, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Bośko, P.; Živčák, M.; Brestic, M.; Smetanska, I. Bioactive Phytochemicals and Antioxidant Properties of the Grains and Sprouts of Colored Wheat Genotypes. Molecules 2018, 23, 2282. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect of Cellulase and Lactobacillus Casei on Ensiling Characteristics, Chemical Composition, Antioxidant Activity, and Digestibility of Mulberry Leaf Silage. J. Dairy. Sci. 2019, 102, 9919–9931. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Q.; Cao, X.; Li, H.; Zhang, Z. The Potential of Pre-Fermented Juice or Lactobacillus Inoculants to Improve the Fermentation Quality of Mixed Silage of Agro-Residue and Lucerne. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Wang, Q.; Cao, X.; Zhang, Z. Effects of Fatty Acid Salts on Fermentation Characteristics, Bacterial Diversity and Aerobic Stability of Mixed Silage Prepared with Alfalfa, Rice Straw and Wheat Bran. J. Sci. Food Agric. 2022, 102, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of Microbial Community and Fermentation Quality during Ensiling of Sterile and Nonsterile Alfalfa with or without Lactobacillus Plantarum Inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Yang, H.; Na, R.S. The Effects of Stage of Growth and Additives with or without Cellulase on Fermentation and in Vitro Degradation Characteristics of Leymus Chinensis Silage. Grass Forage Sci. 2016, 71, 595–606. [Google Scholar] [CrossRef]
- Smith, L.H. Theoretical Carbohydrates Requirement for Alfalfa Silage Production. Agron. J. 1962, 54, 291–293. [Google Scholar] [CrossRef]
- Hashemzadeh-Cigari, F.; Khorvash, M.; Ghorbani, G.R.; Ghasemi, E.; Taghizadeh, A.; Kargar, S.; Yang, W.Z. Interactive Effects of Molasses by Homofermentative and Heterofermentative Inoculants on Fermentation Quality, Nitrogen Fractionation, Nutritive Value and Aerobic Stability of Wilted Alfalfa (Medicago sativa L.) Silage. J. Anim. Physiol. Anim. Nutr. 2014, 98, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy. Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Devon, UK, 1991. [Google Scholar]
- Muck, R.E. Silage Microbiology and Its Control through Additives. Revista Brasileira de Zootecnia 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.O.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; American Society of Agronomy: Madison, WI, USA, 2015; pp. 31–93. [Google Scholar]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Dong, D.; Shao, T. Dynamics of the Bacterial Communities and Predicted Functional Profiles in Wilted Alfalfa Silage. J. Appl. Microbiol. 2022, 132, 2613–2624. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, Z. Effects of Moisture Content and Additives on the Ensiling Quality and Vitamins Changes of Alfalfa Silage with or without Rain Damage. Anim. Sci. J. 2020, 91. [Google Scholar] [CrossRef]
- Nishino, N.; Li, Y.; Wang, C.; Parvin, S. Effects of Wilting and Molasses Addition on Fermentation and Bacterial Community in Guinea Grass Silage. Lett. Appl. Microbiol. 2012, 54, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Agarussi, M.C.N.; Pereira, O.G.; da Silva, V.P.; Leandro, E.S.; Ribeiro, K.G.; Santos, S.A. Fermentative Profile and Lactic Acid Bacterial Dynamics in Non-Wilted and Wilted Alfalfa Silage in Tropical Conditions. Mol. Biol. Rep. 2019, 46, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, C.; Wang, Y.; Zhang, W.; He, L. Effect of Tea Polyphenols on the Fermentation Quality, Protein Preservation, Antioxidant Capacity and Bacterial Community of Stylo Silage. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Bai, S.; Yan, L.; You, M.; Gou, W.; Li, P.; Gao, F. Effect of Wet Sea Buckthorn Pomace Utilized as an Additive on Silage Fermentation Profile and Bacterial Community Composition of Alfalfa. Bioresour. Technol. 2020, 314, 123773. [Google Scholar] [CrossRef]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative Stress, Antioxidants, and Animal Function. J. Dairy. Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Liu, Q.H.; Shao, T.; Bai, Y.F. The Effect of Fibrolytic Enzyme, Lactobacillus Plantarum and Two Food Antioxidants on the Fermentation Quality, Alpha-Tocopherol and Beta-Carotene of High Moisture Napier Grass Silage Ensiled at Different Temperatures. Anim. Feed. Sci. Technol. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Thongpea, S. Short Communication: Purple Corn (Zea maysL.) Stover Silage with Abundant Anthocyanins Transferring Anthocyanin Composition to the Milk and Increasing Antioxidant Status of Lactating Dairy Goats. J. Dairy. Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Rouzbehan, Y.; Rezaei, M.; Rezaei, J. Total Replacement of Corn Silage with Sorghum Silage Improves Milk Fatty Acid Profile and Antioxidant Capacity of Holstein Dairy Cows. J. Dairy. Sci. 2018, 101, 10953–10961. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.; Xie, J.; Liang, W.; Chen, W. Systematic Study on Phytochemicals and Antioxidant Activity of Some New and Common Mulberry Cultivars in China. J. Funct. Foods 2016, 25, 537–547. [Google Scholar] [CrossRef]
- Wayne Polley, H.; Wilsey, B.J.; Derner, J.D. Dominant Species Constrain Effects of Species Diversity on Temporal Variability in Biomass Production of Tallgrass Prairie. Oikos 2007, 116, 2044–2052. [Google Scholar] [CrossRef]
- Xu, Z.; He, H.; Zhang, S.; Kong, J. Effects of Inoculants Lactobacillus Brevis and Lactobacillus Parafarraginis on the Fermentation Characteristics and Microbial Communities of Corn Stover Silage. Sci. Rep. 2017, 7, 13614. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Li, J.; Chen, L.; Wang, S.; Shao, T. Effects of Freeze-Thaw Event on Microbial Community Dynamics during Red Clover Ensiling. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Zi, X.; Li, M.; Chen, Y.; Lv, R.; Zhou, H.; Tang, J. Effects of Citric Acid and Lactobacillus Plantarum on Silage Quality and Bacterial Diversity of King Grass Silage. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the Fermentation Quality and Microbial Community of the Mixed Silage of Forage Soybean with Crop Corn or Sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of Lactic Acid Bacteria and Molasses Additives on the Microbial Community and Fermentation Quality of Soybean Silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Graf, K.; Ulrich, A.; Idler, C.; Klocke, M. Bacterial Community Dynamics during Ensiling of Perennial Ryegrass at Two Compaction Levels Monitored by Terminal Restriction Fragment Length Polymorphism. J. Appl. Microbiol. 2016, 120, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus Spp. from an Inoculant and of Weissella and Leuconostoc Spp. from Forage Crops on Silage Fermentation Fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Xu, J.; Guo, L.; Xiong, Y.; Lin, Y.; Ni, K.; Yang, F. Exploring the Addition of Herbal Residues on Fermentation Quality, Bacterial Communities, and Ruminal Greenhouse Gas Emissions of Paper Mulberry Silage. Front. Microbiol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Cao, X.; Wang, Y.; Wang, Q.; Zhang, Z. Inclusion of Lonicerae Flos Improved Anaerobic Fermentation and Antioxidant Activity of Mixed Silage (Agro-Residue and Alfalfa). Anim. Feed. Sci. Technol. 2024, 315, 116007. [Google Scholar] [CrossRef]
Item | Mixture | Alfalfa | Soybean Meal | DDGS | Lonicerae flos Extract | SEM |
---|---|---|---|---|---|---|
DM (g/kg FM) | 380.78 | 255.29 | 906.27 | 910.05 | 1000.00 | 10.88 |
NDF (g/kg DM) | 296.15 | 329.89 | 229.89 | 415.98 | ND | 2.87 |
ADF (g/kg DM) | 166.36 | 213.35 | 90.14 | 171.42 | ND | 1.82 |
ADL (g/kg DM) | 17.85 | 28.35 | ND | 14.00 | ND | 0.33 |
Ash (g/kg DM) | 88.66 | 94.89 | 63.41 | 66.34 | 29.40 | 0.70 |
WSC (g/kg DM) | 88.50 | 92.23 | 187.46 | 28.19 | 588.70 | 66.50 |
CP (g/kg DM) | 275.09 | 199.27 | 454.94 | 398.86 | 19.87 | 5.19 |
NH3-N (g/kg TN) | 201.51 | 5.05 | 2.26 | 724.82 | ND | 12.02 |
Item (g/kg DM) | Day(d) | Treatment | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | ST1 | ST2 | ST3 | ST4 | ST5 | T | D | T × D | |||
NH3-N | 0 | 3.38 Bb | 3.57 Bab | 3.55 Bab | 3.72 Ba | 3.76 Ba | 3.67 Ba | 0.52 | 0.007 | <0.001 | 0.236 |
30 | 4.46 Aa | 4.43 Aa | 4.57 Aa | 4.76 Aa | 4.49 Aa | 4.75 Aa | |||||
pH | 0 | 5.45 Aabc | 5.47 Aa | 5.47 Aab | 5.45 Abc | 5.43 Ac | 5.44 Ac | 0.50 | <0.001 | <0.001 | <0.001 |
30 | 4.51 Ba | 4.47 Bb | 4.47 Bb | 4.47 Bb | 4.45 Bc | 4.47 Bb | |||||
LA | 0 | 13.54 Bd | 15.13 Bb | 14.32 Bc | 15.13 Bb | 16.27 Ba | 14.94 Bb | 81.38 | 0.314 | <0.001 | 0.171 |
30 | 176.19 Aa | 169.10 Aa | 177.53 Aa | 178.44 Aa | 174.34 Aa | 175.66 Aa | |||||
AA | 0 | 1.04 Ba | 1.22 Ba | 0.90 Ba | 1.17 Ba | 1.38 Ba | 0.99 Ba | 11.64 | 0.454 | <0.001 | 0.150 |
30 | 24.37 Aab | 22.90 Ab | 24.58 Aa | 23.85 Aab | 24.11 Aab | 24.44 Aa | |||||
PA | 0 | 1.14 Aa | 0.86 Ac | 0.90 Abc | 0.72 Ad | 0.97 Abc | 0.99 Ab | 0.15 | <0.001 | <0.001 | 0.082 |
30 | 0.88 B | 0.73 A | 0.77 B | 0.69 A | ND | ND | |||||
BA | 0 | 0.97 A | 0.99 A | ND | ND | ND | ND | 0.05 | 0.647 | - | - |
30 | ND | ND | ND | ND | ND | ND | |||||
DM | 0 | 380.78 Aa | 380.83 Aa | 388.03 Aa | 382.04 Aa | 382.54 Aa | 382.73 Aa | 8.51 | 0.558 | <0.001 | 0.161 |
30 | 368.33 Aabc | 366.11 Bbc | 365.68 Bc | 369.63 Bab | 370.90 Ba | 366.29 Bbc | |||||
WSC | 0 | 88.50 Aab | 89.20 Aab | 89.32 Aab | 81.53 Ac | 84.58 Abc | 90.02 Aa | 35.59 | 0.013 | <0.001 | 0.004 |
30 | 17.40 Ba | 16.18 Ba | 16.90 Ba | 17.40 Ba | 17.79 Ba | 17.67 Ba | |||||
CP | 0 | 275.09 Ba | 275.61 Ba | 273.06 Bab | 272.71 Bab | 271.29 Bb | 273.39 Bab | 9.23 | 0.310 | <0.001 | 0.001 |
30 | 289.09 Ab | 289.92 Aab | 288.56 Ab | 293.65 Aa | 293.69 Aa | 291.84 Aab | |||||
NDF | 0 | 296.15 Ab | 299.44 Ab | 299.17 Ab | 312.61 Aa | 290.63 Ab | 291.39 Ab | 10.38 | 0.007 | <0.001 | 0.008 |
30 | 289.77 Aa | 277.58 Bb | 278.50 Bb | 290.25 Ba | 288.69 Aa | 287.84 Aa | |||||
ADF | 0 | 169.65 Bab | 181.74 Aa | 176.18 Aab | 171.91 Bab | 166.61 Bb | 164.21 Bb | 7.33 | 0.173 | 0.003 | 0.002 |
30 | 182.66 Aa | 174.73 Ab | 171.24 Ab | 176.57 Ab | 183.26 Aa | 175.80 Ab | |||||
ADL | 0 | 17.85 Bab | 21.46 Aab | 16.09 Bb | 16.68 Ab | 22.32 Aa | 17.75 Aab | 4.22 | 0.002 | 0.063 | 0.015 |
30 | 28.54 Aa | 21.07 Ab | 18.75 Ab | 15.96 Ab | 21.19 Ab | 18.06 Ab | |||||
HC | 0 | 126.50 Ab | 117.71 Ab | 122.99 Ab | 140.70 Aa | 124.02 Ab | 127.19 Ab | 12.20 | 0.004 | <0.001 | 0.589 |
30 | 107.11 Ba | 102.85 Aa | 107.25 Aa | 113.68 Ba | 105.43 Ba | 112.04 Ba | |||||
Ash | 0 | 88.66 Bbc | 89.17 Ba | 88.41 Bc | 88.58 Bbc | 88.78 Bb | 86.02 Bd | 3.85 | <0.001 | <0.001 | <0.001 |
30 | 94.80 Ad | 95.80 Ab | 96.84 Aa | 96.56 Aa | 95.31 Ac | 94.23 Ae |
Treatment | pH | Aerobic Stability (h) | ||||
---|---|---|---|---|---|---|
0d | 2d | 4d | 6d | 8d | ||
Control | 4.51 A | 4.63 C | 4.63 B | 4.62 A | 4.61 A | >360 |
ST1 | 4.47 B | 4.64 B | 4.64 AB | 4.58 B | 4.60 AB | |
ST2 | 4.47 B | 4.65 B | 4.65 A | 4.58 B | 4.61 A | |
ST3 | 4.47 B | 4.67 A | 4.64 AB | 4.58 B | 4.60 AB | |
ST4 | 4.45 C | 4.62 C | 4.61 C | 4.55 C | 4.58 B | |
ST5 | 4.47 B | 4.61 C | 4.63 B | 4.56 C | 4.61 A | |
SEM | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | 0.033 |
Item | Day(d) | Treatment | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | ST1 | ST2 | ST3 | ST4 | ST5 | T | D | T × D | |||
DPPH (mg TE/g DM) | 0 | 1.92 Bb | 1.98 Bb | 1.92 Bb | 2.08 Bab | 2.09 Bab | 2.21 Ba | 0.37 | 0.431 | <0.001 | 0.001 |
30 | 2.79 Aab | 2.71 Ab | 2.84 Aa | 2.75 Aab | 2.66 Ab | 2.67 Ab | |||||
FRAP (mg TE/g DM) | 0 | 8.91 Bb | 9.75 Aa | 8.34 Bb | 8.86 Ab | 9.64 Aa | 8.63 Bb | 1.5 | <0.001 | <0.001 | <0.001 |
30 | 13.83 Aa | 10.70 Ab | 10.48 Ab | 9.70 Ab | 10.01 Ab | 10.86 Ab | |||||
ABTS (mg TE/g DM) | 0 | 64.35 Ba | 63.07 Bab | 62.39 Bab | 64.42 Ba | 61.69 Bb | 61.78 Bb | 5.58 | <0.001 | <0.001 | <0.001 |
30 | 72.41 Abc | 70.75 Acd | 74.38 Aab | 76.54 Aa | 69.00 Ab | 74.96 Ab | |||||
Chlorogenic acid (mg/g DM) | 0 | 3.29 Ac | 3.45 Aabc | 3.38 Abc | 3.61 Aa | 3.53 Aab | 3.49 Aab | 0.46 | 0.005 | <0.001 | 0.045 |
30 | 2.52 Bab | 2.62 Bab | 2.65 Ba | 2.68 Ba | 2.45 Bb | 2.61 Bab | |||||
Total flavonoids (mg RE/g DM) | 0 | 11.05 Aa | 10.48 Bb | 10.37 Bb | 10.38 Bb | 10.64 Bab | 10.60 Bab | 0.59 | 0.143 | <0.001 | 0.09 |
30 | 11.59 Aab | 11.55 Aab | 11.50 Aab | 11.74 Aab | 11.32 Ab | 11.82 Aa | |||||
Total phenols (mg GAE/g DM) | 0 | 4.73 Bab | 4.52 Bc | 4.62 Bbc | 4.86 Ba | 4.74 Bab | 4.85 Ba | 0.52 | 0.028 | <0.001 | 0.008 |
30 | 5.79 Aa | 5.68 Aa | 5.85 Aa | 5.68 Aa | 5.26 Ab | 5.68 Aa |
Item | DPPH | FRAP | ABTS | Chlorogenic Acid | Total Flavonoids | Total Phenols |
---|---|---|---|---|---|---|
DPPH | 1 | |||||
FRAP | 0.186 | 1 | ||||
ABTS | 0.369 | −0.074 | 1 | |||
Chlorogenic acid | 0.066 | −0.233 | 0.486 * | 1 | ||
Total flavonoids | −0.038 | 0.130 | 0.355 | 0.095 | 1 | |
Total phenols | 0.463 | 0.303 | 0.366 | 0.273 | 0.447 | 1 |
Sample ID | M | Control | ST1 | ST2 | ST3 | ST4 | ST5 | SEM | P |
---|---|---|---|---|---|---|---|---|---|
Sequences | 23338 | 29338 | 26455 | 24287 | 27054 | 26530 | 25641 | 23338 | - |
ACE | 87.73 a | 72.30 ab | 66.51 ab | 70.58 ab | 86.31 a | 54.79 b | 57.36 b | 16.17 | 0.085 |
Chao1 | 87.48 a | 66.72 b | 62.71 b | 60.84 bc | 67.00 b | 49.08 c | 59.75 bc | 12.16 | <0.001 |
Simpson | 0.84 a | 0.82 a | 0.65 bc | 0.76 ab | 0.61 c | 0.59 c | 0.65 bc | 0.11 | <0.001 |
Shannon | 4.08 a | 3.14 b | 2.36 cd | 2.91 bc | 2.29 d | 2.17 d | 2.47 cd | 0.66 | <0.001 |
Good’s Coverage | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | - |
Component (mg/g DM) | Lonicerae flos | Lonicerae flos Extract |
---|---|---|
Chlorogenic acid | 40.04 ± 0.19 a | 19.14 ± 0.10 b |
Total flavonoids | 27.32 ± 0.25 a | 8.05 ± 0.09 b |
Total phenols | 33.8 ± 1.21 a | 12.71 ± 0.34 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Mu, L.; Cao, X.; Wang, Q.; Zhang, Z. Effects of a Mountain Honeysuckle (Lonicerae flos) Extract on Fermentation Characteristics, Antioxidant Capacity and Microbial Community of Alfalfa Mixed Silage. Fermentation 2025, 11, 59. https://doi.org/10.3390/fermentation11020059
Wang Y, Mu L, Cao X, Wang Q, Zhang Z. Effects of a Mountain Honeysuckle (Lonicerae flos) Extract on Fermentation Characteristics, Antioxidant Capacity and Microbial Community of Alfalfa Mixed Silage. Fermentation. 2025; 11(2):59. https://doi.org/10.3390/fermentation11020059
Chicago/Turabian StyleWang, Yating, Lin Mu, Xin Cao, Qinglan Wang, and Zhifei Zhang. 2025. "Effects of a Mountain Honeysuckle (Lonicerae flos) Extract on Fermentation Characteristics, Antioxidant Capacity and Microbial Community of Alfalfa Mixed Silage" Fermentation 11, no. 2: 59. https://doi.org/10.3390/fermentation11020059
APA StyleWang, Y., Mu, L., Cao, X., Wang, Q., & Zhang, Z. (2025). Effects of a Mountain Honeysuckle (Lonicerae flos) Extract on Fermentation Characteristics, Antioxidant Capacity and Microbial Community of Alfalfa Mixed Silage. Fermentation, 11(2), 59. https://doi.org/10.3390/fermentation11020059