Comparative Transcriptomic Responses Directed Towards Reporter Metabolic Routes of Mucor circinelloides WJ11 for Growth Adaptation and Lipid Overproduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains Cultivations
2.2. Biomass and Lipid Determination
2.3. Measurement of Glucose and Nitrogen in the Culture Broth
2.4. RNA Extraction, Library Preparation, Transcriptome Sequencing and Analysis
2.5. Read Mapping and DEGs Analysis for Functional Annotation
2.6. Reporter Metabolic Routes Based on the Integration Analysis of Omics Data and Genome-Scale Metabolic Model-Driven Analysis of M. circinelloides
3. Results and Discussion
3.1. Comparative Growth Profiles and Targeted Metabolite Traits of M. circinelloides WJ11 and CBS277.49 Strains
3.2. Comparative Transcriptome and Functional Analysis of WJ11 and CBS277.49 Cultures
3.3. Identification of Significant Genes Involved in Lipid Metabolic Responses Using DEGs Analysis of WJ11 and CBS277.49 Strains
3.4. Identified Reporter Metabolic Routes in M. circinelloides Strain WJ11 for the Fast-Growing Stage with Its Lipid Production Using Integrated Omics Data and Genome-Scale Model-Driven Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, M.; Li, X.; Zhang, B.; Han, S.; Yang, Y.; Zhou, B.; Zhang, Y. The effect of polyene phosphatidyl choline intervention on nonalcoholic steatohepatitis and related mechanism. Am. J. Transl. Res. 2016, 8, 2325–2330. [Google Scholar] [PubMed]
- Hara, T.; Ichimura, A.; Hirasawa, A. Therapeutic role and ligands of medium- to long-chain fatty acid receptors. Front. Endocrinol. 2014, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, D.; Song, L.-M.; Xu, Q.; Li, H.; Xu, H. Chemical profile and antioxidant activity of the oil from peony seeds (Paeonia suffruticosa Andr.). Oxidative Med. Cell Longev. 2017, 2017, 9164905. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, K.S.D.; Ye, K.; Gadgil, M.S.; Carlson, S.E.; O’brien, K.O.; Zhang, J.Y.; Park, H.G.; Ojukwu, K.; Zou, J.; Hyon, S.S.; et al. Positive selection on a regulatory insertion—Deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 2016, 33, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.S.Q.; Hasselbalch, A.L.; Gamborg, M.; Skogstrand, K.; Hougaard, D.M.; Heitmann, B.L.; Kyvik, K.O.; Sørensen, T.I.; Jess, T. N-3 polyunsaturated fatty acids, body fat and inflammation. Obes. Facts 2013, 6, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Huang, M.; Hu, J.; Li, J. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene. BMC Plant Biol. 2016, 16, 137. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Jaiswal, K.S.; Gupta, B. Managing rheumatoid arthritis with dietary interventions. Front. Nutr. 2017, 4, 52. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C. Microbial Production of γ-Linolenic Acid; Functional Foods and Nutraceuticals Series; Mazza., G., Ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 543. [Google Scholar]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production strategies and applications of microbial single cell oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [PubMed]
- Koivuranta, K.; Castillo, S.; Jouhten, P.; Ruohonen, L.; Penttilä, M.; Wiebe, M.G. Enhanced triacylglycerol production with genetically modified trichosporon oleaginosus. Front. Microbiol. 2018, 9, 1337. [Google Scholar] [CrossRef] [PubMed]
- Kooienga, E.M.; Baugher, C.; Currin, M.; Tomberlin, J.K.; Jordan, H.R. Effects of bacterial supplementation on black soldier fly growth and development at benchtop and industrial scale. Front. Microbiol. 2020, 11, 587979. [Google Scholar] [CrossRef] [PubMed]
- Dzurendova, S.; Zimmermann, B.; Tafintseva, V.; Kohler, A.; Ekeberg, D.; Shapaval, V. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Appl. Microbiol. Biotechnol. 2020, 104, 8065–8076. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, J.; Zhang, W.; Hu, B. A new cultivation method for microbial oil production: Cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol. Biofuels 2011, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Duncan, J. Effect of oxygen levels on the fatty acids and lipids of Mucor rouxii. Lipids 1974, 9, 285–289. [Google Scholar] [CrossRef] [PubMed]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive insight into fungal enzymes: Structure, classification, and their role in Mankind’s challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Marchut-Mikolajczyk, O.; Kwapisz, E.; Wieczorek, D.; Antczak, T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int. Biodeterior. Biodegradation 2015, 104, 142–148. [Google Scholar] [CrossRef]
- Majumder, R.; Miatur, S.; Saha, A.; Hossain, S. Mycoprotein: Production and nutritional aspects: A review. Sustain. Food Technol. 2024, 2, 81–91. [Google Scholar] [CrossRef]
- Dalbanjan, N.P.; Eelager, M.P.; Narasagoudr, S.S. Microbial protein sources: A comprehensive review on the potential usage of fungi and cyanobacteria in sustainable food systems. Food Humanit. 2024, 3, 100366. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Complete genome sequence of a high lipid-producing strain of Mucor circinelloides wj11 and comparative genome analysis with a low lipid-producing strain CBS 277.49. PLoS ONE 2015, 10, e0137543. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, H.; Chen, Y.Q.; Chen, W.; Garre, V.; Song, Y.; Ratledge, C. Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: An explanation for the high oleaginicity of strain WJ11. PLoS ONE 2015, 10, e0128396. [Google Scholar] [CrossRef]
- Tang, X.; Zan, X.; Zhao, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: An explanation for the mechanism of lipid accumulation at the proteomic level. Microb. Cell Factories 2016, 15, 35. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Wang, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y. 13 C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides. Bioresour. Technol. 2015, 197, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Vongsangnak, W.; Kingkaw, A.; Yang, J.; Song, Y.; Laoteng, K. Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration. Gene 2018, 670, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010, 5, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Vongsangnak, W.; Klanchui, A.; Tawornsamretkit, I.; Tatiyaborwornchai, W.; Laoteng, K.; Meechai, A. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species. Gene 2016, 583, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Na Ayudhya, N.I.; Laoteng, K.; Song, Y.; Meechai, A.; Vongsangnak, W. Metabolic traits specific for lipid-overproducing strain of Mucor circinelloides WJ11 identified by genome-scale modeling approach. PeerJ 2019, 7, e7015. [Google Scholar] [CrossRef] [PubMed]
- Naz, T.; Zhao, X.Y.; Li, S.; Saeed, T.; Ullah, S.; Nazir, Y.; Liu, Q.; Mohamed, H.; Song, Y. The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2024, 1870, 159592. [Google Scholar] [CrossRef]
- Hu, H.; Li, P.; Li, S.; Wang, X.; Mohamed, H.; López-García, S.; Liu, Q.; Garre, V.; Song, Y. The role of areA in lipid accumulation in high lipid-producing fungus Mucor circinelloides WJ11. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2024, 1869, 159450. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Pang, S.; Liu, Q.; Song, Y. Regulation of AreA on lipid biosynthesis under different nitrogen sources and C/N ratios in the model oleaginous fungus Mucor circinelloides. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2024, 1869, 159537. [Google Scholar] [CrossRef]
- Tang, X.; Chen, H.; Gu, Z.; Zhang, H.; Chen, Y.Q.; Song, Y.; Chen, W. Comparative Proteome analysis between high lipid-producing strain Mucor circinelloides WJ11 and low lipid-producing strain CBS 277.49. J. Agric. Food Chem. 2017, 65, 5074–5082. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, A.; Ratledge, C. Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur. J. Biochem. 1992, 209, 667–673. [Google Scholar] [CrossRef]
- Yang, J.; Khan, A.K.; Zhang, H.; Zhang, Y.; Certik, M.; Garre, V.; Song, Y. Mitochondrial citrate transport system in the fungus Mucor circinelloides: Identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation. Curr. Microbiol. 2020, 77, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.K.; Yang, J.; Hussain, S.A.; Zhang, H.; Garre, V.; Song, Y. Genetic Modification of Mucor circinelloides to construct stearidonic acid producing cell factory. Int. J. Mol. Sci. 2019, 20, 1683. [Google Scholar] [CrossRef]
- Khan, A.K.; Yang, J.; Hussain, S.A.; Zhang, H.; Liang, L.; Garre, V.; Song, Y. Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides. Microb. Cell Factories 2019, 18, 64. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Kingsford, C. Salmon: Accurate, versatile and ultrafast quantification from RNA-seq data using lightweight-alignment. BioRxiv 2015, 10, 021592. [Google Scholar]
- FastQC, A. Quality Control Tool for High Throughput Sequence Data. BibSonomy. 2015. Available online: https://www.bibsonomy.org/bibtex/f230a919c34360709aa298734d63dca3 (accessed on 4 March 2022).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.R.; Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 2005, 102, 2685–2689. [Google Scholar] [CrossRef] [PubMed]
- Väremo, L.; Nielsen, J.; Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013, 41, 4378–4391. [Google Scholar] [CrossRef]
- Naz, T.; Nosheen, S.; Li, S.; Nazir, Y.; Mustafa, K.; Liu, Q.; Garre, V.; Song, Y. Comparative analysis of beta-carotene production by Mucor circinelloides strains CBS 277.49 and WJ11 under light and dark conditions. Metabolites 2020, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wynn, J.P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef]
- Książek, E. Citric acid: Properties, microbial production, and applications in industries. Molecules 2023, 29, 22. [Google Scholar] [CrossRef]
- Maddox, I.S.; Hossain, M.; Brooks, J.D. The effect of methanol on citric acid production from galactose by Aspergillus niger. Appl. Microbiol. Biotechnol. 1986, 23, 203–205. [Google Scholar] [CrossRef]
- Shaikh, Y.; Jagtap, M.R. Organic acid and solvent production from microbial fermentation. In Microbial Products for Future Industrialization; Springer: Berlin/Heidelberg, Germany, 2023; pp. 267–296. [Google Scholar]
- Ali, S. Temperature Optima for Citric Acid Accumulation by Aspergillus niger. Int. J. Biotechnol. 2002, 1, 108–110. [Google Scholar]
- Tong, Z.; Zheng, X.; Tong, Y.; Shi, Y.-C.; Sun, J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb. Cell Factories 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [PubMed]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Kanehisa, M. Enzyme annotation and metabolic reconstruction using KEGG. In Protein Function Prediction; Humana Press: Totowa, NJ, USA, 2017; pp. 135–145. [Google Scholar]
- Fazili, A.B.A.; Shah, A.M.; Zan, X.; Naz, T.; Nosheen, S.; Nazir, Y.; Ullah, S.; Zhang, H.; Song, Y. Mucor circinelloides: A model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb. Cell Factories 2022, 21, 29. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, A.; Ayala, R.; Posma, J.M.; Harvey, N.; Jiménez, B.; Sonomura, K.; Sato, T.-A.; Matsuda, F.; Zalloua, P.; Gauguier, D.; et al. pJRES Binning Algorithm (JBA): A new method to facilitate the recovery of metabolic information from pJRES 1H NMR spectra. Bioinformatics 2019, 35, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Mehrshad, M.; Salcher, M.M.; Okazaki, Y.; Nakano, S.-I.; Šimek, K.; Andrei, A.-S.; Ghai, R. Hidden in plain sight—Highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 2018, 6, 176. [Google Scholar] [CrossRef]
- Wang, X.; Han, F.; Yang, M.; Yang, P.; Shen, S. Exploring the response of rice (Oryza sativa) leaf to gibberellins: A proteomic strategy. Rice 2013, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Suparmin, A.; Kato, T.; Takemoto, H.; Park, E.Y. Metabolic comparison of aerial and submerged mycelia formed in the liquid surface culture of Cordyceps militaris. Microbiologyopen 2019, 8, e00836. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K. Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen. Res. 2020, 15, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Brocker, C.; Koppaka, V.; Chen, Y.; Jackson, B.C.; Matsumoto, A.; Thompson, D.C.; Vasiliou, V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress. Free. Radic. Biol. Med. 2013, 56, 89–101. [Google Scholar] [CrossRef]
- Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The Aldo-Keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008, 40, 553–624. [Google Scholar] [CrossRef]
- Black, P.N.; DiRusso, C.C. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2007, 1771, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Rao, S.; Wrightstone, E.; Sun, T.; Lui, A.C.W.; Welsch, R.; Li, L. Phytoene synthase: The key rate-limiting enzyme of carotenoid biosynthesis in plants. Front. Plant Sci. 2022, 13, 884720. [Google Scholar] [CrossRef] [PubMed]
- Sonnabend, R.; Seiler, L.; Gressler, M. Regulation of the leucine metabolism in Mortierella alpina. J. Fungi 2022, 8, 196. [Google Scholar] [CrossRef]
- Bulfer, S.L.; Scott, E.M.; Couture, J.-F.; Pillus, L.; Trievel, R.C. Crystal structure and functional analysis of homocitrate synthase, an essential enzyme in lysine biosynthesis. Biophys. J. 2010, 98, 450a. [Google Scholar] [CrossRef]
- Fouquerel, E.; Goellner, E.M.; Yu, Z.; Gagne, J.P.; de Moura, M.B.; Feinstein, T.; Wheeler, D.; Redpath, P.; Li, J.; Romero, G.; et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD + Depletion. Cell Rep. 2014, 8, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Ham, H.J.; Seo, J.; Yoon, H.-J.; Shin, S.K. Label-free measurement of the yeast short chain TAG lipase activity by ESI-MS after one-step esterification. J. Lipid Res. 2017, 58, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, A.; Bonelli, P.; Tuccillo, F.M.; Goldfine, I.D.; Evans, J.L.; Buonaguro, F.M.; Mancini, A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol. 2018, 15, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, G.; Soro-Arnaiz, I.; De Bock, K. The warburg effect in endothelial cells and its potential as an anti-angiogenic Target in cancer. Front. Cell Dev. Biol. 2018, 6, 100. [Google Scholar] [CrossRef]
- Franco-Cano, A.; Marcos, A.T.; Strauss, J.; Cánovas, D. Evidence for an arginine-dependent route for the synthesis of NO in the model filamentous fungus Aspergillus nidulans. Environ. Microbiol. 2021, 23, 6924–6939. [Google Scholar] [CrossRef]
- Jia, Y.; Tomita, T.; Yamauchi, K.; Nishiyama, M.; Palmer, D.R.J. Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus. Biochem. J. 2006, 396, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Jiang, L.; Zhu, Y.; Yang, S.; Qiu, H.; Cheng, J.; Liang, Q.; Tu, Z.-C.; Ye, C. Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat. Commun. 2023, 14, 2504. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, glycine and one-carbon metabolism in cancer (Review). Int. J. Oncol. 2020, 58, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, K.; Graulus, G.-J.; Mesotten, L.; Thomeer, M.; Derveaux, E.; Noben, J.-P.; Guedens, W.; Adriaensens, P. The metabolic landscape of lung cancer: New insights in a disturbed glucose metabolism. Front. Oncol. 2019, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Mentch, S.J.; Locasale, J.W. One-carbon metabolism and epigenetics: Understanding the specificity. Ann. New York Acad. Sci. 2015, 1363, 91–98. [Google Scholar] [CrossRef]
- Dong, Y.; Tu, R.; Liu, H.; Qing, G. Regulation of cancer cell metabolism: Oncogenic MYC in the driver’s seat. Signal Transduct. Target. Ther. 2020, 5, 124. [Google Scholar] [CrossRef]
- Ngo, B.; Kim, E.; Osorio-Vasquez, V.; Doll, S.; Bustraan, S.; Liang, R.J.; Luengo, A.; Davidson, S.M.; Ali, A.; Ferraro, G.B.; et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 2020, 10, 1352–1373. [Google Scholar] [CrossRef] [PubMed]
- Weickhmann, A.K.; Keller, H.; Wurm, J.P.; Strebitzer, E.; Juen, M.A.; Kremser, J.; Weinberg, Z.; Kreutz, C.; Duchardt-Ferner, E.; Wöhnert, J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res. 2019, 47, 2654–2665. [Google Scholar] [CrossRef]
- Reisch, C.R.; Moran, M.A.; Whitman, W.B. Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2011, 2, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J. Biotechnol. 2014, 192, 78–84. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Feng, Y.; Ren, Y.; Gu, Z.; Chen, H.; Wang, H.; Thomas, M.J.; Zhang, B.; Berquin, I.M.; et al. Genome characterization of the oleaginous fungus mortierella alpina. PLoS ONE 2011, 6, e28319. [Google Scholar] [CrossRef]
- Osada, K.; Maeda, Y.; Yoshino, T.; Nojima, D.; Bowler, C.; Tanaka, T. Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris. Algal Res. 2017, 23, 126–134. [Google Scholar] [CrossRef]
- Sun, X.-M.; Xu, Y.-S.; Huang, H. Thraustochytrid cell factories for producing lipid compounds. Trends Biotechnol. 2021, 39, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J.; Kim, S.H. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem. Rev. 2023, 22, 833–860. [Google Scholar] [CrossRef] [PubMed]
Parameters | WJ11 | CBS277.49 |
---|---|---|
Maximum specific growth rate, μmax (h−1) | 0.340 ± 0.104 | 0.236 ± 0.124 |
Maximal biomass titer (g/L) | 12.95 ± 0.6 | 12.07 ± 1.07 |
Maximal lipid (% total fatty acids (TFAs)/DCW) | 35.18 | 13.19 |
Features | WJ11 | CBS277.49 |
Sequencing depth of raw reads (million reads) | 43.18 | 42.65 |
Sequencing depth of clean reads (million reads) | 42.95 | 42.54 |
Total mapped reads | 96.53 | 97.72 |
Number of expressed genes | 6389 | 6008 |
Total number of orthologous protein-encoding genes | 6708 |
Orthologous Gene ID | Log2FC | Protein Function | EC Number |
---|---|---|---|
List of upregulated genes in WJ11 | |||
1. Carbohydrate metabolism | |||
1.1 Glycolysis/Gluconeogenesis | |||
ortholog_01035 | 5.41 | Belongs to the hexokinase family | EC: 2.7.1.1 |
ortholog_01766 | 5.54 | Belongs to the aldehyde dehydrogenase family (ALDH) | EC: 1.2.1.3, EC: 1.2.1.5, EC: 1.2.1.28 |
ortholog_03743 | 8.79 | Zinc-binding alcohol dehydrogenase | EC: 1.1.1.2 |
ortholog_04422 | 6.00 | Aldo/keto reductase family | EC: 1.1.1.21 |
ortholog_05383 | 9.62 | Phosphoenolpyruvate carboxykinase (ATP) | EC: 4.1.1.49 |
ortholog_05948 | 11.42 | Aldehyde dehydrogenase family (ALDH) | EC: 1.2.1.3, EC: 1.2.1.314 |
ortholog_06385 | 5.83 | Pyruvate decarboxylase | EC: 4.1.1.1 |
1.2 Citrate cycle (TCA cycle) | |||
ortholog_00844 | 6.52 | 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase) | EC: 2.3.1.61 |
2. Lipid metabolism | |||
2.1 Fatty acid biosynthesis/degradation | |||
ortholog_03018 | 6.41 | Acyl-CoA synthetase | EC: 6.2.1.3 |
ortholog_05253 | 6.42 | AMP-binding enzyme (Acyl-CoA synthetase) | EC: 6.2.1.3 |
ortholog_03225 | 7.44 | Hypothetical protein | - |
2.2 Glycerophospholipid metabolism | |||
ortholog_01371 | 7.49 | GDSL-like Lipase/Acylhydrolase | EC: 3.1.1.4, EC: 3.1.1.5 |
ortholog_04515 | 11.09 | Protein of unknown function (DUF3419) | - |
3. Amino acid metabolism | |||
3.1 Phenylalanine metabolism | |||
ortholog_01802 | 5.65 | Biopterin-dependent aromatic amino acid hydroxylase | EC: 1.14.16.1, EC: 1.14.16.2, EC: 1.14.16.4 |
3.2 Tryptophan metabolism | |||
ortholog_03575 | 6.13 | Indoleamine 2,3-dioxygenase | EC: 1.13.11.52 |
3.3 Lysine degradation | |||
ortholog_04503 | 8.17 | Dehydrogenase E1 and transketolase domain-containing protein 1 | EC: 1.2.4.2 |
4. Secondary metabolism | |||
ortholog_00981 | 6.19 | Squalene/phytoene synthase | EC: 2.5.1.21, 2.5.1.32 |
ortholog_01138 | 8.44 | Carotenoid-9′,10′-cleaving dioxygenase | EC: 1.13.11.71 |
List of upregulated genes in CBS277.49 | |||
1. Carbohydrate metabolism | |||
1.1 Glycolysis/Gluconeogenesis | |||
ortholog_03434 | 5.48 | Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain | EC: 1.2.1.12 |
1.2 Pyruvate metabolism | |||
ortholog_03454 | 8.83 | HMGL-like (Isopropylmalate synthase, homocitrate synthase) | EC: 2.3.3.13, EC: 2.3.3.14 |
1.3 Citrate cycle (TCA cycle) | |||
ortholog_04943 | 6.68 | Isocitrate/isopropyl malate dehydrogenase | EC: 1.1.1.41, EC: 1.1.1.87 |
2. Lipid metabolism | |||
2.1 Arachidonic acid metabolism | |||
ortholog_00884 | 5.74 | Asparagine synthase | EC: 3.3.2.6, EC: 6.3.5.4 |
2.2 Glycerolipid metabolism | |||
ortholog_02135 | 13.91 | Triacylglycerol lipase | EC: 3.1.1.3 |
3. Amino acid metabolism | |||
3.1 Lysine biosynthesis | |||
ortholog_05309 | 5.71 | Homoaconitate hydratase | EC: 4.2.1.36 |
3.2 Alanine, aspartate, and glutamate metabolism | |||
ortholog_06359 | 5.38 | Arginosuccinate synthase | EC: 6.3.4.5 |
Reporter Metabolites | Distinct-Directional p-Value |
---|---|
2-oxoglutarate | 0.014925 * |
diphosphate | 0.014925 * |
Phosphate | 0.014925 * |
H+ | 0.014925 * |
ATP | 0.014925 * |
Ubiquinol | 0.014925 * |
Ubiquinone | 0.014925 * |
AMP | 0.014925 * |
L-aspartate | 0.014925 * |
L-glutamate | 0.014925 * |
transfer RNA | 0.014925 * |
NAD+ | 0.014925 * |
FAD+ | 0.014925 * |
tetrahydrofolate | 0.014925 * |
S-adenosyl-L-methionine | 0.014925 * |
L-homocysteine | 0.014925 * |
L-glutamine | 0.026118 * |
S-adenosyl-L-homocysteine | 0.026118 * |
NADH | 0.033581 * |
O-acetyl-L-homoserine | 0.033581 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Htwe, N.M.P.S.; Patumcharoenpol, P.; Yang, J.; Laoteng, K.; Song, Y.; Vongsangnak, W. Comparative Transcriptomic Responses Directed Towards Reporter Metabolic Routes of Mucor circinelloides WJ11 for Growth Adaptation and Lipid Overproduction. Fermentation 2025, 11, 61. https://doi.org/10.3390/fermentation11020061
Li F, Htwe NMPS, Patumcharoenpol P, Yang J, Laoteng K, Song Y, Vongsangnak W. Comparative Transcriptomic Responses Directed Towards Reporter Metabolic Routes of Mucor circinelloides WJ11 for Growth Adaptation and Lipid Overproduction. Fermentation. 2025; 11(2):61. https://doi.org/10.3390/fermentation11020061
Chicago/Turabian StyleLi, Fanyue, Nang Myint Phyu Sin Htwe, Preecha Patumcharoenpol, Junhuan Yang, Kobkul Laoteng, Yuanda Song, and Wanwipa Vongsangnak. 2025. "Comparative Transcriptomic Responses Directed Towards Reporter Metabolic Routes of Mucor circinelloides WJ11 for Growth Adaptation and Lipid Overproduction" Fermentation 11, no. 2: 61. https://doi.org/10.3390/fermentation11020061
APA StyleLi, F., Htwe, N. M. P. S., Patumcharoenpol, P., Yang, J., Laoteng, K., Song, Y., & Vongsangnak, W. (2025). Comparative Transcriptomic Responses Directed Towards Reporter Metabolic Routes of Mucor circinelloides WJ11 for Growth Adaptation and Lipid Overproduction. Fermentation, 11(2), 61. https://doi.org/10.3390/fermentation11020061