Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials
Abstract
:1. Introduction
2. Renewable Sources for Biofuels Production
Biomass | Pretreatment | Biofuel | Strain | Production | Main Finding | Ref. |
---|---|---|---|---|---|---|
Rice husk | Alkali, HPAC, and alkali-HPAC | Ethanol | S. cerevisiae | 29.9 g/L (85.4%) | Optimized conditions for enzymatic hydrolysis of rice husk resulted in enhanced ethanol production | [55] |
Rice straw | Alkaline (0.25M Na2CO3, 121 °C, 15 min) | Ethanol | S. tanninophilus | 108.6 g/L | High effective ethanol production using alkaline pretreatment and A. fumigatus enzymes | [45] |
Corn stover | Acid (0.89% H2SO4, 125 °C, 5 min) | Butanol | C. saccharobutylicum DSM 13864 | 9.02 g/L (97.3%) | A complete ABE biorefinery process based on corn stover was developed, including detoxification and gas stripping | [56] |
Pineapple peels | Ultrasonic (5% biomass loading, LSR 20, 15–45 min at 55 °C, 40 kHz, 50 W) | Ethanol | S. cerevisiae | 196.2 g/L | Effective ethanol production from pineapple peels using ultrasonic pretreatment | [57] |
Deodar sawdust | Thermochemical pretreatment (0.5 M NaOH solution at 80 °C for 2 h) | Ethanol | P. stipitis | 14.25 g/L (95.68%) | Optimized conditions significantly increased total reducing sugar concentration | [58] |
Tobacco waste | Alkaline (10% NaOH, 80 °C, 90 min) | Ethanol | Mucor hiemalis | 97% | 90% desilication reached by Alkaline pretreatment | [59] |
Acacia wood | Acid (0.05% sulfuric acid, 200 °C, 5 min) | Ethanol | S. cerevisiae | 4.57 g/L (94.9%) | Soy protein addition improved enzymatic hydrolysis efficiency despite lacking enzymatic activity | [60] |
Napier grass | DES (1:4 chcl/LA, 80 °C, 5 h) | Ethanol | S. cerevisiae | 86.6% | DES pretreatment resulted in 71% cellulose recovery, 68% delignification, and 87.09% glucose conversion | [61] |
Wheat straw | IL ([TEA][HSO4], 30 °C, 3 h) | Ethanol | S. cerevisiae PTCC 5052 | 43.1 g/L (84.34%) | Low-cost ionic liquids can effectively pretreat lignocellulosic biomass for high ethanol yields | [46] |
Sal sawdust | Acid (1.27% hcl, 10% biomass, 22.43 min) | Ethanol | S. cerevisiae MTCC-36 and P. stipitis NCIM-3498 | 9.43 g/L (97%) | Sal sawdust from the furniture industry can be effectively transformed into ethanol | [58] |
Paulownia wood | Two-stage Autohydrolysis (204–222 °C) | Ethanol | S. cerevisiae CECT-117 | 37 g/L (100%) | Sequential two-stage autohydrolysis allows for effective recovery of all fractions of Paulownia wood for ethanol production | [62] |
Pomegranate peel | Hydrothermal (115 °C, 40 min, LSR 10) | Ethanol | S. cerevisiae YPH499 | 12.9 g/L (95.1%) | Optimized SSF process achieved significant sugar consumption | [63] |
3. Impact of Pretreatment on Enzymatic Production and Conversion to Biofuels
3.1. Biological Pretreatments with White Rot Fungi (WRF)
3.2. Alkaline and Acid Pretreatment
3.3. Physicochemical Pretreatment
3.4. Ionic Liquid Pretreatment
3.5. Pretreatment for Enzymatic Transesterification
Pretreatment | Biomass | Enzyme | Microorganism | Sugar Produced | Production of Bioethanol | References |
---|---|---|---|---|---|---|
Physical–alkaline | Corncobs | Cellulase: Endoglucanase Exoglucanase β-glucosidase | A. niger | 128.20 g/L | 6.4 g/L | [90] |
Sugarcane bagasse | cellulases-hemicellulases: β-glucosidase endo-β-glucanase β-xylosidase endo-β-xylanase | Aspergillus tubingensis NKBP-55 | 20 g/L | 15.54 g/L * | [64] | |
Pongamia | Cellulases: endo-β-d-glucanase exo-β-d-glucanase β-glucosidase | Aspergillus calidoustus | - | 4.4 g/gds | [106] | |
Wood waste | - | 2.2 g/gds | ||||
Rice straw | Cellulases: CMCase β-glucosidase) | A. fumigatus | 557.8 mg/gds | 9.45 g/L | [113] | |
Physicochemical (acid–alkaline) | Sugarcane bagasse | Cellulases | A. niger ITV02 | 49 g/L | 22.4 g/L | [65] |
Wheat bran and sawdust | β-glucanase | A. niger EG-RE (MW390925.1) | 37.5 g/gds | 12 g/L | [91] | |
Physical–acidic | Rice bran | Celullases-Amylases-Xilanase: β-glucosidase CMCase Xylanase α-amylase β-glucoamylase | A. niger P-19 | 468 mg/gds | 37.63 g/L– 0.41 g/gds | [67] |
Chlorella sorokiniana, | α-amylase β-glucoamylase | Aspergillus oryzae- A. niger | 464 mg/gds | 16.512 g/L | [114] | |
Tetraselmis sp. | 420 mg/gds | 7.92 g/L | ||||
Skeletonema sp. | 425 mg/gds | 9.792 g/L | ||||
Banana peel | Cellulase | A. niger | - | 4.24 g/L | [107] | |
Wheat straw | Cellulases | A. fumigatus | 889.1 mg/gds | 21.88 g/L | [66] | |
Physical | Watermelon peels | Cellulases, α-amylase, | A. niger | - | 57 g/L | [115] |
Coffee pulp | Cellulase | A. niger MT328516 | 741 mg/gds | 71.39 mg/mL | [116] | |
Wheat bran | Aspergillus flavus MT328429 | 633 mg/gds | 11.73 mg/mL | |||
Yam peels | Cellulases, α-amylase Xylase | A. niger | 69.7 mg/gds | 31.86 g/L | [105] | |
banana peels | 65.2 mg/gds | 22.72 g/L | ||||
Cassava starch | α-amylase β-glucoamylase | Aspergillus awamori | - | 0.46 g/gds | [117] | |
Physical–ionic | Sugarcane bagasse | Xilanases | A. niger | 297 mg glucose/gds 236 mg xilose/gds | 10 g/L– 0.42 g/gds | [101] |
Mango seed starch | α-amylase | A. niger | 848 mg/gds | 31.40 g/L | [99] | |
Starch | alfa-amylasa | Aspergillus flavus AUMC10636 | 28.85 g/L | 14.74 g/gds | [100] |
3.6. Global Impact of Biofuel Production
4. Enzymes Produced by Aspergillus
4.1. Amylases
4.2. Cellulases
4.3. Xilanases
4.4. Lipases
4.5. Optimal Conditions for Enzyme Production by Aspergillus
Enzyme | Microorganism | Main Substrate | pH | Temperature (°C) | Time of Incubation (days) | Enzymatic Activity | Reference |
---|---|---|---|---|---|---|---|
α-amylase | A. flavus AUMC10636 | Soluble starch | 5 | 30 | 7 | 22.68 U/mL | [100] |
Aspergillus ochraceus | Starch | - | 37 | 5 | 1415 U/mL | [170] | |
Aspergillus tamarii MTCC5152 | Wheat bran | 6.7 | 28 | 4 | 519.40 U/gds | [171] | |
Aspergillus flavus S2-OY | Potato peel | 5 | 35 | 3 | 5 U/mL | [172] | |
A. terreus | Pomegranate peel | 6 | 30 | 5 | 340.69 U/ml | [173] | |
A. oryzae | Groundnut oil cake | 4.7 | 32.5 | 4.5 | 9868.12 U/gds | [164] | |
A. oryzae | Soybean husk and flour mill | 6 | 30 | 6 | 47,000 U/gds | [174] | |
Glucoamylase | Aspergillus wentii | Starch | 7 | 25 | 3 | 3.5 U/mL | [175] |
Endoglucanase | A.s flavus | Wheat straw | 5.5 | 30 | 12 | 13.89 U/gds | [176] |
Aspergillus uvarum CBS 121591 | Carboxymethyl cellulose | 7 | 37 | 3 | 2.706 U/mL | [177] | |
A. niger | Arachis hypogaea shells | 4 | 40 | 5 | 87.69 U/mL | [178] | |
A. fumigatus JCM 10253 | Ragi husk | 2 | 48.6 | 8 | 97.06 U/mL | [179] | |
Beta-glucosidase | Trichoderma reesei | Cellulose | 5 | 30 | 12 | 13.44 U/mL | [180] |
5. New Technologies and Innovation of Enzymes Applied to Biofuels
5.1. Protein Engineering
5.2. Enzymatic Immobilization
6. World Market of Biofuels’ Enzymes
6.1. Global Market Analysis of Enzymes Utilized in Biofuel Production
6.1.1. Biofuel Types
6.1.2. Raw Materials and Pre-Treatment Methods
6.1.3. Enzymes and Microorganisms
6.1.4. Institutions and Companies Filing Patents
6.2. Relationship Between Feedstocks, Pretreatments, and Microorganisms in Biofuel Production
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 2020, 7, 1115–1127. Available online: https://www.biofueljournal.com/article_103970.html (accessed on 26 November 2024). [CrossRef]
- Safarian, S.; Unnthorsson, R. An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland. Energies 2018, 11, 1493. Available online: https://www.mdpi.com/1996-1073/11/6/1493/htm (accessed on 26 November 2024). [CrossRef]
- Nazli, R.I.; Aslankaciran, C.; Yang, D.; Liaqat, W.; Polat, M.; Cavdar, A.S.; Tansi, V.; Baloch, F.S. Assessment of Sweet Sorghum Genotypes for Bioethanol Production Potential and Bagasse Combustion Characteristics in a Semi-Arid Mediterranean Climate. Agronomy 2024, 14, 2626. Available online: https://www.mdpi.com/2073-4395/14/11/2626/htm (accessed on 21 November 2024). [CrossRef]
- Tayyab, M.; Noman, A.; Islam, W.; Tayyab, M.; Noman, A.; Islam, W.; Waheed, S.; Arafat, Y.; Ali, F.; Zaynab, M.; et al. LinBioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Appl. Ecol. Environ. Res. 2018, 16, 225–249. Available online: https://aloki.hu/pdf/1601_225249.pdf (accessed on 26 November 2024). [CrossRef]
- Chen, J.; Zhang, B.; Luo, L.; Zhang, F.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Wang, X.; Lü, X. A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2021, 149, 111370. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1364032121006560 (accessed on 26 November 2024). [CrossRef]
- Das, N.; Jena, P.K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers. Biorefinery 2021, 13, 1503–1527. Available online: https://link.springer.com/article/10.1007/s13399-021-01294-3 (accessed on 26 November 2024). [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0360544220305648 (accessed on 26 November 2024). [CrossRef]
- Gronchi, N.; Favaro, L.; Cagnin, L.; Brojanigo, S.; Pizzocchero, V.; Basaglia, M.; Casella, S. Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol. Energies 2019, 12, 714. Available online: https://www.mdpi.com/1996-1073/12/4/714/htm (accessed on 26 November 2024). [CrossRef]
- Nitsos, C.; Rova, U.; Christakopoulos, P. Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications. Energies 2018, 11, 50. Available online: https://www.mdpi.com/1996-1073/11/1/50/htm (accessed on 26 November 2024). [CrossRef]
- Pradyawong, S.; Juneja, A.; Bilal Sadiq, M.; Noomhorm, A.; Singh, V. Comparison of Cassava Starch with Corn as a Feedstock for Bioethanol Production. Energies 2018, 11, 3476. Available online: https://www.mdpi.com/1996-1073/11/12/3476/htm (accessed on 26 November 2024). [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. Available online: https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-017-0137-9 (accessed on 27 November 2024). [CrossRef] [PubMed]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. Available online: https://link.springer.com/article/10.1007/s13205-015-0279-4 (accessed on 27 November 2024). [CrossRef] [PubMed]
- Srikumar, K.; Tan, Y.H.; Kansedo, J.; Tan, I.S.; Mubarak, N.M.; Ibrahim, M.L.; Yek, P.N.Y.; Foo, H.C.Y.; Karri, R.R.; Khalid, M. A review on the environmental life cycle assessment of biodiesel production: Selection of catalyst and oil feedstock. Biomass Bioenergy 2024, 185, 107239. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0961953424001922 (accessed on 27 November 2024). [CrossRef]
- Bhatia, S.K.; Kim, J.; Song, H.S.; Kim, H.J.; Jeon, J.M.; Sathiyanarayanan, G.; Yoon, J.J.; Park, K.; Kim, Y.G.; Yang, Y.H. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour. Technol. 2017, 233, 99–109. Available online: https://pubmed.ncbi.nlm.nih.gov/28260667/ (accessed on 27 November 2024). [CrossRef] [PubMed]
- Widayat, W.; Darmawan, T.; Hadiyanto, H.; Rosyid, R.A. Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. J. Phys. Conf. Ser. 2017, 877, 012018. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/877/1/012018 (accessed on 27 November 2024). [CrossRef]
- Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers. Manag. 2017, 138, 45–53. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0196890417300766 (accessed on 27 November 2024). [CrossRef]
- Nisar, J.; Razaq, R.; Farooq, M.; Iqbal, M.; Khan, R.A.; Sayed, M.; Shah, A.; Rahman, I. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew. Energy 2017, 101, 111–119. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960148116307492 (accessed on 27 November 2024). [CrossRef]
- Zhou, Z.W.; Cai, C.X.; Xing, X.; Li, J.; Hu, Z.E.; Xie, Z.B.; Wang, N.; Yu, X.Q. Magnetic COFs as satisfied support for lipase immobilization and recovery to effectively achieve the production of biodiesel by great maintenance of enzyme activity. Biotechnol. Biofuels 2021, 14, 156. Available online: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-02001-0 (accessed on 27 November 2024). [CrossRef]
- Xia, S.; Lin, J.; Sayanjali, S.; Shen, C.; Cheong, L.Z. Lipase-catalyzed production of biodiesel: A critical review on feedstock, enzyme carrier and process factors. Biofuels Bioprod. Biorefining 2024, 18, 291–309. Available online: https://scijournals.onlinelibrary.wiley.com/doi/abs/10.1002/bbb.2561 (accessed on 27 November 2024). [CrossRef]
- Badoei-dalfard, A.; Shahba, A.; Zaare, F.; Sargazi, G.; Seyedalipour, B.; Karami, Z. Lipase immobilization on a novel class of Zr-MOF/electrospun nanofibrous polymers: Biochemical characterization and efficient biodiesel production. Int. J. Biol. Macromol. 2021, 192, 1292–1303. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0141813021022649 (accessed on 27 November 2024). [CrossRef]
- Baskar, G.; Soumiya, S. Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renew. Energy 2016, 98, 101–107. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960148116301690 (accessed on 27 November 2024). [CrossRef]
- Valladares-Diestra, K.; de Souza Vandenberghe, L.P.; Soccol, C.R. Oilseed Enzymatic Pretreatment for Efficient Oil Recovery in Biodiesel Production Industry: A Review. Bioenergy Res. 2020, 13, 1016–1030. Available online: https://link.springer.com/article/10.1007/s12155-020-10132-9 (accessed on 24 November 2024). [CrossRef]
- Zhong, W.; Yu, H.; Song, L.; Zhang, X. Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharificaiton of corn stalks. BioResources 2011, 6, 3400–3451. Available online: https://bioresources.cnr.ncsu.edu/resources/combined-pretreatment-with-white-rot-fungus-and-alkali-at-near-room-temperature-for-improving-saccharificaiton-of-corn-stalks/ (accessed on 28 November 2024). [CrossRef]
- Perumal, V.; Ilangkumaran, M. Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine. Energy 2017, 129, 228–236. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0360544217306837 (accessed on 27 November 2024). [CrossRef]
- Aghabeigi, F.; Nikkhah, H.; Zilouei, H.; Bazarganipour, M. Immobilization of lipase on the graphene oxides magnetized with NiFe2O4 nanoparticles for biodiesel production from microalgae lipids. Process Biochem. 2023, 126, 171–185. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1359511323000181 (accessed on 27 November 2024). [CrossRef]
- Roy, M.; Mohanty, K. Valorization of de-oiled microalgal biomass as a carbon-based heterogeneous catalyst for a sustainable biodiesel production. Bioresour. Technol. 2021, 337, 125424. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960852421007641 (accessed on 27 November 2024). [CrossRef] [PubMed]
- Wallerstein, D. Food-energy-water (FEW) nexus: Rearchitecting the planet to accommodate 10 billion humans by 2050. Resour. Conserv. Recycl. 2020, 155, 104658. [Google Scholar] [CrossRef]
- Shukla, P.D.; Garai, M.; Zafar, K.; Gupta, S.; Shrivastava, S. Process parameters optimization for lipase production by Rhizopus oryzae KG-10 under submerged fermentation using response surface methodology. Applied Sci. Environ. Sanit. 2007, 2, 93–103. Available online: https://www.researchgate.net/publication/43993022_Process_parameters_optimization_for_lipase_production_by_Rhizopus_oryzae_KG-10_under_submerged_fermentation_using_response_surface_methodology (accessed on 22 November 2023).
- Usman, I.M.T.; Ho, Y.C.; Baloo, L.; Lam, M.K.; Sujarwo, W. A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions (NZCE). Bioresour. Technol. 2022, 366, 128167. [Google Scholar]
- Louw, J.; Dogbe, E.S.; Yang, B.; Görgens, J.F. Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results. Renew. Sustain. Energy Rev. 2023, 188, 113840. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Cardona Alzate, C.A. Methods for designing and assessing biorefineries: Review. Biofuels Bioprod. Biorefining 2019, 13, 789–808. [Google Scholar] [CrossRef]
- Pleissner, D.; Qi, Q.; Gao, C.; Rivero, C.P.; Webb, C.; Lin, C.S.K.; Venus, J. Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochem. Eng. J. 2016, 116, 3–16. [Google Scholar] [CrossRef]
- Ioannidou, S.M.; Pateraki, C.; Ladakis, D.; Papapostolou, H.; Tsakona, M.; Vlysidis, A.; Kookos, I.K.; Koutinas, A. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour. Technol. 2020, 307, 123093. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Sharma, A.; Sharma, P.; Singh, S.; Das, D.; Chawla, G.; Singha, A.; Nain, L. Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Convers. Biorefinery 2022, 12, 5209–5220. [Google Scholar] [CrossRef]
- Sahu, O. Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production. Energy 2021, 232, 120922. [Google Scholar] [CrossRef]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem. 2017, 19, 3078–3102. Available online: https://pubs.rsc.org/en/content/articlehtml/2017/gc/c7gc00705a (accessed on 30 November 2024). [CrossRef]
- Low, S.A.; Isserman, A.M. Ethanol and the Local Economy. Econ. Dev. Q. 2009, 23, 71–88. [Google Scholar] [CrossRef]
- Iqbal, Y.; Dai, Y.; Xue, S.; Yi, Z.; Chen, Z.; Li, M.; Cossel, M. Organic Acid-Based Hemicellulose Fractionation and Cellulosic Ethanol Potential of Five Miscanthus Genotypes. Agronomy 2024, 14, 1389. Available online: https://www.mdpi.com/2073-4395/14/7/1389/htm (accessed on 16 January 2025). [CrossRef]
- Vaidyanathan, G.; Sankaranarayanan, R.; Yap, N.T. Bridging the chasm—Diffusion of energy innovations in poor infrastructure starved communities. Renew. Sustain. Energy Rev. 2019, 99, 243–255. [Google Scholar] [CrossRef]
- Bhuyar, P.; Trejo, M.; Mishra, P.; Unpaprom, Y.; Velu, G.; Ramaraj, R. Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel 2022, 323, 124406. [Google Scholar] [CrossRef]
- Kabadayı, H.K.; Demiray, E.; Karatay, S.E.; Dönmez, G. Bioethanol production from mulberry pomace by newly ısolated non-conventional yeast Hanseniaspora uvarum. Biomass Convers. Biorefinery 2024, 14, 10611–10620. [Google Scholar] [CrossRef]
- Iyyappan, J.; Pravin, R.; Al-Ghanim, K.A.; Govindarajan, M.; Nicoletti, M.; Baskar, G. Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. Bioresour. Technol. 2023, 374, 128804. [Google Scholar] [CrossRef] [PubMed]
- Wongleang, S.; Premjet, D.; Premjet, S. Investigating the Potential of Grass Biomass (Thysanolaena latifolia) as an Alternative Feedstock for Sugar Platforms and Bioethanol Production. Energies 2024, 17, 4017. [Google Scholar] [CrossRef]
- Kumar, R.; Basak, B.; Pal, P.; Chakrabortty, S.; Park, Y.K.; Ali Khan, M.; Chung, W.; Chang, S.W.; Ahn, Y.; Jeon, B.H. Feasibility assessment of bioethanol production from humic acid-assisted alkaline pretreated Kentucky bluegrass (Poa pratensis L.) followed by downstream enrichment using direct contact membrane distillation. Bioresour. Technol. 2022, 360, 127521. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Song, J.; Liu, G.Q. Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield. Renew. Energy 2020, 166, 117–124. [Google Scholar] [CrossRef]
- Ziaei-Rad, Z.; Fooladi, J.; Pazouki, M.; Gummadi, S.N. Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: An economically viable method for wheat straw fractionation. Biomass Bioenergy 2021, 151, 106410. [Google Scholar] [CrossRef]
- Duque, A.; Doménech, P.; Álvarez, C.; Ballesteros, M.; Manzanares, P. Study of the bioprocess conditions to produce bioethanol from barley straw pretreated by combined soda and enzyme-catalyzed extrusion. Renew. Energy 2020, 158, 263–270. [Google Scholar] [CrossRef]
- Lee, U.; Kwon, H.; Wu, M.; Wang, M. Retrospective analysis of the U.S. corn ethanol industry for 2005–2019: Implications for greenhouse gas emission reductions. Biofuels Bioprod. Biorefining 2021, 15, 1318–1331. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Valladares-Diestra, K.K.; Bittencourt, G.A.; Zevallos Torres, L.A.; Vieira, S.; Karp, S.G.; Sydney, E.B.; de Carvalho, J.C.; Thomaz Soccol, V.; Soccol, C.R. Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renew. Sustain. Energy Rev. 2022, 167, 112721. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Rajesh Banu, J.; Rao, C.V.; Kim, Y.G.; Yang, Y.H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Jiang, J.; Zhao, Q.; Wang, Z.; Li, L.; Gao, Q.; Wang, K. Performance of high solids enzymatic hydrolysis and bioethanol fermentation of food waste under the regulation of saponin. Bioresour. Technol. 2023, 387, 129486. [Google Scholar] [CrossRef]
- Suriyachai, N.; Imman, S.; Kreetachat, T.; Laosiripojana, N.; Khongchamnan, P.; Champreda, V.; Suwannahong, K.; Sakulthaew, C.; Chokejaroenrat, C.; Kreetachat, N. Enhanced bioethanol production from cassava waste: Optimization of thermochemical pretreatment for maximum sugar recovery and characterisation of potential fractions. Int. J. Sustain. Energy 2024, 43, 2411833. [Google Scholar] [CrossRef]
- Tarrsini, M.; Ng, Q.H.; Teoh, Y.P.; Shuit, S.H.; Ooi, Z.X.; Kunasundari, B. Structural and composition modification of Harum Manis mango (Mangifera indica) leaves via chemical pretreatment for bioethanol production. Biomass Convers. Biorefinery 2023, 13, 3987–3999. [Google Scholar] [CrossRef]
- Ranjithkumar, M.; Uthandi, S.; Senthil Kumar, P.; Muniraj, I.; Thanabal, V.; Rajarathinam, R. Highly crystalline cotton spinning wastes utilization: Pretreatment, optimized hydrolysis and fermentation using Pleurotus florida for bioethanol production. Fuel 2022, 308, 122052. [Google Scholar] [CrossRef]
- Song, Y.; Maskey, S.; Lee, Y.G.; Lee, D.S.; Nguyen, D.T.; Bae, H.J. Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid. Bioresour. Technol. 2024, 395, 130363. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Garita-Cambronero, J.; Paniagua-García, A.I.; Díez-Antolínez, R. A global approach to obtain biobutanol from corn stover. Renew. Energy 2020, 148, 223–233. [Google Scholar] [CrossRef]
- Casabar, J.T.; Ramaraj, R.; Tipnee, S.; Unpaprom, Y. Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel 2020, 279, 118437. [Google Scholar] [CrossRef]
- Raina, N.; Slathia, P.S.; Sharma, P. Experimental optimization of thermochemical pretreatment of sal (Shorea robusta) sawdust by Central Composite Design study for bioethanol production by co-fermentation using Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498). Biomass Bioenergy 2020, 143, 105819. [Google Scholar] [CrossRef]
- Sarbishei, S.; Goshadrou, A.; Hatamipour, M.S. Mild sodium hydroxide pretreatment of tobacco product waste to enable efficient bioethanol production by separate hydrolysis and fermentation. Biomass Convers. Biorefinery 2021, 11, 2963–2973. [Google Scholar] [CrossRef]
- Lee, I.; Yu, J.H. The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel 2020, 275, 117943. [Google Scholar] [CrossRef]
- Panakkal, E.J.; Cheenkachorn, K.; Chuetor, S.; Tantayotai, P.; Raina, N.; Cheng, Y.S.; Sriariyanun, M. Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustain. Energy Technol. Assess. 2022, 54, 102856. [Google Scholar] [CrossRef]
- Domínguez, E.; Nóvoa, T.; del Río, P.G.; Garrote, G.; Romaní, A. Sequential two-stage autohydrolysis biorefinery for the production of bioethanol from fast-growing Paulownia biomass. Energy Convers. Manag. 2020, 226, 113517. [Google Scholar] [CrossRef]
- Mazaheri, D.; Orooji, Y.; Mazaheri, M.; Moghaddam, M.S.; Karimi-Maleh, H. Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Convers. Biorefinery 2021, 2190–6823. [Google Scholar] [CrossRef]
- Prajapati, B.P.; Jana, U.K.; Suryawanshi, R.K.; Kango, N. Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production. Renew. Energy 2020, 152, 653–663. [Google Scholar] [CrossRef]
- Infanzón-Rodríguez, M.I.; del Moral, S.; Gómez-Rodríguez, J.; Faife-Pérez, E.; Aguilar-Uscanga, M.G. Second-Generation Bioethanol Production and Cellulases of Aspergillus niger ITV02 Using Sugarcane Bagasse as Substrate. Bioenergy Res. 2024, 17, 160–172. Available online: https://link.springer.com/article/10.1007/s12155-023-10640-4 (accessed on 3 December 2024). [CrossRef]
- Valamonfared, J.; Javanmard, A.S.; Ghaedi, M.; Bagherinasab, M. Bioethanol production using lignocellulosic materials and thermophilic microbial hydrolysis. Biomass Convers. Biorefinery 2024, 14, 16589–16601. Available online: https://link.springer.com/article/10.1007/s13399-023-03980-w (accessed on 3 December 2024). [CrossRef]
- Chugh, P.; Kaur, J.; Soni, R.; Sharma, A.; Soni, S.K. A low-cost process for efficient hydrolysis of deoiled rice bran and ethanol production using an inhouse produced multi-enzyme preparation from Aspergillus niger P-19. J. Mater. Cycles Waste Manag. 2023, 25, 359–375. Available online: https://link.springer.com/article/10.1007/s10163-022-01538-y (accessed on 3 December 2024). [CrossRef]
- Pardo Cuervo, O.H.; Rosas, C.A.; Romanelli, G.P. Valorization of residual lignocellulosic biomass in South America: A review. Environ. Sci. Pollut. Res. 2024, 31, 44575–44607. Available online: https://link.springer.com/article/10.1007/s11356-024-33968-6 (accessed on 26 November 2024). [CrossRef] [PubMed]
- Skiba, E.A.; Budaeva, V.V.; Baibakova, O.V.; Zolotukhin, V.N.; Sakovich, G.V. Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem. Eng. J. 2017, 126, 118–125. [Google Scholar] [CrossRef]
- Skiba, E.A.; Ovchinnikova, E.V.; Budaeva, V.V.; Banzaraktsaeva, S.P.; Kovgan, M.A.; Chumachenko, V.A.; Mironova, G.F.; Kortusov, A.N.; Parmon, V.N.; Sakovich, G.V. Miscanthus bioprocessing using HNO3-pretreatment to improve productivity and quality of bioethanol and downstream ethylene. Ind. Crops Prod. 2022, 177, 114448. [Google Scholar] [CrossRef]
- Tyagi, A.; Banerjee, B.; Tyagi, S. A holistic approach toward the maximum conversion of lignocellulose into biofuels. In Biofuels and Sustainability; Elsevier: Amsterdam, The Netherlands, 2025; pp. 81–103. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780443214332000141 (accessed on 28 November 2024).
- Gupta, A.; Sahni, T.; Kumar, S. Biorefineries: An Analogue to Petroleum Refineries; Springer: Singapore, 2024; pp. 1–29. Available online: https://link.springer.com/chapter/10.1007/978-981-99-8224-0_1 (accessed on 28 November 2024).
- Hai, T.T.; Peer, A.; Van Cone, J.W.; Schonewille, J.T.; Baars, J.J.P.; Phung, L.D.; Hendriks, W.H. Incubation temperature affects growth and efficacy of white-rot fungi to improve the nutritive value of rice straw. Anim. Prod. Sci. 2024, 64, 23403. Available online: https://www.publish.csiro.au/an/AN23403 (accessed on 28 November 2024). [CrossRef]
- Parmar, M.; Patel, S.A.H.; Phutela, U.G.; Dhawan, M. Comparative Analysis of Ligninolytic Potential among Pleurotus ostreatus and Fusarium sp. with a Spec. Focus. Versatile Peroxidase. Appl. Microbiol. 2024, 4, 1348–1361. [Google Scholar] [CrossRef]
- Ren, H.; Sun, W.; Wang, Z.; Fu, S.; Zheng, Y.; Song, B.; Li, Z.; Peng, Z. Enhancing the Enzymatic Saccharification of Grain Stillage by Combining Microwave-Assisted Hydrothermal Irradiation and Fungal Pretreatment. ACS Omega 2020, 5, 12603–12614. Available online: https://pubs.acs.org/doi/full/10.1021/acsomega.9b03681 (accessed on 28 November 2024). [CrossRef]
- Wang, W.; Yuan, T.; Wang, K.; Cui, B.; Dai, Y. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresour. Technol. 2012, 107, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yang, N.; Xu, C.; Yu, H.; Wu, J.; Zhang, X. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour. Technol. 2010, 101, 9600–9604. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Lu-Chau, T.A.; Gullón, B.; Ruiz, E.; Romero, I.; Castro, E.; Lema, J.M. Application of a combined fungal and diluted acid pretreatment on olive tree biomass. Ind. Crops Prod. 2018, 121, 10–17. [Google Scholar] [CrossRef]
- Si, M.; Liu, D.; Liu, M.; Yan, X.; Gao, C.; Chai, L.; Shi, Y. Complementary effect of combined bacterial-chemical pretreatment to promote enzymatic digestibility of lignocellulose biomass. Bioresour. Technol. 2019, 272, 275–280. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, K.; Si, M.; Liu, M.; Zhuo, S.; Liu, D.; Ren, L.; Yan, X.; Shi, Y. Synergy of lignocelluloses pretreatment by sodium carbonate and bacterium to enhance enzymatic hydrolysis of rice straw. Bioresour. Technol. 2018, 249, 154–160. Available online: https://pubmed.ncbi.nlm.nih.gov/29040849/ (accessed on 28 November 2024). [CrossRef] [PubMed]
- Xie, C.; Gong, W.; Yang, Q.; Zhu, Z.; Yan, L.; Hu, Z.; Peng, Y. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp. Bioresour. Technol. 2017, 243, 188–195. [Google Scholar] [CrossRef]
- Zhuo, S.; Yan, X.; Liu, D.; Si, M.; Zhang, K.; Liu, M.; Peng, B.; Shi, Y. Use of bacteria for improving the lignocellulose biorefinery process: Importance of pre-erosion. Biotechnol. Biofuels 2018, 11, 146. Available online: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1146-4 (accessed on 28 November 2024). [CrossRef] [PubMed]
- Li, G.; Chen, H. Synergistic mechanism of steam explosion combined with fungal treatment by Phellinus baumii for the pretreatment of corn stalk. Biomass Bioenergy 2014, 67, 1–7. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Hunt, C.G.; Cole, B.J.W.; Howell, C.; Gardner, D.J.; Wang, J. Fungal and enzymatic pretreatments in hot-pressed lignocellulosic bio-composites: A critical review. J. Clean. Prod. 2022, 353, 131659. [Google Scholar] [CrossRef]
- Kocaturk, E.; Salan, T.; Ozcelik, O.; Alma, M.H.; Candan, Z. Recent Advances in Lignin-Based Biofuel Production. Energies 2023, 16, 3382. Available online: https://www.mdpi.com/1996-1073/16/8/3382/htm (accessed on 28 November 2024). [CrossRef]
- Wan Azelee, N.I.; Mahdi, H.I.; Cheng, Y.S.; Nordin, N.; Illias, R.M.; Rahman, R.A.; Shaarani, S.M.; Bhatt, P.; Yadav, S.; Chang, S.W.; et al. Biomass degradation: Challenges and strategies in extraction and fractionation of hemicellulose. Fuel 2023, 339, 126982. [Google Scholar] [CrossRef]
- Saroj, P.P.M.; Narasimhulu, K. Enhanced reducing sugar production by blending hydrolytic enzymes from Aspergillus fumigatus to improve sugarcane bagasse hydrolysis. Environ. Sci. Pollut. Res. 2024, 31, 48085–48102. Available online: https://link.springer.com/article/10.1007/s11356-024-34246-1 (accessed on 29 November 2024). [CrossRef] [PubMed]
- Rocha, G.J.M.; Nascimento, V.M.; Silva, V.d.; Corso, D.L.S.; Gonçalves, A.R. Contributing to the environmental sustainability of the second generation ethanol production: Delignification of sugarcane bagasse with sodium hydroxide recycling. Ind. Crops Prod. 2014, 59, 63–68. [Google Scholar] [CrossRef]
- Makarova, E.I.; Budaeva, V.V.; Kukhlenko, A.A.; Orlov, S.E. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls. 3 Biotech 2017, 7, 317. Available online: https://link.springer.com/article/10.1007/s13205-017-0964-6 (accessed on 17 January 2025). [CrossRef] [PubMed]
- Winarsih, S.; Siskawardani, D.D. Hydrolysis of corncobs using a mixture of crude enzymes from Trichoderma reesei and Aspergillus niger for bioethanol production. Energy Rep. 2020, 6, 256–262. [Google Scholar] [CrossRef]
- El-Shora, H.M.; El-Sharkawy, R.M.; Khateb, A.M.; Darwish, D.B. Production and immobilization of β-glucanase from Aspergillus niger with its applications in bioethanol production and biocontrol of phytopathogenic fungi. Sci. Rep. 2021, 11, 21000. Available online: https://www.nature.com/articles/s41598-021-00237-2 (accessed on 3 December 2024). [CrossRef]
- Ranjan, A.; Welz, P.J.; Mthethwa, T. Investigation of an effective acid pre-treatment method for the valorisation of Canola fines. Biomass Convers. Biorefinery 2024, 14, 12013–12026. Available online: https://link.springer.com/article/10.1007/s13399-023-03946-y (accessed on 29 November 2024). [CrossRef]
- Nemes, S.A.; Farcas, A.C.; Ranga, F.; Teleky, B.E.; Calinoiu, L.F.; Dulf, F.V.; Vodnar, D.C. Enhancing phenolic and lipid compound production in oat bran via acid pretreatment and solid-state fermentation with Aspergillus niger. N. Biotechnol. 2024, 83, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Liyanage, S.; Abidi, N.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. Available online: https://www.mdpi.com/2073-4360/13/24/4344/htm (accessed on 29 November 2024). [CrossRef] [PubMed]
- Buettner, C.S.; Cognigni, A.; Schröder, C.; Bica-Schröder, K. Surface-active ionic liquids: A review. J. Mol. Liq. 2022, 347, 118160. [Google Scholar] [CrossRef]
- Sun, Y.C.; Liu, X.N.; Wang, T.T.; Xue, B.L.; Sun, R.C. Green process for extraction of lignin by the microwave-assisted ionic liquid approach: Toward biomass biorefinery and lignin characterization. ACS Sustain. Chem. Eng. 2019, 7, 13062–13072. Available online: https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.9b02166 (accessed on 29 November 2024). [CrossRef]
- Sunar, S.L.; Oruganti, R.K.; Bhattacharyya, D.; Shee, D.; Panda, T.K. Pretreatment of sugarcane bagasse using ionic liquid for enhanced enzymatic saccharification and lignin recovery: Process optimization by response surface methodology. Cellulose 2024, 31, 2151–2173. Available online: https://link.springer.com/article/10.1007/s10570-024-05768-1 (accessed on 29 November 2024). [CrossRef]
- Silveira, M.H.L.; Vanelli, B.A.; Corazza, M.L.; Ramos, L.P. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresour. Technol. 2015, 192, 389–396. [Google Scholar] [CrossRef]
- Awodi, P.S.; Ogbonna, J.C.; Nwagu, T.N. Bioconversion of mango (Mangifera indica) seed kernel starch into bioethanol using various fermentation techniques. Heliyon 2022, 8, e09707. [Google Scholar] [CrossRef] [PubMed]
- Beltagy, E.A.; Abouelwafa, A.; Barakat, K.M. Bioethanol production from immobilized amylase produced by marine Aspergillus flavus AUMC10636. Egypt J. Aquat. Res. 2022, 48, 325–331. [Google Scholar] [CrossRef]
- Valladares-Diestra, K.K.; Porto de Souza Vandenberghe, L.; Zevallos Torres, L.A.; Nishida, V.S.; Zandoná Filho, A.; Woiciechowski, A.L.; Soccol, C.R. Imidazole green solvent pre-treatment as a strategy for second-generation bioethanol production from sugarcane bagasse. Chem. Eng. J. 2021, 420, 127708. [Google Scholar] [CrossRef]
- Tien Thanh, N.; Mostapha, M.; Lam, M.K.; Ishak, S.; Kanna Dasan, Y.; Lim, J.W.; Tan, I.S.; Lau, S.Y.; Chin, B.L.F.; Hadibarata, T. Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: A critical review. Energy Convers. Manag. 2022, 270, 116212. [Google Scholar] [CrossRef]
- Passos, R.M.; dos Ferreira, R.S.B.; Morgano, M.A.; de Souza, P.T.; Meirelles, A.J.A.; Batista, E.A.C.; Maximo, G.J.; Ferreira, M.C.; Sampaio, K.A. Ethyl biodiesel production from crude soybean oil using enzymatic degumming-transesterification associated process. Ind. Crops Prod. 2024, 222, 119930. [Google Scholar] [CrossRef]
- ShenavaeiZare, T.; Khoshsima, A.; ZareNezhad, B. Production of biodiesel through nanocatalytic transesterification of extracted oils from halophytic safflower and salicornia plants in the presence of deep eutectic solvents. Fuel 2021, 302, 121171. [Google Scholar] [CrossRef]
- Kitson-Hytey, M.; Fei-Baffoe, B.; Sackey, L.N.A.; Miezah, K. Production of bioethanol from plantain and yam peels using Aspergillus niger and Saccharomyces cerevisiae. Biomass Convers. Biorefinery 2024, 14, 9087–9095. Available online: https://link.springer.com/article/10.1007/s13399-022-03352-w (accessed on 3 December 2024). [CrossRef]
- Narendra Kumar, H.K.; Chandra Mohana, N.; Rakshith, D.; Abhilash, M.R.; Harini, B.P.; Satish, S. Bioethanol production by enzymatic hydrolysis from Aspergillus calidoustus employing different lignocellulosic wastes. Biocatal. Agric. Biotechnol. 2023, 53, 102847. [Google Scholar] [CrossRef]
- John, I.; Yaragarla, P.; Appusamy, A. Production of Bioethanol from Banana Peel Using Isolated Cellulase from Aspergillus niger. In Global Challenges in Energy and Environment; Lecture Notes on Multidisciplinary Industrial Engineering; Springer: Singapore, 2020; Part F251; pp. 9–18. Available online: https://link.springer.com/chapter/10.1007/978-981-13-9213-9_2 (accessed on 3 December 2024).
- Wei, H.; Wang, Q.; Zhang, R.; Liu, M.; Zhang, W. Efficient biodiesel production from waste cooking oil by fast co-immobilization of lipases from Aspergillus oryzae and Rhizomucor miehei in magnetic chitosan microcapsules. Process Biochem. 2023, 125, 171–180. [Google Scholar] [CrossRef]
- Liu, M.; Ma, L.; Zhang, Z.; Zhang, X.; Zhang, W. Development of a sustainable co-immobilized lipases on Co2+-chelated magnetic metal-organic framework for efficient biodiesel production from waste oil. Mol. Catal. 2024, 563, 114241. [Google Scholar] [CrossRef]
- Amoah, J.; Ho, S.H.; Hama, S.; Yoshida, A.; Nakanishi, A.; Hasunuma, T.; Ogino, C.; Kondo, A. Conversion of Chlamydomonas sp. JSC4 lipids to biodiesel using Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cell as biocatalyst. Algal Res. 2017, 28, 16–23. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Mumtaz, M.W.; Mukhtar, H.; Najeeb, J.; Irfan, A.; Akram, S.; Touqeer, T.; Nabi, G. Lipase-PDA-TiO2 NPs: An emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil. Renew. Energy 2021, 169, 1026–1037. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, P.; Kumari, S.; Rawat, I.; Permaul, K.; Bux, F. Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew. Energy 2016, 85, 1002–1010. [Google Scholar] [CrossRef]
- Jin, X.; Song, J.; Liu, G.Q. Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy 2020, 190, 116395. [Google Scholar] [CrossRef]
- Constantino, A.; Rodrigues, B.; Leon, R.; Barros, R.; Raposo, S. Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res. 2021, 56, 102329. [Google Scholar] [CrossRef]
- Olawale, B.I.; Iliyasu, M.Y.; Musa, B.; Abdulrahman, A.; Umar, A.F.; Olawale, B.I.; Iliyasu, M.Y.; Musa, B.; Abdulrahman, A.; Umar, A.F. Production of Bioethanol by Co-Culture of Aspergillus niger and Saccharomyces cerevisiae using Watermelon Peels as Substrate. Path Sci. 2021, 7, 6001–6011. Available online: https://pathofscience.org/index.php/ps/article/view/1036 (accessed on 3 December 2024).
- Alabdalall, A.H.; Almutari, A.A.; Aldakeel, S.A.; Albarrag, A.M.; Aldakheel, L.A.; Alsoufi, M.H.; Alfuraih, L.Y.; Elkomy, H.M. Bioethanol Production from Lignocellulosic Biomass Using Aspergillus niger and Aspergillus flavus Hydrolysis Enzymes through Immobilized, S. cerevisiae. Energies 2023, 16, 823. Available online: https://www.mdpi.com/1996-1073/16/2/823/htm (accessed on 3 December 2024). [CrossRef]
- Roble, N.D.; Ogbonna, J.; Tanaka, H. Simultaneous amylase production, raw cassava starch hydrolysis and ethanol production by immobilized Aspergillus awamori and Saccharomyces cerevisiae in a novel alternating liquid phase–air phase system. Process Biochem. 2020, 95, 115–121. [Google Scholar] [CrossRef]
- Mignogna, D.; Szabó, M.; Ceci, P.; Avino, P. Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition. Sustainability 2024, 16, 7036. Available online: https://www.mdpi.com/2071-1050/16/16/7036/htm (accessed on 26 November 2024). [CrossRef]
- Berwian, G.F.; Rempel, A.; Garda-Buffon, J.; Colla, L.M. Use of residual barley to bioethanol production: Valoration, mycotoxins decontamination and feed production. Bioresour. Technol. Rep. 2024, 26, 101878. [Google Scholar] [CrossRef]
- de C.M. Miranda, R.; Neta, J.; Ferreira, L.F.R. Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids. Carbohydr. Polym. 2019, 302, 206–308. Available online: https://www.sciencedirect.com/science/article/pii/S0144861718313122 (accessed on 26 November 2024). [CrossRef] [PubMed]
- Van Der Maarel, M.J.E.C.; Van Der Veen, B.; Uitdehaag, J.C.M.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef]
- Wang, S.; Jeyaseelan, J.; Liu, Y.; Qin, W. Characterization and Optimization of Amylase Production in WangLB, a High Amylase-Producing Strain of Bacillus. Appl. Biochem. Biotechnol. 2016, 180, 136–151. Available online: https://pubmed.ncbi.nlm.nih.gov/27116321/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Aggarwal, R.; Dutta, T.; Sheikh, J. Extraction of amylase from the microorganism isolated from textile mill effluent vis a vis desizing of cotton. Sustain. Chem. Pharm. 2019, 14, 100178. [Google Scholar] [CrossRef]
- Abeleda, H.E.P.; Javier, A.P.; Murillo, A.Q.M.; Baculi, R.Q. Alpha-amylase conjugated biogenic silver nanoparticles as innovative strategy against biofilm-forming multidrug resistant bacteria. Biocatal. Agric. Biotechnol. 2020, 29, 101784. [Google Scholar] [CrossRef]
- de Souza, P.M.; e Magalhães, P.d.O. Application of microbial α-amylase in industry—A review. Braz. J. Microbiol. 2010, 41, 850. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3769773/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Tiwari, S.; Srivastava, R.; Singh, C.; Shukla, K.; Singh, R.; Singh, P.; Singh, R.; Singh, N.; Sharma, R. Amylases: An overview with special reference to alpha amylase. J. Glob. Biosci. 2015, 4, 1886–1901. Available online: https://www.researchgate.net/publication/312948601_Amylases_an_overview_with_special_reference_to_alpha_amylase (accessed on 12 December 2024).
- Paul, J.S.; Gupta, N.; Beliya, E.; Tiwari, S.; Jadhav, S.K. Aspects and Recent Trends in Microbial α-Amylase: A Review. Appl. Biochem. Biotechnol. 2021, 193, 2649–2698. Available online: https://pubmed.ncbi.nlm.nih.gov/33715051/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Zhang, Q.; Han, Y.; Xiao, H. Microbial α-amylase: A biomolecular overview. Process Biochem. 2017, 53, 88–101. [Google Scholar] [CrossRef]
- Xian, L.; Wang, F.; Luo, X.; Feng, Y.L.; Feng, J.X. Purification and Characterization of a Highly Efficient Calcium-Independent α-Amylase from Talaromyces pinophilus 1–95. PLoS ONE 2015, 10, e0121531. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121531 (accessed on 12 December 2024). [CrossRef] [PubMed]
- Liao, S.M.; Liang, G.; Zhu, J.; Lu, B.; Peng, L.X.; Wang, Q.Y.; Wei, Y.T.; Zhou, G.P.; Huang, R.B. Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL. Protein Pept. Lett. 2019, 26, 148–157. Available online: https://pubmed.ncbi.nlm.nih.gov/30652633/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Zhu, D.; Wu, Q.; Wang, N. Industrial Enzymes. In Comprehensive Biotechnology, 3rd. ed.; Pergamon: Mysia, Turkey, 2011; Volume 3, pp. 3–13. [Google Scholar]
- Duan, X.; Zhu, Q.; Zhang, X.; Shen, Z.; Huang, Y. Expression, biochemical and structural characterization of high-specific-activity β-amylase from Bacillus aryabhattai GEL-09 for application in starch hydrolysis. Microb. Cell Fact. 2021, 20, 182. Available online: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-021-01649-5 (accessed on 12 December 2024). [CrossRef] [PubMed]
- Taniguchi, H.; Honnda, Y. Encyclopedia of microbiology. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009; pp. 159–173. Available online: https://search.worldcat.org/title/416206211 (accessed on 12 December 2024).
- Eck, P. Chapter 13 - Recombinant DNA Technologies in Food. Biochem. Foods 2013, 503–556. [Google Scholar] [CrossRef]
- Mondal, S.; Mondal, K.; Halder, S.K.; Thakur, N.; Mondal, K.C. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. Biocatal. Agric. Biotechnol. 2022, 45, 102509. [Google Scholar] [CrossRef]
- Nag, M.; Lahiri, D.; Garai, S.; Mukherjee, D.; Ray, R.R. Regulation of β-amylase synthesis: A brief overview. Mol. Biol. Rep. 2021, 48, 6503–6511. Available online: https://pubmed.ncbi.nlm.nih.gov/34379288/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Xu, Q.S.; Yan, Y.S.; Feng, J.X. Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol. Biofuels 2016, 9, 216. Available online: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-016-0636-5 (accessed on 12 December 2024). [CrossRef] [PubMed]
- Kumar, P.; Satyanarayana, T. Microbial glucoamylases: Characteristics and applications. Crit. Rev. Biotechnol. 2009, 29, 225–255. Available online: https://pubmed.ncbi.nlm.nih.gov/19708824/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Marín-Navarro, J.; Polaina, J. Glucoamylases: Structural and biotechnological aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1267–1273. Available online: https://pubmed.ncbi.nlm.nih.gov/21152915/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Zong, X.; Wen, L.; Wang, Y.; Li, L. Research progress of glucoamylase with industrial potential. J. Food Biochem. 2022, 46, e14099. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/jfbc.14099 (accessed on 16 September 2024). [CrossRef] [PubMed]
- Zambare, V. Solid State Fermentation of Aspergillus oryzae for Glucoamylase Production on Agro residues. Int. J. Life Sci. 2010, 4, 16–25. [Google Scholar] [CrossRef]
- Wayllace, N.M.; Martín, M.; Busi, M.V.; Gomez-Casati, D.F. Microbial glucoamylases: Structural and functional properties and biotechnological uses. World J. Microbiol. Biotechnol. 2023, 39, 293. Available online: https://pubmed.ncbi.nlm.nih.gov/37653355/ (accessed on 12 December 2024). [CrossRef] [PubMed]
- Karim, K.M.R.; Tasnim, T. Fungal Glucoamylase Production and Characterization: A Review. Bioresearch Commun.—(BRC) 2018, 4, 591–605. Available online: https://www.bioresearchcommunications.com/index.php/brc/article/view/90 (accessed on 12 December 2024).
- Ilić, N.; Milić, M.; Beluhan, S.; Dimitrijević-Branković, S. Cellulases: From Lignocellulosic Biomass to Improved Production. Energies 2023, 16, 3598. Available online: https://www.mdpi.com/1996-1073/16/8/3598/htm (accessed on 12 December 2024). [CrossRef]
- Jayasekara, S.; Ratnayake, R.; Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. In Cellulose; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/66517 (accessed on 12 December 2024).
- Chen, Y.; Lu, S.; Ye, Z.; Cai, X.; Wu, S.; Li, P.; Bing, D. New compound probiotic beverage protects against antibiotic-associated diarrhea in mice by modulating the microbiota. Future Microbiol. 2022, 17, 943–956. [Google Scholar] [CrossRef]
- Knob, A.; Beitel, S.M.; Fortkamp, D.; Terrasan, C.R.F.; Almeida, A.F.d. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer’s Spent Grain as Substrate. Biomed. Res. Int. 2013, 2013, 728735. [Google Scholar] [CrossRef] [PubMed]
- Mano, M.C.R.; Neri-Numa, I.A.; da Silva, J.B.; Paulino, B.N.; Pessoa, M.G.; Pastore, G.M. Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 2018, 102, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.M.M.; Martins, M.; Goldbeck, R. Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Mol. Biotechnol. 2021, 63, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.D.; Nadar, C.G.; Muir, J.; Arora, A. Green and clean process to obtain low degree of polymerisation xylooligosaccharides from almond shell. J. Clean. Prod. 2019, 241, 118237. [Google Scholar] [CrossRef]
- Vázquez, M.J.; Alonso, J.L.; Domínguez, H.; Parajó, J.C. Xylooligosaccharides: Manufacture and applications. Trends Food Sci. Technol. 2000, 11, 387–393. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Singh, G.; Arya, S.K. A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol. 2021, 193, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Carbohydrate-Active Enzymes; CAZy—GH Université d’Aix-Marseille: Marseille, France, 2024; pp. 12–17. Available online: https://www.cazy.org/Glycoside-Hydrolases.html (accessed on 24 December 2024).
- Tyagi, D.; Sharma, D. Production and Industrial Applications of Xylanase: A Review. Int. J. Sci. Res. Eng. Trends 2021, 7, 2395–2566. [Google Scholar]
- Malhotra, G.; Chapadgaonkar, S.S. Production and applications of xylanases—An overview. BioTechnologia 2018, 99, 59–72. [Google Scholar] [CrossRef]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Moraleda-Muñoz, A.; Shimkets, L.J. Lipolytic Enzymes in Myxococcus xanthus. J. Bacteriol. 2007, 189, 3072–3080. [Google Scholar] [CrossRef] [PubMed]
- Ergan, F.; Trani, M.; André, G. Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng. 1990, 35, 195–200. [Google Scholar] [CrossRef]
- Karadzic, I.; Masui, A.; Zivkovic, L.I.; Fujiwara, N. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng. 2006, 102, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Wang, Q.; Popowicz, G.M.; Yang, B.; Tang, Q.; Wang, Y. The role of residues 103, 104, and 278 in the activity of SMG1 lipase from Malassezia globosa: A site-directed mutagenesis study. J. Microbiol. Biotechnol. 2015, 25, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.; Irvine, S.; Ramji, D. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med. 2002, 80, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Romero, O.; Rivero, C.W.; Guisan, J.M.; Palomo, J.M. Novel enzyme-polymer conjugates for biotechnological applications. PeerJ. 2013, 1, e27. [Google Scholar] [CrossRef] [PubMed]
- Brocca, S.; Secundo, F.; Ossola, M.; Alberghina, L.; Carrea, G.; Lotti, M. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci. 2009, 12, 2312–2319. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Jeevarathinam, G.; Kumar, S.K.S.; Muniraj, I.; Uthandi, S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol. 2021, 21, 33. Available online: https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-021-00686-7 (accessed on 12 December 2024). [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Gamarra, N.N.; Villena, G.K.; Gutiérrez-Correa, M. Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl. Microbiol. Biotechnol. 2010, 87, 545–551. Available online: https://pubmed.ncbi.nlm.nih.gov/20354693/ (accessed on 14 December 2024). [CrossRef] [PubMed]
- Belorkar, S.A.; Gupta, A.K. Oligosaccharides: A boon from nature’s desk. AMB Express 2016, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Chakdar, H.; Kumar, M.; Pandiyan, K.; Singh, A.; Nanjappan, K.; Kashyap, P.L.; Srivastava, A.K. Bacterial xylanases: Biology to biotechnology. 3 Biotech 2016, 6, 150. [Google Scholar] [CrossRef] [PubMed]
- Gruening de Mattos, P.B.; Porto de Souza Vandenberghe, L.; Valladares-Diestra, K.K.; Ramos Neyra, L.C.; Vieira, S.; Júnior Letti, L.A.; Soccol, C.R. Recent developments in xylooligosaccharides: Sustainable production, characterization, beneficial properties and applications. Food Res. Int. 2024, 197, 115206. [Google Scholar] [CrossRef]
- Devi, R.; Revathi, K.; Arunagirinathan, N.; Yogananth, N. Production and Optimization of α -amylase from Aspergillus ochraceus isolated from Marakkanam Saltpans, Tamil Nadu, India. Bull. Environ. Pharmacol. Life Sci. 2022, 1, 997–1002. [Google Scholar]
- Premalatha, A.; Vijayalakshmi, K.; Shanmugavel, M.; Rajakumar, G.S. Optimization of culture conditions for enhanced production of extracellular α-amylase using solid-state and submerged fermentation from Aspergillus tamarii MTCC5152. Biotechnol. Appl. Biochem. 2023, 70, 835–845. [Google Scholar] [CrossRef]
- Olakusehin, V.O.; Oyedeji, O. Production of α-amylase from Aspergillus flavus S2-OY using solid substrate fermentation of potato (Solanum tuberosum L.) peel. Int. J. Biol. Chem. Sci. 2021, 15, 1950–1967. [Google Scholar] [CrossRef]
- Ahmed, N.E.; El Shamy, A.R.; Awad, H.M. Optimization and immobilization of amylase produced by Aspergillus terreus using pomegranate peel waste. Bull. Natl. Res. Cent. 2020, 44, 109. [Google Scholar] [CrossRef]
- Melnichuk, N.; Braia, M.J.; Anselmi, P.A.; Meini, M.R.; Romanini, D. Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manag. 2020, 106, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lago, M.C.; dos Santos, F.C.; Bueno, P.S.A.; de Oliveira, M.A.S.; Barbosa-Tessmann, I.P. The glucoamylase from Aspergillus wentii: Purification and characterization. J. Basic. Microbiol. 2021, 61, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Kumari, N.; Ghosh, P.; Singh, Y.; Garg, S.; Shah, M.P.; Jha, P.K.; Chauhan, D.K. Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models. Environ. Technol. Innov. 2022, 27, 102805. [Google Scholar] [CrossRef]
- Bhati, N.; Shreya, S.A.K. Production and optimisation of cellulase enzyme by Aspergillus uvarum CBS 121591 isolated from soil. Vegetos 2023, 36, 201–209. [Google Scholar] [CrossRef]
- Sulyman, A.O.; Igunnu, A.; Malomo, S.O. Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon 2020, 6, e05668. [Google Scholar] [CrossRef] [PubMed]
- Saroj, P.P.M.; Narasimhulu, K. Assessment and evaluation of cellulase production using ragi (Eleusine coracana) husk as a substrate from thermo-acidophilic Aspergillus fumigatus JCM 10253. Bioprocess Biosyst. Eng. 2021, 44, 113–126. [Google Scholar] [CrossRef]
- Shen, L.; Su, Y.; Sun, Y.; Wang, G.; Chen, H.; Yu, X.; Zhan, S.; Chen, G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. Biocatal. Agric. Biotechnol. 2021, 32, 101849. [Google Scholar] [CrossRef]
- Yang, J.; Li, F.Z.; Arnold, F.H. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering. ACS Central Sci. Am. Chem. Soc. 2024, 10, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed Evolution: Methodologies and Applications. Chem. Rev. Am. Chem. Soc. 2021, 121, 12384–12444. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Q.; Wu, W.; Pu, Z.; Yu, H. Rational design of enzyme activity and enantioselectivity. Front. Bioeng. Biotechnol. Front. Media S.A. 2023, 11, 1129149. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Parreiras, L.S.; Murakami, M.T. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol. Biofuels 2020, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Ichinose, S.; Shibata, N.; Kakeshita, H.; Kodama, H.; Igarashi, K.; Takimura, Y. Inducer-free cellulase production system based on the constitutive expression of mutated XYR1 and ACE3 in the industrial fungus Trichoderma reesei. Sci. Rep. 2022, 12, 19445. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Pan, B.; Yu, L.; Wang, B.; Pan, L. Enhancement of protein production in Aspergillus niger by engineering the antioxidant defense metabolism. Biotechnol. Biofuels Bioprod. 2024, 17, 91. [Google Scholar] [CrossRef]
- Benites-Pariente, J.S.; Samolski, I.; Ludeña, Y.; Villena, G.K. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci. Rep. 2024, 14, 19661. [Google Scholar] [CrossRef]
- Zou, G.; Xiao, M.; Chai, S.; Zhu, Z.; Wang, Y.; Zhou, Z. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb. Biotechnol. 2021, 14, 2343–2355. [Google Scholar] [CrossRef] [PubMed]
- Le Gal-Coëffet, M.-F.; Jacks, A.J.; Sorimachi, K.; Williamson, M.P.; Williamson, G.; Archer, D.B. Expression in Aspergillus niger of the Starch-Binding Domain of Glucoamylase: Comparison with the Proteolytically Produced Starch-Binding Domain. Eur. J. Biochem. 1995, 233, 561–567. [Google Scholar] [CrossRef] [PubMed]
- James, E.R.; Van Zyl, W.H.; Van Zyl, P.J.; Görgens, J.F. Recombinant hepatitis B surface antigen production in Aspergillus niger: Evaluating the strategy of gene fusion to native glucoamylase. Appl. Microbiol. Biotechnol. 2012, 96, 385–394. [Google Scholar] [CrossRef]
- Sürmeli, Y.; Şanlı-Mohamed, G. Engineering of xylanases for the development of biotechnologically important characteristics. John Wiley Sons Inc. 2023, 120, 1171–1188. [Google Scholar] [CrossRef]
- Li, Q.; Wu, T.; Duan, Y.; Pei, J.; Zhao, L. Improving the Thermostability and pH Stability of Aspergillus niger Xylanase by Site-directed Mutagenesis. Appl. Biochem. Microbiol. 2019, 55, 136–144. [Google Scholar] [CrossRef]
- Li, R.; Wang, T.; Bo, N.; Wang, Q.; Chen, Q.; Liang, Z.; Guan, Y.; Jiang, B.; Ma, Y.; Zhao, M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front. Microbiol. 2024, 15, 1408645. Available online: www.sanshubio.com (accessed on 8 October 2024). [CrossRef]
- Zhao, P.; Wang, N.; Yao, M.; Ren, H.; Hu, W. Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122488. [Google Scholar] [CrossRef]
- Kluge, J.; Terfehr, D.; Kück, U. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl. Microbiol. Biotechnol. 2018, 102, 6357–6372. [Google Scholar] [CrossRef] [PubMed]
- Mattern, I.E.; van Noort, J.M.; van den Berg, P.; Archer, D.B.; Roberts, I.N.A.M.J.J.; van den Honde, P.C. Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol. Gen. Genet. 1992, 234, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Kamaruddin, N.; Storms, R.; Mahadi, N.M.; Illias, R.M.; Bakar, F.D.A.; Murad, A.M.A. Reduction of Extracellular Proteases Increased Activity and Stability of Heterologous Protein in Aspergillus niger. Arab. J. Sci. Eng. 2018, 43, 3327–3338. [Google Scholar] [CrossRef]
- Sandaka, B.P.; Kumar, J.; Melo, J.S. Mitigation of methanol inactivation of lipases by reaction medium engineering with glycine betaine for enzymatic biodiesel synthesis. Fuel 2022, 313, 122637. [Google Scholar] [CrossRef]
- Tian, M.; Fu, J.; Wang, Z.; Miao, C.; Lv, P.; He, D.; Li, Z.; Liu, T.; Li, M.; Luo, W. Enhanced activity and stability of Rhizomucor miehei lipase by mutating N-linked glycosylation site and its application in biodiesel production. Fuel 2021, 304, 121514. [Google Scholar] [CrossRef]
- Svendsen, A. Lipase Protein Engineering. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 2000, 1543, 223–238. [Google Scholar] [CrossRef]
- Lan, D.; Zhao, G.; Holzmann, N.; Yuan, S.; Wang, J.; Wang, Y. Structure-Guided Rational Design of a Mono- And Diacylglycerol Lipase from Aspergillus oryzae: A Single Residue Mutant Increases the Hydrolysis Ability. J. Agric. Food Chem. 2021, 69, 5344–5352. [Google Scholar] [CrossRef] [PubMed]
- Rapp, J.T.; Bremer, B.J.; Romero, P.A. Self-driving laboratories to autonomously navigate the protein fitness landscape. Nat. Chem. Eng. 2024, 1, 97–107. [Google Scholar] [CrossRef]
- Xue, D.; Yao, D.; Sukumaran, R.K.; You, X.; Wei, Z.; Gong, C. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresour. Technol. 2020, 302, 122902. [Google Scholar] [CrossRef]
- Tiatira, C.; Hamzah, A.; Sangian, H.F.; Widjaja, A. The effect of surfactant on the hydrolysis of coconut husk using cellulase and xylanase enzyme immobilized on chitosan magnetic nanoparticles. IOP Conf. Ser. Earth Environ. Sci. 2022, 963, 012020. [Google Scholar] [CrossRef]
- Jiang, W.; Pei, R.; Zhou, S.F. 3D-printed xylanase within biocompatible polymers as excellent catalyst for lignocellulose degradation. Chem. Eng. J. 2020, 400, 125920. [Google Scholar] [CrossRef]
- Salem, K.; Jabalera, Y.; Puentes-Pardo, J.D.; Vilchez-Garcia, J.; Sayari, A.; Hmida-Sayari, A.; Jimenez-Lopez, C.; Perduca, M. Enzyme Storage and Recycling: Nanoassemblies of α-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles. ACS Sustain. Chem. Eng. 2021, 9, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhou, H.; Dai, L.; Liu, D.; Al-Zuhair, S.; Du, W. Lipase Immobilization on Macroporous ZIF-8 for Enhanced Enzymatic Biodiesel Production. ACS Omega. 2021, 6, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Shen, C.; Lin, J.; Tu, M.; Tan, C.P.; Cheong, L.Z. Enhanced methanol tolerance of ZIF-8-immobilized Aspergillus oryzae lipase for biodiesel production from used cooking oil. Renew. Energy 2025, 239, 122122. [Google Scholar] [CrossRef]
- Lozowski, D. Gevo and Beta Renewables sign JDA to develop process for cellulosic isobutanol. Chem. Eng. 2012, 119, 63–64. Available online: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00092460&v=2.1&it=r&id=GALE%7CA301086995&sid=googleScholar&linkaccess=fulltext (accessed on 15 January 2025).
- Neto, A.C.; Guimarães, M.J.O.C.; Freire, E. Business models for commercial scale second-generation bioethanol production. J. Clean. Prod. 2018, 184, 168–178. [Google Scholar] [CrossRef]
- Dos Santos, L.V.; De Barros Grassi, M.C.; Gallardo, J.C.M.; Pirolla, R.A.S.; Calderón, L.L.; De Carvalho-Netto, O.V.; Parreiras, L.S.; Oliveira, C.E.L.; Drezza, A.L.; Missawa, S.K.; et al. Second-Generation Ethanol: The Need is Becoming a Reality. Ind. Biotechnol. 2016, 12, 40–57. Available online: https://www.liebertpub.com/doi/10.1089/ind.2015.0017 (accessed on 15 January 2025). [CrossRef]
- Gray, D.; Sato, S.; Garcia, F.; Eppler, R.; Cherry, J. Integrated Biorefinery Project Summary Final Report: Public Version; Amyris, Inc.: Emeryville, CA, USA, 2009. Available online: https://www.osti.gov/servlets/purl/1122942/ (accessed on 15 January 2025).
- Yang, J.; Zhang, X. Preparing Magnetic Nano-Particle Carrier Immobilized Lipase Useful for Preparing Biodiesel Comprises Preparing Iron (II, III) Oxide Magnetic Nano Particles, Dissolving Chitosan, Forming Uniform Colloidal Solution, Adding Cross-Linking Agent, Separating Solid-Liquid and Washing-Derwent Innovations Index Shanghai Zhongqi Environment Technology (SHAN-Non-Standard); CN114990101(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2022C1154N (accessed on 6 December 2024).
- Xu, G.; Zhao, S.; Zhao, Q.; Zhou, J.; Liu, Y. New Lipase Mutant Useful for Synthesizing Biodiesel Using Vegetable Oil and Fat as Substrate-Derwent Innovations Index Hunan Flag Biotechnology Co., Ltd., (HUNA-Non-Standard); CN113943721(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202219254F (accessed on 6 December 2024).
- Yang, T.J.; Shim, J.; Choi, E.J.; Son, B.; Park, J.Y.; Yangtaejoo; Park, C.; Sun, B.; Cui, Y.; Yang, T. New Variant Polypeptide Having Xylanase Activity, Comprising Mature Polypeptide Coding Sequence, Its Complementary DNA, or Polypeptide Encoded by Polynucleotide that Hybridizes Full-Length Complement Sequence Under Stringency Conditions, Used for Preparing Xylooligosaccharides-Derwent Innovations Index CJ Cheiljedang Corp(CJCJ-C); Cheil Jedang Corp(CJCJ-C); WO2022131798(A1). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2022816394 (accessed on 7 December 2024).
- Singh, A.; Pandey, A.K. Producing Bioethanol Form Lignocellulosic Biomass Comprises Growing Fungal Strains on Bran, Extracting Crude Secretome Using Sodium Citrate Buffer, Determining Cellulase Activity, Pre-Treating Sugarcane Bagasse Followed by Incubating Biomass Suspension to Hydrolyze Bagasse to Produce Bioethanol-Derwent Innovations Index Univ chhatrapati Shahu Ji Maharaj(UYCH-Non-Standard); IN202411071589(A). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2024B1209F (accessed on 7 December 2024).
- Jeon, B.H.; Soo, H.K.; Kurade, M.; Wook, K.K. Producing Biofuel from Microalgae by Performing Pretreatment by Irradiating Microalgal Biomass with Microwaves, Fermenting Pre-Treated Microalgal Biomass with Microorganisms to Produce bioethanol, and Fermenting Bioethanol with Yeast to Produce Higher Alcohol-Derwent Innovations Index Univ Hanyang Iucf-Hyu(UHYG-C); KR2022032368(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202241361C (accessed on 9 December 2024).
- Kuila, A.; Pant, S.; Ritika; Sharma, S. Performing Simultaneous Hydrolysis and Fermentation of Biomass Useful for Obtaining Bioethanol, by Thermo-Chemically Treating Biomass and Placing Pretreated Biomass in Minimal Medium Comprising Inoculum Containing Saccharomyces Cerevisiae-Derwent Innovations Index Univ Banasthali Vidyapith (UYBA-Non-Standard); IN202011051947(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2022D46048 (accessed on 9 December 2024).
- Dubey, S. Producing Biofuels Bio-Ethanol and Biogas from Water Hyacinth in Chhattisgarh Involves Pre-Treating Water Hyacinth with Weaken Sulfuric Corrosive at High Temperature and Tension, So That Reproduction and Monetary Appraisal of Cycle for Additional Enzymatic Saccharification is Contemplated-Derwent Innovations Index DUBEY S; IN202321006069(A). 2023. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202358603R (accessed on 9 December 2024).
- Marathe, A.B.; Deshmukh, M.P. Synthesizing Blending Fuel Involves Screening Cake, Performing Pretreatment of Jatropha Seed Cakes with Thionyl Chloride, where Complex Structure of Cellulosic Material of Pretreated Cake is Broken by Enzyme Hydrolysis in Presence of Tricoderma, Conducting Fermentation Using Saccharomyces Cerevisiae-Derwent Innovations Index MARATHE A B; Deshmukh M P; IN202321015414(A). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2024A0520F (accessed on 9 December 2024).
- Peinado Cebrian, C.; Rojas Munoz, S.; Campos Martin, J.M.; Coll Lozano, C.; Latorre Sanchez, M.; Dura Alvarez, A. Obtaining Bioethylene from Organic Fraction of Municipal Solid Waste Used in Chemical Industry by e.g. Mixing Solid Waste with Inorganic Acid, Adding Enzymatic Cocktail i.e. Cellulase and Amylase and Contacting Bioethanol with Acid Catalyst-Derwent Innovations Index Consejo Superior Investigaciones Cientif (CNSJ-C) Perseo Biotechnology SL (PERS-Non-Standard); WO2024023384(A1). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2024130924 (accessed on 9 December 2024).
- Zhouhou, W.; Zhang, J.; Gong, Z. Producing Oil by Open-Type Fermentation of High-Sugar High-Inhibitor Biomass Hydrolysis Liquid by Subjecting Oil Producing Yeast to Laboratory Directed Evolution for Improving Tolerance of Strain to Biomass Based Inhibitor, Growing and Fermenting Strain in Biomass Hydrolysis Liquid with Inhibitor-Derwent Innovations Index Univ Wuhan Sci & Technology (UWSC-C); CN116479064(A). 2023. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202379299S (accessed on 9 December 2024).
- Gao, Q.; Wang, H.; Hu, N.; Wang, Y.; Wang, D.; Xue, X. New Recombinant Plasmid Being Plasmid pBT2-SPP-Lipase-Cellulose-Binding Domain-XM Useful for Preparing Biodiesel-Derwent Innovations Index Univ Tianjin Sci & Technology(UYTC-C); CN116396975(A). 2023. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202374888D (accessed on 9 December 2024).
- Wang, X.; Sun, H.; Liu, X.; Tang, B.; Shan, K. New Immobilized Composite Lipase Obtained by Performing Adsorption and Immobilization of Thermomyces Lanuginosus Lipase, Candida Antarctica B Lipase and Candida Rugosa Lipase with Diatomaceous Earth as Carrier, Embedding and Immobilizing with Sodium Alginate as Carrier, Used for Preparing Biodiesel-Derwent Innovations Index Wuxi Weilan Biotechnology Co., Ltd., (WUXI-Non-Standard); CN117866922(A). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202440845T (accessed on 9 December 2024).
- Meerabai, R.S.; Sumathi, R.; Krishnaveni, C. Converting Pongamia Oil into Biodiesel Involves Carrying Out Esterificationof Oil and its Transesterification, where Esterification Process Involves Heating Oil and Adding Methanol-Derwent Innovations Index SUMATHI R (SUMA-Individual) Krishnaveni C (KRIS-Individual); IN201941028903(A). 2021. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202111881G (accessed on 9 December 2024).
- Liu, D.; Chen, Z. New Recombinant Expression Vector pEC-Cg1554-CALB for Corynebacterium Glutamicum, Useful in the Fermentation Production of Recombinant lipase-Derwent Innovations Index Univ Tsinghua(UYQI-C) Univ Dongguan Shenzhen Tsinghua Res Inst(UYDO-Non-Standard); CN117384935(A). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2024086409 (accessed on 9 December 2024).
- Zhang, J.; Yhang, L.; Meng, Y.; Guo, J.; Niu, Y.; Hu, Y. Preparing Composite Catalyst by Preparing Lipase Solution, Adding Glutaric Dialdehyde, Oscillating, Adding Strong Acid Ion Exchange Resin to Lipase, Suction Filtering, Washing Resin, Obtaining Lipase Loaded Strong acid Ion Exchange Resin; and Pre-Freezing-Derwent Innovations Index Shaanxi Heathful Biological Eng Co., Ltd., (SHAA-Non-Standard); CN114657218(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:2022868559 (accessed on 9 December 2024).
- Wang, J.; Ge, M.; Guo, X.; Shao, Y.; Wang, Q. Biocatalyst Using Two-Dimensional Polyamide Immobilized Lipase for Catalyzing Soybean Oil to Prepare Biodiesel, is Obtained by Preparing Two-Dimensional Polyamide Material Using Trimesoyl Chloride and Biphenylenediamine-Derwent Innovations Index Univ Yangzhou (UYYZ-C); CN112980828(A). 2022. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202172275F (accessed on 9 December 2024).
- Zhang, H.; Chang, J. Producing Biodiesel Comprises Mixing Grease, Acyl Donor and Lipase Catalyst, Reacting, Preparing Transition Metal Catalyst Adding Acyl Donor and the Transition Metal Catalyst, Mixing and Reacting Continuously to Obtain Biodiesel-Derwent Innovations Index Univ Hefei Technology (UYHE-C); CN118064512(A). 2024. Available online: https://www-webofscience-com.ez22.periodicos.capes.gov.br/wos/diidw/full-record/DIIDW:202456062C (accessed on 9 December 2024).
Pretreatment | Raw Material | Enzyme | Producer | Yield (%) | Conditions | Reference |
---|---|---|---|---|---|---|
Gravitational settling | Scenedesmus obliquus | Immobilized whole-cell lipase | A. niger | 90.8 | 36 h, 35 °C, 5:1 ratio (methanol: oil) | [112] |
Natural settling followed by lyophilization | Chlamydomonas sp. JSC4 | Immobilized whole cell lipase | A. oryzae | 97 | 32 h, 30 °C, 7:1 ratio (methanol: oil) | [110] |
Filtration | Waste cooking oil | Co-immobilized lipases | A. oryzae | 98.5 | 24 h, 40 °C, 4:1 ratio (methanol: oil) | [108] |
Waste cooking oil | Lipase (1,3-specific) | A. oryzae | 98.5 | 9 h, 40 °C, 4:1 ratio (methanol: oil) | [109] | |
Soxhlet extraction. | Jatropha curcas seed oil | Lipase immobilized with TiO2 | A. niger | 92 | 30 h, 37 °C, 6:1 ratio (metanol:oil) | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosas-Vega, F.E.; Pozzan, R.; Martínez-Burgos, W.J.; Letti, L.A.J.; de Mattos, P.B.G.; Ramos-Neyra, L.C.; Spinillo Dudeque, G.; Amaro Bittencourt, G.; dos S. Costa, G.; Porto de Souza Vandenberghe, L.; et al. Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials. Fermentation 2025, 11, 62. https://doi.org/10.3390/fermentation11020062
Rosas-Vega FE, Pozzan R, Martínez-Burgos WJ, Letti LAJ, de Mattos PBG, Ramos-Neyra LC, Spinillo Dudeque G, Amaro Bittencourt G, dos S. Costa G, Porto de Souza Vandenberghe L, et al. Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials. Fermentation. 2025; 11(2):62. https://doi.org/10.3390/fermentation11020062
Chicago/Turabian StyleRosas-Vega, Fernando Enrique, Roberta Pozzan, Walter Jose Martínez-Burgos, Luiz Alberto Junior Letti, Patricia Beatriz Gruening de Mattos, Lucia Carolina Ramos-Neyra, Gabriel Spinillo Dudeque, Gustavo Amaro Bittencourt, Gabriela dos S. Costa, Luciana Porto de Souza Vandenberghe, and et al. 2025. "Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials" Fermentation 11, no. 2: 62. https://doi.org/10.3390/fermentation11020062
APA StyleRosas-Vega, F. E., Pozzan, R., Martínez-Burgos, W. J., Letti, L. A. J., de Mattos, P. B. G., Ramos-Neyra, L. C., Spinillo Dudeque, G., Amaro Bittencourt, G., dos S. Costa, G., Porto de Souza Vandenberghe, L., & Soccol, C. R. (2025). Enzymes Produced by the Genus Aspergillus Integrated into the Biofuels Industry Using Sustainable Raw Materials. Fermentation, 11(2), 62. https://doi.org/10.3390/fermentation11020062