Exploring the Fermentation Potential of Kluyveromyces marxianus NS127 for Single-Cell Protein Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation and Identification of Kluyveromyces
2.3. Screening of Kluyveromyces marxianus Strains with High SCP Production
2.3.1. Specific Growth Rate
2.3.2. Screening High Protein Yield Strains
2.3.3. Environmental Tolerance
2.4. Determination of Yeast Dry Biomass and Protein Content
2.5. Effect of Different Medium Components on the SCP Production
2.6. Fed-Batch Fermentation Process for SCP Production
2.7. Characterization of Kluyveromyces marxianus NS127 Protein Properties
2.7.1. Protein Extraction
2.7.2. Protein Solubility
2.7.3. Emulsification Capacity and Stability
2.7.4. Foaming Property
2.8. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of Kluyveromyces Strains
3.2. Specific Growth Rates, SCP Production, Tolerance Assessment
3.3. Optimization of Carbon, Nitrogen, and Phosphorus Sources in the Culture Media
3.4. Optimization of Protein Yield Through Orthogonal Experiments
3.5. Fed-Batch Fermentation for SCP Production
3.6. Protein Solubility, Emulsifying and Foaming Properties
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Single-cell protein: Overcoming technological and biological challenges towards improved industrialization. Curr. Opin. Biotechnol. 2024, 88, 103171. [Google Scholar] [CrossRef]
- Graham, A.E.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Wang, G.; Wu, X.; Yin, Y. Synthetic biology-driven customization of functional feed resources. Trends. Biotechnol. 2022, 40, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Tsapekos, P.; Zhu, X.; Khoshnevisan, B.; Lu, X.; Angelidaki, I. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresour. Technol. 2021, 320, 124351. [Google Scholar] [CrossRef]
- Furlan, O.; de Oliveira, N.S.; de Paula, R.C.; Rosa, R.T.; Michelotto, P.V.; Weber, S.H.; Bianchini, L.F.; Rosa, E.A.R. Pilot scale production of high-content mycoprotein using Rhizopus microsporus var. oligosporus by submerged fermentation and agro-industrial by-products. Bioresour. Technol. 2024, 413, 131515. [Google Scholar] [CrossRef]
- Gao, L.; Meng, J.; Dai, W.; Zhang, Z.; Dong, H.; Yuan, Q.; Zhang, W.; Liu, S.; Wu, X. Deciphering cell wall sensors enabling the construction of robust P. pastoris for single-cell protein production. Biotechnol. Biofuels Bioprod. 2023, 16, 178. [Google Scholar] [CrossRef]
- Janssen, M.; Wijffels, R.H.; Barbosa, M.J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 2022, 75, 102705. [Google Scholar] [CrossRef] [PubMed]
- Koukoumaki, D.I.; Tsouko, E.; Papanikolaou, S.; Ioannou, Z.; Diamantopoulou, P.; Sarris, D. Recent advances in the production of single cell protein from renewable resources and applications. Carbon Resour. Convers. 2024, 7, 100195. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Suhonen, A.; Ritala, A.; Oksman-Caldentey, K. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 2022, 75, 102686. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites. 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Dong, H.; Zhang, Z.; Wu, X.; Bao, T.; Gao, L.; Chen, X. Enhancing the Heterologous Expression of a Thermophilic Endoglucanase and Its Cost-Effective Production in Pichia pastoris Using Multiple Strategies. Int. J. Mol. Sci. 2023, 24, 15017. [Google Scholar] [CrossRef]
- Bertasini, D.; Binati, R.L.; Bolzonella, D.; Battista, F. Single Cell Proteins production from food processing effluents and digestate. Chemosphere 2022, 296, 134076. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Li, J.; Deng, F.; Huang, S.; Zhou, P.; Liu, X.; Li, Z.; Li, D. Ammonia nitrogen recovery from biogas slurry by SCP production using Candida utilis. J. Environ. Manag. 2023, 325, 116657. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Liu, S.; Gao, L.; Hong, K.; Liu, S.; Wu, X. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale. Microb. Cell. Fact. 2023, 22, 198. [Google Scholar] [CrossRef]
- Koukoumaki, D.I.; Papanikolaou, S.; Ioannou, Z.; Mourtzinos, I.; Sarris, D. Single-Cell Protein and Ethanol Production of a Newly Isolated Kluyveromyces marxianus Strain through Cheese Whey Valorization. Foods 2024, 13, 1892. [Google Scholar] [CrossRef]
- Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 333, 108818. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces marxianus through the solid-state fermentation of sugarcane bagasse. Appl. Microbiol. Biotechnol. 2018, 102, 4703–4716. [Google Scholar] [CrossRef] [PubMed]
- Yupanqui-Mendoza, S.L.; de Arruda, P.V.; Da Silva, G.M.C. Statistical sequential optimization of process parameters for inulinase production by Kluyveromyces marxianus ATCC 36907 in solid-state fermentation using beer residue. Biocatal. Agric. Biotechnol. 2022, 39, 102252. [Google Scholar] [CrossRef]
- Hajhosseini, A.; Doroud, D.; Sharifan, A.; Eftekhari, Z. Stress response and characterization of oil-in-water emulsions stabilized with Kluyveromyces marxianus mannoprotein. J. Food Sci. 2021, 86, 454–462. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Bezawada, J.; Elharche, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Simultaneous single-cell protein production and COD removal with characterization of residual protein and intermediate metabolites during whey fermentation by K. marxianus. Bioprocess. Biosyst. Eng. 2014, 37, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, T.; Bekatorou, A.; Pandey, A.; Kanellaki, M.; Koutinas, A.A. Discarded Oranges and Brewer’s Spent Grains as Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-industrial Waste Mixtures. Appl. Biochem. Biotechnol. 2013, 170, 1885–1895. [Google Scholar] [CrossRef]
- Güneşer, O.; Karagül-Yüceer, Y.; Wilkowska, A.; Kregiel, D. Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. Braz. J. Microbiol. 2016, 47, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Lei, P.; Wang, R.; Sun, L.; Luo, Z.; Li, S.; Xu, H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol. Adv. 2023, 64, 108125. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Aider, M. Bioconversion of electro-activated lactose, whey and whey permeate to produce single cell protein, ethanol, aroma volatiles, organic acids and fat by Kluyveromyces marxianus. Int. Dairy J. 2022, 129, 105334. [Google Scholar] [CrossRef]
- Yadav, J.S.S.; Bezawada, J.; Ajila, C.M.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresour. Technol. 2014, 164, 119–127. [Google Scholar] [CrossRef]
- Ma, C.; Xia, S.; Song, J.; Hou, Y.; Hao, T.; Shen, S.; Li, K.; Xue, C.; Jiang, X. Yeast protein as a novel protein source: Processing, functional properties, and potential applications in foods. Innov. Food Sci. Emerg. Technol. 2024, 93, 103606. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.; Jo, M.; Choi, Y.J. Characterization of yeast protein isolates extracted via high-pressure homogenization and pH shift: A promising protein source enriched with essential amino acids and branched-chain amino acids. J. Food Sci. 2024, 89, 900–912. [Google Scholar] [CrossRef]
- Bitew, D.; Tesfaye, A.; Andualem, B. Isolation, screening and identification of ethanol producing yeasts from Ethiopian fermented beverages. Biotechnol. Rep. 2023, 40, e00815. [Google Scholar] [CrossRef]
- Pongcharoen, P.; Chawneua, J.; Tawong, W. High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agric. Nat. Resour. 2018, 52, 511–518. [Google Scholar] [CrossRef]
- Shafi, A.; Husain, Q. Chapter 15—Structural and functional insights of β galactosidase and its potential applications. In Glycoside Hydrolases; Goyal, A., Sharma, K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 323–347. ISBN 978-0-323-91805-3. [Google Scholar]
- Han, X.; Qing, X.; Yang, S.; Li, R.; Zhan, J.; You, Y.; Huang, W. Study on the diversity of non-Saccharomyces yeasts in Chinese wine regions and their potential in improving wine aroma by β-glucosidase activity analyses. Food Chem. 2021, 360, 129886. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Long, J.; Shen, K.; Qiu, S.; Wang, Y.; Huang, Y. Isolation, screening, and application of aroma-producing yeast for red dragon fruit wine. Food Biosci. 2024, 59, 103878. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Urit, T.; Li, M.; Bley, T.; Löser, C. Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Appl. Microbiol. Biotechnol. 2013, 97, 10359–10371. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.N.; Abrahão-Neto, J.; Gombert, A.K. Physiological diversity within the Kluyveromyces marxianus species. Antonie Van Leeuwenhoek 2011, 100, 619–630. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Lim, P.; Wei, D. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source. Bioresour. Technol. 2018, 255, 140–148. [Google Scholar] [CrossRef]
- Wu, T.; Yu, X.; Hu, A.; Zhang, L.; Jin, Y.; Abid, M. Ultrasonic disruption of yeast cells: Underlying mechanism and effects of processing parameters. Innov. Food Sci. Emerg. Technol. 2015, 28, 59–65. [Google Scholar] [CrossRef]
- Ye, M.; Wang, Z.; Yan, X.; Zeng, Z.; Peng, T.; Xia, J.; Zhao, J.; Wang, W.; Gong, D.; Yu, P. Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate. Foods 2024, 13, 968. [Google Scholar] [CrossRef] [PubMed]
- Addis, E.; Fleet, G.H.; Cox, J.M.; Kolak, D.; Leung, T. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int. J. Food Microbiol. 2001, 69, 25–36. [Google Scholar] [CrossRef]
- Andrade, R.P.; Melo, C.N.; Genisheva, Z.; Schwan, R.F.; Duarte, W.F. Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res. Int. 2017, 91, 72–79. [Google Scholar] [CrossRef]
- Belloch, C.; Barrio, E.; García, M.D.; Querol, A. Inter-and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 1998, 14, 1341–1354. [Google Scholar] [CrossRef]
- Lane, M.M.; Burke, N.; Karreman, R.; Wolfe, K.H.; O’Byrne, C.P.; Morrissey, J.P. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 2011, 100, 507–519. [Google Scholar] [CrossRef]
- Taccari, M.; Canonico, L.; Comitini, F.; Mannazzu, I.; Ciani, M. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour. Technol. 2012, 110, 488–495. [Google Scholar] [CrossRef]
- Mo, W.; Wang, M.; Zhan, R.; Yu, Y.; He, Y.; Lu, H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 2019, 12, 63. [Google Scholar] [CrossRef]
- Amrane, A.; Prigent, Y. Effect of culture conditions of Kluyveromyces marxianus on its autolysis, and process optimization. Bioprocess Eng. 1998, 18, 383–388. [Google Scholar] [CrossRef]
- Castañeda-Ayarza, J.A.; Cortez, L.A.B. Final and B molasses for fuel ethanol production and some market implications. Renew. Sustain. Energy Rev. 2017, 70, 1059–1065. [Google Scholar] [CrossRef]
- Wang, L.; Gao, E.; Hu, M.; He, Q.; He, Y.; Zheng, X. Comparative analysis of the fermentation performance of high-quality milk beer strains (Kluyveromyces marxianus) and optimisation of medium formula for high-density fermentation. Int. J. Dairy Technol. 2020, 73, 552–562. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Chang, C.; Chen, J.; Cao, F.; Zhao, J.; Zheng, Y.; Zhu, J. Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocoll. 2019, 96, 510–517. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, Y.; Fan, J.; Lu, Z.; Yamaki, K.; Li, L. Effects of drying method on physicochemical and functional properties of soy protein isolates. J. Food Process Preserv. 2010, 34, 520–540. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Xiong, W.; Yao, Y.; Li, J.; Wang, L. Effect of alkaline treatment duration on rapeseed protein during pH-shift process: Unveiling physicochemical properties and enhanced emulsifying performance. Food Chem. 2024, 459, 140280. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shen, C.; Wu, Z.; Zhang, Z.; Xu, C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J. Food Biochem. 2020, 44, e13157. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.; Mata, A.; Corke, H.; Gan, R.; Fang, Y. Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocoll. 2021, 112, 106288. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Lopez-Alonso, M.; Hayes, M. Assessment of the functional properties of protein extracted from the brown seaweed Himanthalia elongata (Linnaeus) S. F. Gray. Food Res. Int. 2017, 99, 971–978. [Google Scholar] [CrossRef] [PubMed]
Test Number | Factor | |||||
---|---|---|---|---|---|---|
A. Molasses (g/L) | B. NH4Cl (g/L) | C. KH2PO4 (g/L) | D. Corn Steep Liquor (g/L) | Protein Yield (g/L) | Dry Biomass (g/L) | |
1 | 15 | 2.85 | 1 | 9 | 2.74 ± 0.04 | 6.04 ± 0.04 |
2 | 15 | 3.80 | 2 | 12 | 2.92 ± 0.01 | 6.35 ± 0.11 |
3 | 15 | 4.75 | 3 | 15 | 3.00 ± 0.10 | 6.50 ± 0.08 |
4 | 20 | 2.85 | 2 | 15 | 3.41 ± 0.06 | 7.24 ± 0.02 |
5 | 20 | 3.80 | 3 | 9 | 3.09 ± 0.01 | 6.65 ± 0.02 |
6 | 20 | 4.75 | 1 | 12 | 3.13 ± 0.12 | 6.59 ± 0.04 |
7 | 25 | 2.85 | 3 | 12 | 3.59 ± 0.00 | 7.11 ± 0.16 |
8 | 25 | 3.80 | 1 | 15 | 3.60 ± 0.09 | 7.09 ± 0.09 |
9 | 25 | 4.75 | 2 | 9 | 3.30 ± 0.01 | 6.74 ± 0.02 |
K1 | 2.89 | 3.25 | 3.16 | 3.04 | ||
K2 | 3.21 | 3.20 | 3.21 | 3.21 | ||
K3 | 3.50 | 3.14 | 3.23 | 3.34 | ||
R | 0.61 | 0.10 | 0.07 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Wu, Y.; Li, M.; Zhang, C.; Cao, J.; Ledesma-Amaro, R.; Zhao, W.; Kang, D. Exploring the Fermentation Potential of Kluyveromyces marxianus NS127 for Single-Cell Protein Production. Fermentation 2025, 11, 70. https://doi.org/10.3390/fermentation11020070
Dong L, Wu Y, Li M, Zhang C, Cao J, Ledesma-Amaro R, Zhao W, Kang D. Exploring the Fermentation Potential of Kluyveromyces marxianus NS127 for Single-Cell Protein Production. Fermentation. 2025; 11(2):70. https://doi.org/10.3390/fermentation11020070
Chicago/Turabian StyleDong, Lichao, Yanyan Wu, Mingxia Li, Chan Zhang, Jialu Cao, Rodrigo Ledesma-Amaro, Weiwei Zhao, and Dingrong Kang. 2025. "Exploring the Fermentation Potential of Kluyveromyces marxianus NS127 for Single-Cell Protein Production" Fermentation 11, no. 2: 70. https://doi.org/10.3390/fermentation11020070
APA StyleDong, L., Wu, Y., Li, M., Zhang, C., Cao, J., Ledesma-Amaro, R., Zhao, W., & Kang, D. (2025). Exploring the Fermentation Potential of Kluyveromyces marxianus NS127 for Single-Cell Protein Production. Fermentation, 11(2), 70. https://doi.org/10.3390/fermentation11020070