Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds
Abstract
:1. Introduction
2. Production of VFA from Waste Streams
2.1. VFA Production through Dark Fermentation
2.2. Available Waste Streams for VFA Production and VFA Yields
2.3. VFA Platform for Fuels and Chemicals
3. Microalgae Potential in VFA Valorization
3.1. Biology of VFA Utilization;
3.2. Diverse VFA as a Carbon Source
3.2.1. Acetate as a Single Carbon Source
3.2.2. Mixture of VFA as Carbon Source
3.2.3. Dark Fermentation Effluents as Carbon Source
3.2.4. Effect of Culture Conditions in VFA Utilization
3.3. Production of Bioactive Compounds from Heterotrophic Microalgae Cultivation
3.3.1. Omega-3 Fatty Acids
3.3.2. Production of Other High Value Added Compounds
3.3.3. Downstream Processing
4. Discussion and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Xiao, K.; Shen, N.; Zeng, R.J.; Zhou, Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017, 112, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Venkata Mohan, S.; Prathima Devi, M. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour. Technol. 2012, 123, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B. Omega-3 Market by Type (ALA, EPA, and DHA), Source (Fish Oil & Krill Oil, Algal Oil, Walnut, Pumpkin Seeds, Soybean Oil, Canola Oil, Bean Curd, and Others), Application (Dietary Supplement, Pharmaceutical, Infant Formula, Food & Beverage, Pet Food, and Fish Feed)-Global Opportunity Analysis and Industry Forecast, 2014–2022. Allied Market Research: Portland, OR, USA, 2016. Available online: https://www.alliedmarketresearch.com/omega-3-market (accessed on 29 August 2016).
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Wu, Z.; Zhang, L.; Cheung, C.M.; Yang, S.T. Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour. Technol. 2002, 82, 51–59. [Google Scholar] [CrossRef]
- Arudchelvam, Y.; Perinpanayagam, M.; Nirmalakhandan, N. Predicting VFA formation by dark fermentation of particulate substrates. Bioresour. Technol. 2010, 101, 7492–7499. [Google Scholar] [CrossRef] [PubMed]
- Singhania, R.R.; Patel, A.K.; Christophe, G.; Fontanille, P.; Larroche, C. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour. Technol. 2013, 145, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhou, W.; Min, M.; Du, Z.; Chen, P.; Ma, X.; Liu, Y.; Lei, H.; Shi, J.; Ruan, R. Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Appl. Energy 2013, 107, 255–263. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, L.; Zhang, C.; Wisniewski, C.; Zhou, Q. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Water Res. 2010, 44, 3329–3336. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.N.; Nam, W.J.; Jeon, Y.J.; Yoon, H.H. Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour. Technol. 2012, 124, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Holtzapple, M.T. Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresour. Technol. 2010, 101, 2825–2836. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Chen, H.; Jiao, A.; Wang, Z.; Li, Y.; Ren, N. Biological fermentative hydrogen and ethanol production using continuous stirred tank reactor. Int. J. Hydrogen Energy 2012, 37, 843–847. [Google Scholar] [CrossRef]
- Ding, H.B.; Tan, G.Y.A.; Wang, J.Y. Caproate formation in mixed-culture fermentative hydrogen production. Bioresour. Technol. 2010, 101, 9550–9559. [Google Scholar] [CrossRef] [PubMed]
- Teghammar, A.; Yngvesson, J.; Lundin, M.; Taherzadeh, M.J.; Horváth, I.S. Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 2010, 101, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Wikandari, R.; Gudipudi, S.; Pandiyan, I.; Millati, R.; Taherzadeh, M.J. Inhibitory effects of fruit flavors on methane production during anaerobic digestion. Bioresour. Technol. 2013, 145, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Du, J.; Varrone, C.; Wang, Y.; Wang, A.; Liu, W. VFAs bioproduction from waste activated sludge by coupling pretreatments with Agaricus bisporus substrates conditioning. Process Biochem. 2014, 49, 283–289. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard. Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Yang, C.; Guo, Z.; Hou, Y.; Liu, W.; Wang, A. Volatile fatty acids accumulation and rhamnolipid generation in situ from waste activated sludge fermentation stimulated by external rhamnolipid addition. Biochem. Eng. J. 2013, 77, 240–245. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, Y.G.; Kim, G.D.; Kim, S.H.; Chung, T.H. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Water Sci. Technol. 2005, 52, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, S.H.; Choi, Y.G.; Kim, G.D.; Chung, T.H. Effect of enzymatic pretreatment on acid fermentation of food waste. J. Chem. Technol. Biotechnol. 2006, 81, 947–980. [Google Scholar] [CrossRef]
- Bayr, S.; Kaparaju, P.; Rintala, J. Screening pretreatment methods to enhance thermophilic anaerobic digestion of pulp and paper mill wastewater treatment secondary sludge. Chem. Eng. J. 2013, 223, 479–486. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, K.; Li, M.X.; Bo Wang, D.; Zheng, W.; Zeng, M.G.; Liu, J.J. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 2010, 101, 2924–2930. [Google Scholar] [CrossRef] [PubMed]
- Golub, K.W.; Smith, A.D.; Hollister, E.B.; Gentry, T.J.; Holtzapple, M.T. Investigation of intermittent air exposure on four-stage and one-stage anaerobic semi-continuous mixed-acid fermentations. Bioresour. Technol. 2011, 102, 5066–5075. [Google Scholar] [CrossRef] [PubMed]
- Borzacconi, L.; Lopez, I.; Anido, C. Hydrolysis constant and VFA inhibition in acidogenic phase of MSW anaerobic degradation. Water Sci. Technol. 1997, 36, 479–484. [Google Scholar] [CrossRef]
- Zhou, A.; Guo, Z.; Yang, C.; Kong, F.; Liu, W.; Wang, A. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion. J. Biotechnol. 2013, 168, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, Y.; Zheng, X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: The effect of pH. Environ. Sci. Technol. 2009, 43, 4373–4380. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Q.; Fang, H.H.P. Acidification of mid- and high-strength dairy wastewaters. Water Res. 2001, 35, 3697–3705. [Google Scholar] [CrossRef]
- Pessiot, J.; Nouaille, R.; Jobard, M.; Singhania, R.R.; Bournilhas, A.; Christophe, G.; Fontanille, P.; Peyret, P.; Fonty, G.; Larroche, C. Fed-batch anaerobic valorization of slaughterhouse by-products with mesophilic microbial consortia without methane production. Appl. Biochem. Biotechnol. 2012, 167, 1728–1743. [Google Scholar] [CrossRef] [PubMed]
- Turon, V.; Trably, E.; Fayet, A.; Fouilland, E.; Steyer, H.Q. Raw dark fermentation effluent to support heterotrophic microalgae growth: Microalgae successfully outcompete bacteria for acetate. Algal Res. 2015, 12, 119–125. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.P. Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: Influence of pH and temperature. Water Res. 2003, 37, 55–66. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, G.; Chen, Y. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Bioresour. Technol. 2010, 101, 3457–3462. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.N.; Kim, N.J.; Kang, J.; Jeong, C.M. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioprocess Eng. 2010, 15, 1–10. [Google Scholar] [CrossRef]
- Bengtsson, S.; Hallquist, J.; Werker, A.; Welander, T. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem. Eng. J. 2008, 40, 492–499. [Google Scholar] [CrossRef]
- Huang, L.; Chen, B.; Pistolozzi, M.; Wu, Z.; Wang, J. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge. Bioresour. Technol. 2014, 153, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Jie, W.; Peng, Y.; Ren, N.; Li, B. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresour. Technol. 2014, 152, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chang, C.Y.; Liao, Q.; Zhu, X.; Chang, J.S. Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. Bioresour. Technol. 2013, 145, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Morales-Sánchez, D.; Martinez-Rodriguez, O.A.; Kyndt, J.; Martinez, A. Heterotrophic growth of microalgae: Metabolic aspects. World J. Microbiol. Biotechnol. 2015, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Barclay, W.R.; Meager, K.M.; Abril, J.R. Heterotrophic production of long chain omega - 3 fatty acids utilizing algae and algae - like microorganisms. J. Appl. Phycol. 1994, 6, 123–129. [Google Scholar] [CrossRef]
- Pérez-Garcia, O.; Bashan, Y. Microalgal heterothophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. In Algal Biorefineries; Prokop, A., Bajpai, R.K., Zappi, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 61–131. [Google Scholar] [CrossRef]
- Turon, V.; Baroukh, C.; Trably, E.; Latrille, E.; Fouilland, E.; Steyer, J.P. Use of fermentative metabolites for heterotrophic microalgae growth: Yields and kinetics. Bioresour. Technol. 2015, 175, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Turon, V.; Trably, E.; Fouilland, E.; Steyer, J.P. Potentialities of dark fermentation effluents as substrates for microalgae growth: A review. Process Biochem. 2016, 51, 1843–1854. [Google Scholar] [CrossRef]
- Miller, R.; Wu, G.; Deshpande, R.R.; Vieler, A.; Gärtner, K.; Li, X.; Moellering, E.R.; Zäuner, S.; Cornish, A.J.; Liu, B.; et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010, 154, 1737–1752. [Google Scholar] [CrossRef] [PubMed]
- Wase, N.; Black, P.N.; Stanley, B.A.; DiRusso, C.C. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J. Proteome Res. 2014, 13, 1373–1396. [Google Scholar] [CrossRef] [PubMed]
- Kunze, M.; Pracharoenwatana, I.; Smith, S.M.; Hartig, A. A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim. Biophys. Acta 2006, 1763, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.D.; Lee, J.S.; Park, T.H.; Sim, S.J. Comparison of heterotrophic and phtoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 2005, 68, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.; Kim, C.W.; Park, W.K.; Yoo, G.; Choi, Y.E.; Yang, J.W. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res. 2013, 2, 352–357. [Google Scholar] [CrossRef]
- Heredia-Arroyo, T.; Wei, W.; Hu, B. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 2010, 162, 1978–1995. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Chen, Z.; Li, P.; Duan, R.; Ren, N. Lipid production for biofuels from hydrolyzate of waste activated sludge by heterotrophic Chlorella protothecoides. Bioresour. Technol. 2013, 143, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Fu, R.; Shang, L.; Brigham, C.J.; Chang, H.N. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst. Eng. 2015, 38, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Turon, V.; Trably, E.; Fouilland, E.; Steyer, J.P. Growth of Chlorella sorokiniana on a mixture of volatile fatty acids: The effects of light and temperature. Bioresour. Technol. 2015, 198, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.G.; Kim, W.; Heo, S.W.; Kim, D.; Choi, G.G.; Yang, J.W. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions. Bioresour. Technol. 2015, 191, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Syrett, P.J.; Bocks, S.M.; Merrett, M.J. The Assimilation of Acetate by Chlorella vulgaris. J. Exp. Bot. 1969, 15, 35–47. [Google Scholar] [CrossRef]
- Ratledge, C.; Kanagachandran, K.; Anderson, A.J.; Grantham, D.J.; Stephenson, J.C. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 2001, 36, 1241–1246. [Google Scholar] [CrossRef]
- Combres, C.; Laliberte, G.; Reyssac, J.S.; de la Noue, J. Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus. Physiol. Plant 1994, 91, 729–734. [Google Scholar] [CrossRef]
- Ren, H.Y.; Liu, B.-F.; Ma, C.; Zhao, L.; Ren, N.Q. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol. Biofuels 2013, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Matsuka, M.; Miyachi, S.; Hase, E. Acetate metabolism in the process of ‘acetate-bleaching’ of Chlorella protothecoides. Plant Cell Physiol. 1969, 538, 527–538. [Google Scholar] [CrossRef]
- Egli, T.; Lendenmann, U.; Snozzi, M. Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek 1993, 63, 289–298. [Google Scholar] [CrossRef]
- Cho, H.U.; Kim, Y.M.; Choi, Y.N.; Xu, X.; Shin, D.Y.; Park, J.M. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids. Bioresour. Technol. 2015, 184, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Chen, F. Growing phototrophic cells without light. Biotechnol. Lett. 2006, 28, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xiong, L.; Qi, G.; Shi, S.; Huang, C.; Chen, X.; Chen, X. Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent. ACS Sustain. Chem. Eng. 2015, 3, 702–709. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Taleb, A.; Olkiewicz, M.; Font, J.; Pruvost, J.; Legrand, J.; Bengoa, C. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Res. 2015, 10, 232–239. [Google Scholar] [CrossRef]
- Khan, R.S.; Grigor, J.; Winger, R.; Win, A. Functional food product development–Opportunities and challenges for food manufacturers. Trends Food Sci. Technol. 2013, 30, 27–37. [Google Scholar] [CrossRef]
- Alabdukarim, B.; Bakeet, Z.A.N.; Arzoo, S. Role of some functional lipids in preventing diseases and promoting health. J. K. Saud Univ. Sci. 2012, 24, 319–329. [Google Scholar] [CrossRef]
- Hooper, L.; Thompson, R.L.; Harrison, R.A.; Summerbell, C.D.; Ness, A.R.; Moore, H.J.; Worthington, H.V.; Durrington, P.N.; Higgins, J.P.T.; Nigel, E.C.; et al. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: Systematic review. Br. Med. J. 2006, 332, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Stonik, V.A.; Fedorov, S.N. Marine low molecular weight natural products as potential cancer preventive compounds. Mar. Drugs 2014, 12, 636–671. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.W.; DiRusso, C.C.; Black, P.N. Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Res. 2015, 10, 110–120. [Google Scholar] [CrossRef]
- Wase, N.; Tu, P.; Allen, J.W.; Black, P.N.; DiRusso, C.C. Identification and metabolite profiling of chemical activators of lipid accumulation in green algae. Plant Physiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Mar Drugs. 2014, 12, 3487–3515. [Google Scholar] [CrossRef] [PubMed]
- Clarens, A.; Resurreccion, E.; White, M.; Colosi, L. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 2010, 44, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Norsker, N.; Barbosa, M.; Vermue, M.; Wijffels, R. Microalgal production-a close look at the economics. Biotechnol. Adv. 2011, 29, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, S.; Kosterink, N.R.; Wacka, N.T.; Vermue, M.H.; Wijffels, R.H. Mechanism behind autoflocculation of unicellular green microalgae Ettliatexensis. J. Biotechnol. 2014, 174, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Alam, M.A.; Zhao, X.Q.; Zhang, X.Y.; Guo, S.L.; Ho, S.H.; Chang, J.S.; Bai, F.W. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour. Technol. 2015, 184, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhy, R.; Pandey, A.; Sahoo, D. Bioflocculation: An alternative strategy for harvesting of microalgae—An overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Ranjith Kumar, R.; Hanumantha Rao, P.; Arumugam, M. Lipid extraction methods from microalgae: A comprehensive review. Front. Energy Res. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew. Sustain. Energy Rev. 2013, 26, 216–223. [Google Scholar] [CrossRef]
Waste Stream | Process | Fermentation Key Conditions 1 | VFA Yield 2 | VFA Composition (mol) | Ref. |
---|---|---|---|---|---|
Pulp and paper mill effluent | Continuous | pH = 6, RT = 24 h, T = 37 °C | 0.75 g COD/g COD | 33Ac:61Pr:2Bu | [35] |
Dairy whey effluent | Continuous | pH = 6, RT = 95 h, T = 37 °C | 0.93 g COD/g COD | 31Ac:41Pr:10Bu | [35] |
Swine manure | Batch (2d)/Semi-continuous (10d) | T = 38 ± 1 °C, pH = 5.3–5.6, HRT = 3 d | 2002.25 mg L-1d-1 | [10] | |
Waste Activated Sludge (WAS) | Batch | T = 35 ± 1°C, pH = 10 | 129.21 mg/g VS | [36] | |
Mixture of primary sludge (PS)/ WAS (w/w: 1:1) | Semi-continuous | T = 21± 1 °C, SRT = 6 d | 118.4 ± 5.8 mg COD/g VSS | 10Ac:7Pr:4Bu:5Va | [33] |
Excess Sludge (ES) | Batch | T = 28 °C, pH = 10 | 302.4 mg COD/g VSS | 53Ac:24Pr:9Bu: 9Iso-bu:9Iso-va | [37] |
80% lime-treated sugarcane bagasse/20% chicken manure | Continuous | T = 55 °C, pH = 6.95–7.05, LRT = 19.1 d, VSLR = 2.07 g/(L·day) | 0.55 g TA/g VS digested | 91Ac:2Pr:7Bu:0.6Va | [13] |
Slaughterhouse by-products | Fed-batch | T = 38 °C, pHinitial = 6.8 | 0.38 ± 0.04 g VFA/g DM consumed | 63Ac:43Pr:59Bu:13Iso-Bu:24Va | [30] |
80% shredded office copier paper/20% chicken manure | Semi-continuous | T = 40 °C, pH = 5.3-6.6, LRT = 32.6 d | 0.159 g acid/g NAVS fed3 | 36Ac:37Pr:7Bu:14Va:6Hep | [25] |
WAS/ rice | Batch | T = 21±1 °C, pH = 8, fer. Time = 8 d | 520.1±24.4 mg COD/g VSS | 35Ac:50Pr | [28] |
Alkaline, thermal pretreated WAS/ ABS | Batch/Semi-continuous | T = 35 ± 2 °C, HRT=10 d | 712 ± 49 mg COD/g VSS | 46 ± 0.9% Ac | [18] |
Pretreated WAS/ pretreated corn stover (50:50) | Batch | T = 35 ± 1 °C, pHinitial = 10 | 11939 mg COD/L | 52Ac:22Pr:10n-Bu:8iso-Va | [27] |
WAS pretreated with rhamnolipids (0.04 g/g TSS) | Batch | T = 35 ± 1 °C, fer. time = 4 d | 3840 mg COD/L | Ac (25 ± 0.6%): Pr (20 ± 0.1%): n-HBu (16 ± 0.1%) | [20] |
Strain | Carbon Source | Process | Product | Production | Ref. |
---|---|---|---|---|---|
Chlamydomonas reinhardtii wild-type strain CC-124 | Acetate | mixotrophic | Microalgal oil | 16.41 ± 1.12% lipid content | [48] |
Chlamydomonas reinhardtii wild-type strain CC-124 | acetic acid: propionic acid: butyric acid in a ratio 8:1:1 | mixotrophic | Microalgal oil | 19.02% lipid content | [48] |
Chlorella protothecoides 249 | Acetate | mixotrophic, initial pH = 6.5 | Microalgal oil * | 29.45 ± 0.84% lipid content | [49] |
Chlorella protothecoides 249 | Acetate | heterotrophic, initial pH = 6.3 | Microalgal oil | 52.38 ± 25.77% lipid content | [49] |
Chlorella protothecoides FACHB-3 | WAS hydrolysate containing a mixture of VFA | heterotrophic | Microalgal oil | 21.5 ± 1.44% lipid content | [50] |
Chlorella protothecoides UTEX 25 | acetic acid: propionic acid: butyric acid in a ratio 8:1:1 | Heterotrophic (nitrogen source = Urea) | Microalgal oil | 48.7 ± 2.2 % lipid content (0.317 ± 0.01 g/L) | [51] |
Chlorella sorokiniana (CCAP 211/8K) | acetate and butyrate | mixotrophic | Microalga biomass | 1.14 g CDW/L | [52] |
Chlorella sp. (Arctic) ArM0029B | acetic, propionic and butyric acids in ratio 6:1:3 (by mass) | CO2 supplied-mixotrophic followed by the VFA supply | Microalgal oil | 65.7 ± 3.1 mg/g CDW | [53] |
Chlorella vulgaris ESP6 | mixture of acetate, lactate, butyrate, and HCO- | photoheterotrophic, constant pH = 7.5 | Microalga biomass | 0.87 g CDW/L | [38] |
Chlorella vulgaris UTEX 259 | Acetate | mixotrophic | Microalgal oil | 36 ± 1% lipid content | [54] |
Crypthecodinium cohnii strain ATCC 30772 | Acetate | heterotrophic (pH-auxostat culture) | DHA | 4.4 g/L | [55] |
Ettlia sp. YC001 | acetic, propionic and butyric acids in ratio 6:1:3 (by mass) | CO2 supplied-mixotrophic followed by the VFA supply | Microalgal oil | 88.5 ± 0.0 mg/g CDW | [53] |
Haematococcus pluvialis NIES-144 | Acetate | heterotrophic | astaxanthin | 22.6 mg/g CDW | [47] |
Micractinium inermum F014 | acetic, propionic and butyric acids in ratio 6:1:3 (by mass) | CO2 supplied-mixotrophic followed by the VFA supply | Microalgal oil | 62.6 ± 0.5 mg/g CDW | [53] |
Scenedesmus obliquus (UTEX 78) | Acetate | mixotrophic | Microalga biomass | >1.4 day−1 growth rate | [56] |
Scenedesmus sp. strain R-16 | Acetate | heterotrophic | Microalgal oil | 34.4% lipid content | [57] |
Scenedesmus sp. strain R-16 | Butyrate | heterotrophic | Microalgal oil | 24.8% lipid content | [57] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalima, A.; Oliver, L.; Fernández de Castro, L.; Karnaouri, A.; Dietrich, T.; Topakas, E. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds. Fermentation 2017, 3, 54. https://doi.org/10.3390/fermentation3040054
Chalima A, Oliver L, Fernández de Castro L, Karnaouri A, Dietrich T, Topakas E. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds. Fermentation. 2017; 3(4):54. https://doi.org/10.3390/fermentation3040054
Chicago/Turabian StyleChalima, Angelina, Laura Oliver, Laura Fernández de Castro, Anthi Karnaouri, Thomas Dietrich, and Evangelos Topakas. 2017. "Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds" Fermentation 3, no. 4: 54. https://doi.org/10.3390/fermentation3040054
APA StyleChalima, A., Oliver, L., Fernández de Castro, L., Karnaouri, A., Dietrich, T., & Topakas, E. (2017). Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds. Fermentation, 3(4), 54. https://doi.org/10.3390/fermentation3040054