The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring
Abstract
:1. Introduction
2. The Origin of the UV-Vis Spectra
3. Sample Presentation
4. Data Analysis
5. Applications and Examples of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kara, S.; Mueller, J.J.; Liese, A. Online analysis methods for monitoring of bioprocesses. Chim. Oggi 2011, 29, 38–41. [Google Scholar]
- Lourenço, N.D.; Lopes, J.A.; Almeida, C.F.; Sarraguça, M.C.; Pinheiro, H.M. Bioreactor monitoring with spectroscopy and chemometrics: A review. Anal. Bioanal. Chem. 2012, 404, 1211–1237. [Google Scholar] [CrossRef] [PubMed]
- Bellon-Maurel, V.; Orliac, O.; Christen, P. Sensors and measurements in solid state fermentation: A review. Process Biochem. 2003, 38, 881–896. [Google Scholar] [CrossRef]
- Simon, L.L.; Pataki, H.; Marosi, G.; Meemken, F.; Hungerbühler, K.; Baiker, A. Assessment of recent process analytical technology (PAT) trends: A multiauthor review. Org. Process Res. Dev. 2015, 19, 3–62. [Google Scholar] [CrossRef]
- Rathore, A.S.; Bhambure, R.; Ghare, V. Process analytical technology (PAT) for biopharmaceutical products. Anal. Bioanal. Chem. 2010, 398, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Glassey, J.; Gernaey, K.V.; Clemens, C.; Schulz, T.W.; Oliveira, R.; Striedner, G. Process analytical technology (PAT) for biopharmaceuticals. Biotechnol. J. 2011, 6, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhambure, R.; Kumar, K.; Rathore, A.S. High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011, 29, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Ündey, C.; Ertunç, S.; Mistretta, T.; Looze, B. Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control. J. Process Control 2010, 20, 1009–1018. [Google Scholar] [CrossRef]
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar] [CrossRef]
- Becker, T.; Hitzmann, B.; Muffler, K.; Pörtner, R.; Reardon, K.F.; Stahl, F. Future aspects of bioprocess monitoring. Adv. Biochem. Eng. Biotechnol. 2006, 105, 249–293. [Google Scholar]
- Glindkamp, A.; Riechers, D.; Rehbock, C.; Hitzmann, B.; Scheper, T.; Reardon, K.F. Sensors in disposable bioreactors status and trends. Adv. Biochem. Eng. Biotechnol. 2010, 115, 145–169. [Google Scholar]
- Vojinovic, V.; Cabral, J.M.S.; Fonseca, L.P. Real-time bioprocess monitoring: Part I: In situ sensors. Sens. Actuators B Chem. 2006, 114, 1083–1091. [Google Scholar] [CrossRef]
- Gordon, R.; Cozzolino, D.; Chandra, S.; Power, A.; Roberts, J.J.; Chapman, J. Analysis of Australian Beers using fluorescence spectroscopy. Beverages 2017, 3, 57. [Google Scholar] [CrossRef]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.J.; Cozzolino, D. Origin and regionality of wines-The role of molecular spectroscopy. Food Anal. Methods 2017, 10, 3947–3955. [Google Scholar] [CrossRef]
- Alford, J.S. Bioprocess control: Advances and challenges. Comput. Chem. Eng. 2006, 30, 1464–1475. [Google Scholar] [CrossRef]
- Vandenberg, F.W.J.; Vanosenbruggen, W.A.; Smilde, A.K. Process analytical chemistry in the distillation industry using near-infrared spectroscopy. Process Control Qual. 1997, 9, 51–57. [Google Scholar]
- Workman, J.; Koch, M.; Veltkamp, D. Process analytical chemistry. Anal. Chem. 2005, 77, 3789–3806. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.P.; Oliveira, R.; Alves, P.M.; Carrondo, M.J. Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative. Biotechnol. Adv. 2009, 27, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Codgill, R.P.; Anderson, C.A.; Drennen, J.K., III. Using NIR spectroscopy as an integrated PAT tool. Spectroscopy 2004, 19, 104–109. [Google Scholar]
- Swarbrick, B. Process analytical technology: A strategy for keeping manufacturing viable in Australia. Vib. Spectrosc. 2007, 44, 171–178. [Google Scholar] [CrossRef]
- Lopes, J.A.; Costa, P.F.; Alves, T.P.; Menezes, J.C. Chemometrics in bioprocess engineering: Process analytical technology (PAT) applications. Chemom. Intell. Lab. Syst. 2004, 74, 269–275. [Google Scholar] [CrossRef]
- Folestad, S. Bridging Science and Regulation—The PAT (R) Evolution in Pharma Industry. In Proceedings of the 2009 Advances in Process Analytics and Control Technology (APACT09), Glasgow, Scotland, 5–7 May 2009. [Google Scholar]
- Chena, Z.; Lovettb, D.; Morrisc, J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. J. Process Control 2011, 21, 1467–1482. [Google Scholar] [CrossRef]
- Rosas, J.G.; Blanco, M.; González, J.M.; Alcalà, M. Real-time determination of critical quality attributes using near-infrared spectroscopy: A contribution for Process Analytical Technology (PAT). Talanta 2012, 97, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Noiseux, I.; Long, W.; Cournoyer, A.; Vernon, M. Simple fiber-optic-based sensors for process monitoring: An application in wine quality control monitoring. Appl. Spectrosc. 2009, 58, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Marison, I.; Hennessy, S.; Foley, R.; Schuler, M.; Sivaprakasam, S.; Freeland, B. The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses measurement, monitoring, modelling and control of bioprocesses. Adv. Biochem. Eng. Biotechnol. 2013, 132, 249–280. [Google Scholar] [PubMed]
- Paul, A.; Carl, P.; Westad, F.; Voss, J.-P.; Maiwald, M. Towards Process Spectroscopy in Complex Fermentation Samples and Mixtures. Chem. Ing. Tech. 2016, 88, 756–763. [Google Scholar] [CrossRef]
- Beutel, S.; Henkel, S. In situ sensor techniques in modern bioprocess monitoring. Appl. Microbiol. Biotechnol. 2011, 91, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Schmid, F.X. Biological macromolecules: UV-visible spectrophotometry. In Encyclopedia of Life Sciences; Robinson, S., Ayres, E., Eds.; Macmillan Publishers: London, UK, 2001; pp. 1–4. [Google Scholar]
- Esfandiary, R.; Middaugh, C.R. Ultraviolet absorption spectroscopy. In Analysis of Aggregates and Particles in Protein Pharmaceuticals; Mahler, H.C., Jiskoot, W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 171–200. [Google Scholar]
- Bunney, J.; Williamson, S.; Atkin, D.; Jeanneret, M.; Cozzolino, D.; Chapman, J. The use of biosensors in food analysis. Curr. Res. Nutr. Food Sci. J. 2017, 5, 183–195. [Google Scholar] [CrossRef]
- Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Claßen, J.; Aupert, F.; Reardon, K.F.; Solle, D.; Scheper, T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal. Bioanal. Chem. 2017, 409, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Noui, L.; Hill, J.; Keay, P.J.; Wang, R.Y.; Smith, T.; Yeung, K.; Habib, G.; Hoare, M. Development of a high resolution UV spectrophotometer for at-line monitoring of bioprocesses. Chem. Eng. Process 2002, 41, 107–114. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- Esbensen, K.H. Multivariate Data Analysis in Practice; CAMO Process: Oslo, Norway, 2002. [Google Scholar]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons Ltd.: New York, NY, USA, 1996. [Google Scholar]
- Brereton, R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125, 2125–2154. [Google Scholar] [CrossRef]
- Brereton, R.G. Experimental Design. In Applied Chemometrics for Scientists; John Wiley & Sons, Ltd.: New York, NY, USA, 2007; pp. 9–62. [Google Scholar]
- Wold, S. Chemometrics; what do we mean with it, and what do we want from it? Chemom. Intell. Lab. Syst. 1995, 30, 109–115. [Google Scholar] [CrossRef]
- Kourti, T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control Signal Process. 2005, 19, 213–246. [Google Scholar] [CrossRef]
- Pons, M.N.; Le Bonte, S.; Potier, O. Spectral analysis and fingerprinting for biomedia characterisation. J. Biotechnol. 2004, 113, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Chandra, S.; Roberts, J.J.; Power, A.; Rajapaksha, P.; Ball, N.; Gordon, R.; Chapman, J. There is gold in them hills: Predicting potential acid mine drainage events through the use of chemometrics. Sci. Total Environ. 2018, 619, 1464–1472. [Google Scholar] [CrossRef]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.J.; Cozzolino, D. The application of state-of-the-art analytic tools (biosensors and spectroscopy) in beverage and food fermentation process monitoring. Fermentation 2017, 3, 50. [Google Scholar] [CrossRef]
- Munck, L.; Norgaard, L.; Engelsen, S.B.; Bro, R.; Andersson, C.A. Chemometrics in food science—A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemom. Intell. Lab. Syst. 1998, 44, 31–60. [Google Scholar] [CrossRef]
- Rathore, A.S.; Singh, S.K. Use of multivariate data analysis in bioprocessing. BioPharm Int. 2015, 28, 26. [Google Scholar]
- Jaumot, J.; Vives, M.; Gargallo, R. Application of multivariate resolution methods to the study of biochemical and biophysical processes. Anal. Biochem. 2004, 327, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Parker, M.; Dambergs, R.G.; Herderich, M.; Gishen, M. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Biotechnol. Bioeng. 2006, 95, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Fakharudin, A.S.; Embong, A.; Hamid, R.A.; Hamza, M.A.M.; Ajid, K.A.; Ali, N.M.; Satari, S.Z.; Sulaiman, J.; Zain, W.S.W.M. Optimisation of fermentation process using data mining techniques for small-medium industry. In Proceedings of the International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 25–28 November 2007; pp. 273–275. [Google Scholar]
- Tudo, J.L.A.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric analysis of phenolic compounds in grapes and wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef] [PubMed]
- Shrake, N.L.; Amirtharajah, R.; Brenneman, C.; Boulton, R.; Knoesen, A. In-line measurement of color and total phenolics during red wine fermentations using a light-emitting diode sensor. Am. J. Enol. Vitic. 2014, 65, 463–470. [Google Scholar] [CrossRef]
- Ito, S.; Barchi, A.C.; Escaramboni, B.; Neto, P.D.; Herculano, R.D.; Borges, F.A.; Miranda, M.C.R.; Núñez, E.G.F. UV/Vis spectroscopy combined with chemometrics for monitoring solid-state fermentation with Rhizopus microsporus var. oligosporus. J. Chem. Technol. Biotechnol. 2017, 92, 2563–2572. [Google Scholar] [CrossRef]
- Saleemi, A.N.; Rielly, C.D.; Nagy, Z.K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distribution using ATR-Uv/Vis spectroscopy and FBRM. Cryst. Growth Des. 2012, 12, 1792–1807. [Google Scholar] [CrossRef]
- Takahashi, M.B.; Leme, J.; Caricati, C.P.; Tonso, A.; Fernández-Núñez, E.G.; Rocha, J.C. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes. Bioprocess Biosyst. Eng. 2015, 38, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Chen, G.; Pistolozzi, M.; Xia, F.; Wu, Z. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties. Food Addit. Contam. A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Neamah Al Azawy, A.; Khadom, A.A.; Sattar Abdul Jabbar, A. Efficiency of some types of bacteria on producing biofuels from wastes of writing paper. J. Environ. Chem. Eng. 2016, 4, 2816–2819. [Google Scholar] [CrossRef]
- Zou, Y.; Li, L.; Liu, C. Physicochemical properties and stability of melanin from Auricularia Auricula fermentation broths. Carpath. J. Food Sci. Technol. 2015, 7, 149–154. [Google Scholar]
- Li, S.-W.; Song, H.-P.; Leng, Y. Rapid determination of lovastatin in the fermentation broth of Aspergillus terreus using dual-wavelength UV spectrophotometry. Pharm. Biol. 2014, 52, 129–135. [Google Scholar] [CrossRef] [PubMed]
Item | Advantages | Limitations |
---|---|---|
Samples and sampling | Allow the continuous sampling of the process | The sample and other interferences (e.g., damage cells, turbidity) are also analysed |
Hardware | Commercially available instrumentation easily available | Type of instrument, fibre optic options, highly dependent on the type of sample (e.g., liquid, semisolid, turbid media). |
Routine use | Easy to implement | Highly dependent on the type of sample, and process. |
Data analysis | A lot of information and data can be collected to monitor the process | Not only information about the sample is collected, interferences, noise is also collected during the process. |
Training | Easy to use in routine | Education and high understanding of the system, interpretation of the data and interferences. |
Chemical compounds and properties | Several compounds can be measured | Limit of detection and quantification, depending on the process and sample. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring. Fermentation 2018, 4, 18. https://doi.org/10.3390/fermentation4010018
Roberts J, Power A, Chapman J, Chandra S, Cozzolino D. The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring. Fermentation. 2018; 4(1):18. https://doi.org/10.3390/fermentation4010018
Chicago/Turabian StyleRoberts, Jessica, Aoife Power, James Chapman, Shaneel Chandra, and Daniel Cozzolino. 2018. "The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring" Fermentation 4, no. 1: 18. https://doi.org/10.3390/fermentation4010018
APA StyleRoberts, J., Power, A., Chapman, J., Chandra, S., & Cozzolino, D. (2018). The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring. Fermentation, 4(1), 18. https://doi.org/10.3390/fermentation4010018